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Abstract 
This paper describes the basic philosophy 
and implementation of MPLUS (M+), a 
robust medical text analysis tool that uses a 
semantic model based on Bayesian 
Networks (BNs).  BNs provide a concise 
and useful formalism for representing 
semantic patterns in medical text, and for 
recognizing and reasoning over those 
patterns. BNs are noise-tolerant, and 
facilitate the training of M+. 
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Introduction 

In the field of medical informatics, 
computerized tools are being developed that 
depend on databases of clinical information.  
These include alerting systems for improved 
patient care, data mining systems for quality 
assurance and research, and diagnostic systems 
for more complex medical decision support.  
These systems require data that is appropriately 
structured and coded.  Since a large portion of 
the information stored in patient databases is in 
the form of free text, manually coding this 
information in a format accessible to these tools 
can be time consuming and expensive.  In recent 
years, natural language processing (NLP) 
methodologies have been studied as a means of 
automating this task. There have been many 
projects involving automated medical language 
analysis, including deciphering pathology 
reports (Smart and Roux, 1995), physical exam 
findings (Lin et al., 1991), and radiology reports 
(Friedman et al., 1994; Ranum, 1989; Koehler, 
1998).   

M+ is the latest in a line of NLP tools 
developed at LDS Hospital in Salt Lake City, 
Utah.  Its predecessors include SPRUS (Ranum, 
1989) and SymText (Koehler, 1998).  These 
tools have been used in the realm of radiology 
reports, admitting diagnoses (Haug et al., 1997), 
radiology utilization review (Fiszman, 2002) 
and syndromic detection (Chapman et al., 
2002).  Some of the character of these tools 
derives from common characteristics of 
radiology reports, their initial target domain.  

 Because of the off-the-cuff nature of 
radiology dictation, a report will frequently 
contain text that is telegraphic or otherwise not 
well formed grammatically.  Our desire was not 
only to take advantage of phrasal structure to 
discover semantic patterns in text, but also to be 
able to infer those patterns from lexical and 
contextual cues when necessary. 

Most NLP systems capable of semantic 
analysis employ representational formalisms 
with ties to classical logic, including semantic 
grammars (Friedman et al., 1994), unification-
based semantics (Moore, 1989), and description 
logics (Romacker and Hahn, 2000). M+ and its 
predecessors employ Bayesian Networks (Pearl, 
1988), a methodology outside this tradition.  
This study discusses the philosophy and 
implementation of M+, and attempts to show 
how Bayesian Networks can be useful in 
medical text analysis.  

The M+ Semantic Model 
2.1 Semantic Bayesian Networks 

M+ uses Bayesian Networks (BNs) to represent 
the basic semantic types and relations within a 
medical domain such as chest radiology reports.   
M+  BNs are structurally similar to semantic 
networks, in that they are implemented as 
directed acyclic graphs, with  nodes 
representing word and concept types, and links 
representing relations between those types.  BNs 
also have a character as frames or slot-filler 
representations (Minsky, 1975).  Each node is 
treated as a variable, with an associated  list of 
possible values.  For instance a node 
representing "disease severity" might include 
the possible values {"severe", "moderate", 
"mild"}. Each value  has a probability, either 
assigned or inferred, of being the true value of 
that node.   

In addition to providing a framework 
for representation, a BN is also a probabilistic 
inference engine.  The probability of each 
possible value of a node is conditioned on the 
probabilities of the values of neighboring nodes, 
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through a training process that learns a Bayesian 
joint probability function from a set of training 
cases.  After a BN is trained, a node can be 
assigned a value by setting the probability of 
that value to 1, and the probabilities of the 
alternate values to 0.  This results in a cascading 
update of the value probabilities in all 
unassigned nodes, in effect predicting what the 
values of the unassigned nodes should be, given 
the initial assignments.  The sum of the 
probabilities for the values of a given node is 
constrained to equal 1, making the values 
mutually exclusive, and reflecting uncertainty if 
more than one value has a nonzero probability.  
Please note that in this paper, "BN instance" 
refers to the state of a BN after assignments 
have been made.   

A training case for a BN is a list of node 
/ value assignments.  For instance, consider a 
simple BN for chest anatomy phrases, as shown 
in Figure 1. 

Figure 1.  BN for simple chest anatomy phrases. 

A training case for this BN applied to 
the phrase "right upper lobe" could be: 

side=right 
verticality=upper 
location=lobe 
interpretation= *right-upper-lobe 

 
In the context of the Bayesian learning, 

this case has an effect similar to a production 
rule which states "If  you find the words 'right', 
'upper' and 'lobe' together in a phrase, infer the 
meaning *right-upper-lobe".  After training on 
this case, assigning one or more values from this 
case would increase the probabilities of the 
other values; for instance assigning side= 
"right" would increase the probability of the 
value interpretation= *right-upper-lobe. 

Interpretive concepts such as *right-
upper-lobe are atomic symbols which are either 
invented by the human trainer, or else obtained 
from a medical knowledge database such as the 

UMLS metathesaurus.  By convention, concept 
names in M+ are preceded with an asterisk. 

A medical domain is represented in M+ 
as a network of BNs, with word-level and lower 
concept-level BNs providing input to higher 
concept-level BNs.  Figure 2 shows a partial 
view of the network of BNs used to model the 
M+ Head CT (Computerized Tomography) 
domain, instantiated with the phrase "temporal 
subdural hemorrhage".   Each BN instance is 
shown with a list of nodes and most probable 
values. Note that input nodes of higher BNs in 
this model have the same name as, and take 
input from, the summary nodes of lower BNs.  
Word level BNs have input nodes named 
"head", "mod1" and "mod2", corresponding to 
the syntactic head and modifiers of a phrase.  
Each node in a BN has a distinguished "null" 
value, whose meaning is that no information 
relevant to that node, explicit or inferable, is 
present in the represented phrase. 

Figure 2.  Network of M+ BNs, applied to 
"temporal subdural hemorrhage".  

One way in which M+ differs from its 
predecessor SymText (Koehler, 1998) is in the 
size and modularity of its semantic BNs.  The 
SymText BNs group observation and disease 
concepts together with state ("present", 
"absent"), change-of-state ("old", "chronic"), 
anatomic location and other concept types.  M+ 
trades the inferential advantages of such 
monolithic BNs for the modularity and 
composability of smaller BNs such as those 
shown in figure 2.  Figure 3 shows a single 
instance of the SymText Chest Radiology 
Findings BN, instantiated with the sentence 
"There is dense infiltrative opacity in the right 
upper lobe". 



*observations :  *localized upper lobe infiltrate (0.888) 
     *state :  *present (0.989) 
         state term :  null (0.966) 
     *topic concept :  *poorly-marginated opacity (0.877) 
         topic term :  opacity  (1.0) 
         topic modifier :  infiltrative (1.0) 
      *measurement concept :  *null (0.999) 
         measurement term :  null (0.990) 
         first value :  null (0.998) 
         second value :  null (0.999) 
         values link :  null (0.999) 
         size descriptor :  null (0.999) 
     *tissue concept :  *lung parenchyma (0.906) 
         tissue term : alveolar (1.0) 
     *severity concept :  *high severity (0.893) 
         severity term :  dense (1.0) 
     *anatomic concept :  *right upper lobe (0.999) 
         *anatomic link concept :  *involving (1.0) 
             anatomic link term :  in (1.0) 
         anatomic location term :  lobe (1.0) 
         anatomic location modifier :  null (0.999) 
         anatomic modifier side :  right (1.0) 
         anatomic modifier superior/inferior : upper (1.0) 
         anatomic modifier lateral/medial : null (0.999) 
         anatomic modifier anterior/posterior : null (0.999) 
         anatomic modifier central/peripheral : null (0.955) 
     *change concept :  *null (0.569) 
         change with time :  null (0.567) 
         change degree :  null (0.904) 
         change quality :  null (0.923) 

Figure 3.  SymText BN instantiation. 

2.2 Parse-Driven BN Instantiation 

M+ BNs are instantiated as part of the 
syntactic parse process.  M+ syntactic and 
semantic analyses are interleaved, in contrast 
with NLP systems that perform semantic 
analysis after the parse has finished. 

M+ uses a bottom-up chart parser, with 
a context free grammar (CFG).  As a word such 
as "right" is recognized by the parser, a word-
level phrase object is created and a BN instance 
containing the assignment side= "right" is 
attached to that phrase.  As larger grammatical 
patterns are recognized, the BN instances 
attached to subphrases within those patterns are 
unified and attached to the new phrases, as 
described in section 3.  The result of this 
process is a set of completed BN instances, as 
illustrated in figure 2.  Each BN instance is a 
template containing word and concept-level 
value assignments, and the interpretive concepts 
inferred from those assignments.  The templates 
themselves are nested in a symbolic expression, 
as described in section 2.3, to facilitate 
composing multiple BN instances in 
representations of arbitrary complexity. 

Each phrase recognized by the parser is 
assigned a probability, based on a weighted sum 
of the joint probabilities of its associated BN 
instances, and adjusted for various syntactic and 

semantic constraint violations.  Phrases are 
processed in order of probability; thus the parse 
involves a semantically-guided best-first search. 

Syntactic and semantic analysis in M+ 
are mutually constraining.  If a grammatically 
possible phrase is uninterpretable, i.e. if its 
subphrase interpretations cannot be unified, it is 
rejected.  If the interpretation has a low 
probability, the phrase is less likely to appear in 
the final parse tree.  On the other hand, 
interpretations are constructed as phrases are 
recognized. The exception to this rule is when 
an ungrammatical fragment of text is 
encountered.  M+ then uses a semantically-
guided phrase repair procedure not described in 
this paper. 

2.3 The M+ Abstract Semantic Language  

The probabilistic reasoning afforded by BNs is 
superior to classical logic in important ways 
(Pearl, 1988).  However, BNs are limited in 
expressive power relative to first-order logics 
(Koller and Pfeffer, 1997), and commercially 
available implementations lack the flexibility of 
symbolic languages.  Friedman et al have made 
considerable headway in giving BNs many 
useful characteristics of first order languages, in 
what they call probabilistic relational models, or 
PRMs (e.g. Friedman at al.  1999).   

While we are waiting for industry-
standard PRMs, we have tried to make our 
semantic BNs more useful by combining them 
with a first-order language, called the M+ 
Abstract Semantic Language (ASL), 
implemented within M+.  Specifically, BNs are 
treated as object types within the ASL.  There is 
a "chest anatomy" type, for instance, and a 
"chest radiology findings" type, corresponding 
to BNs of those same names.  The interpretation 
of a phrase is an expression in the ASL, 
containing predicates that state the relation of 
BN instances to one another, and to the phrase 
they describe. For instance, the interpretation of 
"hazy right lower lobe opacity" could be the 
expression  

(and (head-of #phrase1 #find1) 
                       (located-at #find1 #loc1)) 
 
where #phrase1 identifies a syntactic phrase 
object, and #find1 and #loc1 are tokens 
representing instances of the findings BN 
(instanced with the words "hazy" and "opacity") 
and the anatomic BN (instanced with "right", 



"lower" and "lobe"), respectively.  The relation 
'head-of' denotes that the findings BN is the 
main or "head" BN for that phrase.  Conversely, 
"hazy right lower lobe opacity" can be thought 
of as a findings-type phrase, with an anatomic-
type modifier. 

This expression captures the abstract or 
"skeletal" structure of the interpretation, while 
the BN instances contain the details and specific 
inferences.   One can think of the meaning of an 
expression like (located-at #find1 #loc1) in 
abstract terms, e.g. "some-finding located-at 
some-location".  Alternatively, the meaning of a 
BN token might be thought of as the most 
probable interpretive concept within that BN 
instance.  In this case, (located-at #find1 #loc1) 
could mean "*localized-infiltrate located-at 
*left-lower-lobe". 

Because the object types in the ASL are 
the abstract concept types represented by the 
BNs, semantic rules formulated in this language 
constitute an "abstract semantic grammar" 
(ASG). The ASG recognizes patterns of 
semantic relations among the BNs, and supports 
analysis and inference based on those patterns.  
It also permits rule-based control over the 
creation, instantiation, and use of the BNs, 
including defining pathways for information 
sharing among BNs using virtual evidence 
(Pearl, 1988).    

One use of the ASG is in post-parse 
processing of interpretations.  After the M+ 
parser has constructed an interpretation, post-
parse ASG productions may augment or alter 
this interpretation.  One rule instructs "If two 
pathological conditions exist in a 'consistent-
with' relation, and the first condition has a state 
modifier (i.e. *present or *absent), and the 
second condition does not, apply the first 
condition's state to the second condition".   

For instance, in the ambiguous sentence 
"There is no opacity consistent with 
pneumonia", if the parser doesn't correctly 
determine the scope of "no", it may produce the 
an interpretation in which *pneumonia lacks a 
state modifier, and is therefore inferred (by 
default) to be present.  This rule correctly 
attaches (state-of *pneumonia *absent) to this 
interpretation. 

One important consequence of the 
modularity of the M+ BNs, and of the ability to 
nest them within the ASL, is that M+ can 

compose BN instances in expressions of 
arbitrary complexity.  For instance, it is 
straightforward to represent the multiple 
anatomic concepts in the phrase "opacity in the 
inferior segment of the left upper lobe, adjacent 
to the heart": 

(and (head-of #phrase1 #find1)  
                          (located-at #find1 #anat1) 
                          (qualified-by #anat1 #anat2)  
                          (adjacent-to #anat1 #anat3)) 
 
where the interpretive concepts of #anat1, 
#anat2 and #anat3 are *left-upper-lobe, 
*inferior-segment, and *heart, respectively. 

The set of binary predicates that 
constitutes a phrase interpretation in M+ forms a 
directed acyclic graph; thus we can refer to the 
interpretation as an interpretation graph.  The 
interpretation graph of a new phrase is formed 
by unifying the graphs of its subphrases, as 
described in section 3.  

2.4 Advantages of Bayesian Networks 

As mentioned, a BN training case bears a 
similarity to a production rule.  It would be 
straightforward to implement the training cases 
as a set of rules, and apply them to text analysis 
using a deductive reasoning engine.  However, 
Bayesian reasoning has important advantages 
over first order logic, including: 

1- BNs are able to respond gracefully to 
input "noise".  A semantic BN may produce 
reasonable inferences from phrasal patterns that 
only partially match any given training case, or 
that overlap different cases, or that contain 
words in an unexpected order.  For instance, 
having trained on multi-word phrases containing 
"opacity", the single word "opacity" could raise 
the probabilities of several interpretations such 
as *localized-infiltrate and *parenchymal-
abnormality, both of which are reasonable 
hypotheses for the underlying cause of opacity 
on a chest x-ray film. 

2- Bayesian inference works bi-
directionally; i.e. it is abductive as well as 
deductive.  If instead of assigning word-level 
nodes, one assigns the value of the summary 
node, the probability of word values having a 
high correlation with that summary will 
increase.  For instance, assigning the value 
*localized-infiltrate will raise the probability 
that the topic word is "opacity".   



Bi-directional inference provides a 
means for modeling the effects of lexical 
context.  A value assignment made to one word 
node can alter value probabilities at unassigned 
word nodes, in a path of inference that passes 
through the connecting concept nodes.  For 
instance, if a BN were trained on "right upper 
lobe" and "left upper lobe", but had never seen 
the term "bilateral", applying the BN to the 
phrase "bilateral upper lobes" would increase 
the  probabilities of both "left" and "right", 
suggesting that "bilateral" is semantically 
similar to "left" and "right".  This is one 
approach to guessing the node assignments of 
unknown words, a step in the direction of 
automated learning of new training cases.    

Similarly, if the system encounters a 
phrase with a misspelling such as "rght upper 
lobe", by noting the orthographic similarity of 
"rght" to "right" and the fact that "right" is 
highly predicted from surrounding words, it can 
determine that "rght" is a misspelling of "right".  
The spell checker currently used by M+ 
employs this technique. 

3 Generating  Interpretation 
Graphs 

As mentioned, in M+ the interpretation graph of 
a phrase is created by unifying the graphs of its 
child phrases.  High joint probabilities in the 
resulting BN instances are one source of 
evidence that the words thus brought together 
exist in the expected semantic pattern.  
However, corroborating evidence must be 
sought in the syntax of the text.  Words which 
appear together in a training phrase may not be 
in that same relation in a given text.  For 
instance, "no" and "pneumonia" support 
different conclusions in "no evidence of 
pneumonia" and "patient has pneumonia with no 
apparent complicating factors".  M+ therefore 
only attempts to unify sub-interpretations that 
appear, on syntactic grounds, to be talking about 
the same things.  This is less constraining than 
production rules that look for words in a 
specific order, but more constraining than 
simply pulling key words out of a string of text.  

The following are examples of rules 
used to guide the unification of ASL 
interpretation graphs.  For convenience, several 
shorthand functional notations are used:  If P 
represents a phrase on the parse chart, root-
bn(P) represents the root or head BN instance in 

P's interpretation graph, and type-of(root-bn(P)) 
is the BN type of root-bn(P).  If A and B are 
sibling child phrases of parent phrase C, then C 
= parent-phrase(A,B).  Note that for 
convenience, BN instances in the interpretation 
graphs in Figures 4 - 6 are represented 
alternately as the words slotted in those 
instances, and as the most probable interpretive 
concepts inferred by those instances. 

3.1 Same-type Unification 

If phrase A syntactically modifies phrase B, 
then M+ assumes that some semantic relation 
exists between A and B.  The nature of that 
relation is partly determinable from type-
of(root-bn(A)) and type-of(root-bn(B)).  If type-
of(root-bn(A)) = type-of(root-bn(B)), that 
relation is simply one where root-bn(A) and 
root-bn(B) are partial descriptions of a single 
concept.  If root-bn(A) and root-bn(B) are 
unifiable, M+ composes their input to form 
root-bn(parent-phrase(A,B)).   

If in addition there are two unifiable 
same-type BN instances X and Y linked to root-
bn(A) and root-bn(B) respectively, via arcs of 
the same name, then X and Y also describe a 
single concept, and the arcs describe a single 
relationship.  For instance, if X and Y describe 
the anatomic locations of  root-bn(A) and root-
bn(B), and if root-bn(A) and root-bn(B) are 
partial descriptions of a single "finding", then X 
and Y are partial descriptions of a single 
anatomic location, and ought to be unified. 

Figure 4:  Same-type unification 

In figure 4, in the Chest X-ray domain, 
the phrase "bilateral hazy lower lobe opacity" is 
interpreted by unifying the interpretations of its 
subphrases "bilateral hazy" and "lower lobe 
opacity".  Note that without any corresponding 
syntactic transformation, this rule brings about a 



"virtual transformation", whereby words are 
grouped together within BN instances in a 
manner that reflects the conceptual structure of 
the text.  In this example "bilateral hazy lower 
lobe opacity" is treated as ("bilateral lower 
lobe") ("hazy opacity"). 

Figure 6: Grammar rule - based unification. 

3.2 Different-type Unification 

If phrase A syntactically modifies phrase B, and 
type-of(root-bn(A)) <> type-of(root-bn(B)), 
then root-bn(A) and root-bn(B) represent 
different concepts within some semantic 
relation.  M+ uses the ASG to identify that 
relation and to add it to the interpretation graph 
in the form of a path of named arcs connecting 
root-bn(A) and root-bn(B).  This path may 
include implicit connecting BN instances.  

M+ Implementation 4 

5 

M+ is written in Common Lisp, with some C 
routines for BN access.  The M+ architecture 
consists of six basic components:  The parser, 
concept space, rule base, lexicon, ASL inference 
engine, and Bayesian network component.   

For instance, to interpret "subdural 
hemorrhage" in the Head CT domain, M+ 
attempts to unify the graphs for the subphrases 
"subdural" and "hemorrhage", where type-
of(root-bn("subdural")) = location, and type-
of(root-bn("hemorrhage")) = topic.  M+ 
identifies the connecting path for these two 
types as shown in figure 2, and adds that path to 
the interpretation as shown in figure 5.  Note 
that this path contains instances of the 
"observation" and "anatomy" BN types.  

As mentioned, the parser is an 
implementation of a bottom up chart parser with 
context free grammar.   

The concept space is a table of symbols 
representing types, objects and relations within 
the ASL.  These include BN names, BN node 
value names, inter-BN relation names, and a 
small ontology of useful concepts such as those 
related to time. 

Figure 5.  Different-type unification. 

The rule base contains rules, which 
comprise the syntactic grammar and ASG.  

The lexicon is a table of Lisp-readable 
word information entries, obtained in part from 
the UMLS Specialist Lexicon. 

The ASL inference engine combines 
symbolic unification with backward-chaining 
inference. It can be used to match an ASG 
pattern against an interpretation graph, and to 
perform tests associated with grammar rules.  

3.3 Grammar Rule Based Unification The Bayesian network component utilizes 
the Norsys Netica(TM) API, and includes a set of 
Lisp and C language routines for instantiating 
and retrieving probabilities from BNs. 

Individual grammar rules in M+ can recognize 
semantic relations, and add connecting arcs to 
the interpretation graph.  For instance, M+ has a 
rule which recognizes findings-type phrases 
connected with strings of the "suggesting" 
variety, and connects their graphs with a 
'consistent-with' arc.  This is used to interpret 
"opacity suggesting possible infarct" in the 
Head CT domain, as shown in figure 6. 

Training M+ 
Porting M+ to a new medical domain involves 
gathering a corpus of training sentences for the 
domain, using the Netica(TM) graphical interface 



to create domain-specific BNs, and generating 
training cases for the new BNs.   

The most time-consuming task is the 
creation of training cases.  We have developed a 
prototype version of a Web-based tool which 
largely automates this task.  The basic idea is to 
enable M+ to guess the BN value assignments 
of unknown words, then use it to parse phrases 
similar to phrases already seen.  For instance, 
having been trained on the phrase "right upper 
lobe", the parser is able to produce reasonable 
parses, with some "guessed" value assignments, 
for "left upper lobe", "right middle lobe", 
"bilateral lungs", etc.  The BN assignments 
produced by the parse are output as tentative 
new cases to be reviewed and corrected by the 
human trainer. 

The training process begins with an 
initial set of interpreted "seed" phrases.  From 
this set, the tool can apply the parser to phrases 
similar to this set, and so semi-automatically 
traverse ever widening semantically contiguous 
areas within the space of corpus phrases.  As the 
training proceeds, the role of the human trainer 
increasingly becomes one of providing 
correction and interpretations for semantic 
patterns the system is increasingly able to 
discover on its own. 

To parse phrases containing unknown 
words, M+ uses a technique based on a variation 
of the vector space model of lexical semantic 
similarity (Manning and Schutze, 1999).  As 
M+ encounters an unknown word, it gathers a 
list of training corpus words judged similar to 
that word, as predicted by the vector space 
measure.  It then identifies BN nodes whose 
known values significantly overlap with this list, 
and provisionally assigns the unknown word as 
a new value for those nodes.  The assignment 
resulting in the best parsetree is selected for the 
new provisional training case. 

6 Evaluation 
M+ was evaluated for the extraction of 
American College of Radiology (ACR) 
utilization review codes from Head CT reports 
(Fiszman, 2002). The ACR codes compare the 
outcome in a report with the suspected diagnosis 
provided by emergency department physicians. 
If the outcome relates to the suspected diagnosis 
then the report should be encoded as positive 
(P). If the outcome is negative and does not 

relate to the suspected diagnosis then the report 
should be encoded as negative  (N). In order to 
extract those ACR codes we trained M+ to 
extract eleven broad disease concepts, then 
inferred the ACR codes based on the application 
of a rule to the M+ output:  If any of the 
concepts was present, the report was considered 
positive, else the report was considered 
negative. 

Twenty six hundred head CT scan 
reports were used for this evaluation.  Six 
hundred reports were randomly selected for 
testing, and the rest were used to train M+ in 
this domain.  The performance of M+ on this 
task was measured against that of four board 
certified physicians, using a gold standard based 
on majority vote, as described in (Fiszman, 
2002).   For each subject we calculated recall, 
precision and specificity with their respective 95 
% confidence intervals for the capture of ACR 
utilization codes.  

From 600 head CT reports, 67 were 
judged to be positive (P) by the gold standard 
physicians and 534 were judged to be negative 
(N). Therefore the positive rate for head CT in 
this sample was 11%.  Recall, precision and 
specificity for every subject are presented with 
their respective 95% confidence intervals in 
Table 1. The physicians had an average recall of 
88% (CI, 84% to 92.%), an average precision of 
86% (CI, 81% to 90%), and average specificity 
of 98% (CI, 97% to 99%). M+  had recall of 
87% (CI, 78% to 95%), precision of 85% (CI, 
77% to 94%) and specificity of 98% (CI, 97% 
to 99). 

Table 1.  Results of  ACR utilization code study. 

Subject Recall Specificity Precision 
Physician1 0.83 

(0.74-0.92) 
0.99 
(0.98-1.00) 

0.91 
(0.84-0.99) 

Physician2 0.88 
(0.81-0.97) 

0.98 
(0.97-0.99) 

0.84 
(0.75-0.93) 

Physician3 0.93 
(0.87-1.00) 

0.98 
(0.97-0.99) 

0.86 
(0.78-0.95) 

Physician4 0.88 
(0.96-0.99) 

0.97 
(0.96-0.99) 

0.81 
(0.71-0.90) 

M+ 0.87 
(0.78-0.95) 

0.98 
(0.97-0.99) 

0.85 
(0.77-0.94) 

 

The results on Head CT reports are 
encouraging, but there are limitations. We only 
evaluated 600 reports, because it's very hard to 
get physicians to produce gold standard data for 
medical reports. The prevalence of positive 



reports is only 11% and reflects the fact that the 
individual brain conditions  have very low 
prevalence. 

7 
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Conclusions 
M+ and its predecessors have demonstrated that 
BNs provide a useful semantic model for 
medical text processing.  In practice, a medical 
NLP system will frequently encounter missing 
and unknown words,  unknown and 
ungrammatical phrase structures, and 
telegraphic usages.  Knowledge databases will 
be imperfect and incomplete.  Using BNs for 
semantic representation brings a noise-tolerant, 
partial match-tolerant, context-sensitive 
character to the recognition of semantic 
patterns, and to relevant inferences based on 
those patterns.  In addition, BNs can be used to 
guess the semantic types of unknown words, 
providing a basis for bootstrapping the system's 
semantic knowledge. 
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