
Stochastic Language Generation for Spoken Dialogue Systems

Alice H. Oh
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213
aliceo+@cs.cmu.edu

Alexander I. Rudnicky
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213

air+@cs.cmu.edu

Abstract

The two current approaches to language
generation, Template-based and rule-based
(linguistic) NLG, have limitations when
applied to spoken dialogue systems, in part
because they were developed for text
generation. In this paper, we propose a new
corpus-based approach to natural language
generation, specifically designed for spoken
dialogue systems.

Introduct ion

Several general-purpose rule-based generation
systems have been developed, some of which
are available publicly (cf. Elhadad, 1992).
Unfortunately these systems, because of their
generality, can be difficult to adapt to small,
task-oriented applications. Bateman and
Henschel (1999) have described a lower cost and
more efficient generation system for a specific
application using an automatically customized
subgrammar. Busemann and Horacek (1998)
describe a system that mixes templates and rule-
based generation. This approach takes
advantages of templates and rule-based
generation as needed by specific sentences or
utterances. Stent (1999) has proposed a similar
approach for a spoken dialogue system.
However, there is still the burden of writing and
maintaining grammar rules, and processing time
is probably too slow for sentences using
grammar rules (only the average time for
templates and rule-based sentences combined is
reported in Busemann and Horacek, 1998), for
use in spoken dialogue systems.

Because comparatively less effort is needed,
many current dialogue systems use template-
based generation. But there is one obvious

disadvantage: the quality of the output depends
entirely on the set of templates. Even in a
relatively simple domain, such as travel
reservations, the number of templates necessary
for reasonable quality can become quite large
that maintenance becomes a serious problem.
There is an unavoidfible trade-off between the
amount of time and effort in creating and
maintaining templates and the variety and
quality of the output utterances.

Given these shortcomings of the above
approaches, we developed a corpus-based
generation system, in which we model language
spoken by domain experts performing the task of
interest, and use that model to stochastically
generate system utterances. We have applied this
technique to sentence realization and content
planning, and have incorporated the resulting
generation component into a working natural
dialogue system (see Figure 1). In this paper, we
describe the technique and report the results of
two evaluations.

We used two corpora in the travel
reservations domain to build n-gram language
models. One corpus (henceforth, the CMU
corpus) consists of 39 dialogues between a travel
agent and clients (Eskenazi, et al. 1999).

Surface
Rea l i za t ion

Con ten t
Planning

Sentence
Planning

Dialogue Manager Generation Engine

Figure 1 : Overall Architecture

27

query_arrive_city
query_arrive_time
query_confirm
query_depart_date
query_depart_time
query_pay_by_card
query_preferred_airport
query_returndate
query_return_time
hotel car info
hotel_hotel_chain
hotel_hotel_info

inform_airport
inform_confirm_utterance
inform_flight
inform_flight_another
inform_flight_earlier
n form_flight_earliest
inform_flight_later
inform_flight_latest
inform_not_avail
inform_num_flights
inform_price
other

Figure 2 : utterance classes

airline
arriveairport
arriveSci:ty -
arrive_date -
arrive_time
car company
car price
depart airport
depart city

depart_date
depart_time
flight_hum
hotel_city
hotel_price
name
num_flights
pm
price

Figure 3 : word classes

Another corpus (henceforth, the SRI corpus)
consists of 68 dialogues between a travel agent
and users in the SRI community (Kowtko and
Price 1989).

The utterances in the two corpora were
tagged with utterance classes and word classes
(see Figure 2 and Figure 3). The CMU corpus
was manually tagged, and back-off trigram
models built (using Clarkson and Rosenfeld,
1997). These language models were used to
automatically tag the SRI corpus; the tags were
manually checked.

1 Content P l a n n i n g

In content planning we decide which attributes
(represented as word classes, see Figure 3)
should be included in an utterance. In a task-
oriented dialogue, the number of attributes
generally increases during the course of the
dialogue. Therefore, as the dialogue progresses,
we need to decide which ones to include at each
system turn. If we include all of them every time
(indirect echoing, see Hayes and Reddy, 1983),
the utterances become overly lengthy, but if we
remove all unnecessary attributes, the user may
get confused. With a fairly high recognition
error rate, this becomes an even more important
issue.

The problem, then, is to find a compromise
between the two. We compared two ways to
systematically generate system utterances with
only selected attributes, such that the user hears
repetition of some of the constraints he/she has
specified, at appropriate points in the dialogue,
without sacrificing naturalness and efficiency.
The specific problems, then, are deciding what
should be repeated, and when. We first describe
a simple heuristic of old versus new information.
Then we present a statistical approach, based on
bigram models.

1.1 F i r s t a p p r o a c h : o ld v e r s u s n e w

As a simple solution, we can use the previous
dialogue history, by tagging the attribute-value
pairs as old (previously said by the system)
information or new (not said by the system yet)
information. The generation module would
select only new information to be included in the
system utterances. Consequently, information

• given by the user is repeated only once in the
dialogue, usually in the utterance immediately
following the user utterance in which the new
information was given 1.

Although this approach seems to work fairly
well, echoing user's constraints only once may
not be the right thing to do. Looking at human-
human dialogues, we observe that this is not
very natural for a conversation; humans often
repeat mutually known information, and they
also often do not repeat some information at all.
Also, this model does not capture the close
relationship between two consecutive utterances
within a dialogue. The second approach tries to
address these issues.

1.2 S e c o n d a p p r o a c h : s ta t i s t ica l m o d e l

For this approach, we adopt the first of the two
sub-maxims in (Oberlander, 1998) '•'Do the
human thing". Oberlander (1998) talks about
generation of referring expressions, but it is
universally valid, at least within natural
language generation, to say the best we can do is

When the system utterance uses a template that does
not contain the slots for the new information given in
the previous user utterance, then that new
information will be confirmed in the next available
system utterance in which the template contains those
slots.

28

to mimic human behavior. Hence, we built a
two-stage statistical model of human-human
dialogues using the CMU corpus. The model
first predicts the number of attributes in the
system utterance given the utterance class, then
predicts the attributes given the attributes in the
previous user utterance.

1.2.1 The number of attributes model

The first model will predict the number of
attributes in a system utterance given the
utterance class. The model is the probability
distribution P(nk) = P(nklck), where nk is the
number of attributes and Ck is the utterance class
for system utte~anee k.

1.2.2 The bigram model of the attributes

This model will predict which attributes to use
in a system utterance. Using a statistical model,
what we need to do is find the set of attributes
A* = {al, az an } such that

A * = arg max F I P(al, a2 an)

We assume that the distributions of the ai's
are dependent on the attributes in the previous
utterances. As a simple model, we look only at
the utterance immediately preceding the current
utterance and build a bigram model of the
attributes. In other words, A* = arg max P(AIB),
where B = { b l , b2 b in} , the set of m
attributes in the preceding user utterance.

If we took the above model and tried to
apply it directly, we would run into a serious
data sparseness problem, so we make two
independence assumptions. The first assumption
is that the attributes in the user utterance
contribute independently to the probabilities of
the attributes in the system utterance following
it. Applying this assumption to the model above,
we get the following:

m

A * = arg max ~ P(bk)P(A I bk)
k=l

The second independence assumption is that
the attributes in the system utterance are
independent of each other. This gives the final
model that we used for selecting the attributes.

m tl

A*. = arg max ~ P(bk) [' I P(al I bk)
k=l i=1

29

Although this independence assumption is
an oversimplification, this simple model is a
good starting point for our initial
implementation of this approach.

2 Stochastic Surface Realization

We follow Busemann and Horacek (1998) in
designing our generation engine with "different
levels of granularity." The different levels
contribute to the specific needs of the various
utterance classes. For example, at the beginning
of the dialogue, a system greeting can be simply
generated by a "canned" expression. Other short,
simple utterances can be generated efficiently by
templates. In Busemann and Horacek (1998), the
remaining output is generated by grammar rules.
We replace the gefieration grammar with a
simple statistical language model to generate
more complex utterances.

There are four aspects to our stochastic
surface realizer: building language models,
generating candidate utterances, scoring the
utterances, and filling in the slots. We explain
each of these below.

2.1 Building Language Models

Using the tagged utterances as described in
the introduction, we built an unsmoothed n-gram
language model for each utterance class. Tokens
that belong in word classes (e.g., "U.S.
Airways" in class "airline") were replaced by the
word classes before building the language
models. We selected 5 as the n in n-gram to
introduce some variability in the output
utterances while preventing nonsense utterances.

Note that language models are not used here
in the same way as in speech recognition. In
speech recognition, the language model
probability acts as a 'prior' in determining the
most probable sequence of words given the
acoustics. In other words,

W* = arg max P(WIA)
= arg max P(AI W)Pr(W)

where W is the string of words, wl, ..., wn, and
A is the acoustic evidence (Jelinek 1998).

Although we use the same statistical tool,
we compute and use the language model
probability directly to predict the next word. In
other words, the most likely utterance is W* =

arg max P(WIu), where u is the utterance class.
We do not, however, look for the most likely
hypothesis, but rather generate each word
randomly according to the distribution, as
illustrated in the next section.

2.2 G e n e r a t i n g U t t e r a n c e s

The input to NLG from the dialogue
manager is a frame of attribute-value pairs. The
first two attribute-value pairs specify the
utterance class. The rest of the frame contains
word classes and their values. Figure 4 is an
example of an input frame to NLG.

- act-query
content depart_time
depart_city New York
arrive_city San Francisco
depart_date 19991117

}

Figure 4 : an input frame to NLG

The generation engine uses the appropriate
language model for the utterance class and
generates word sequences randomly according
to the language model distributions. As in
speech recognition, the probability of a word
using the n-gram language model is

P(wi) = P(wilwi.1, wi.2 Wi.(n.1) , U)

where u is the utterance class. Since we have
built separate models for each of the utterance
classes, we can ignore u, and say that

P(wi) = P(wilw|.l, wi-2 Wi.(n.1))

using the language model for u.
Since we use unsmoothed 5,grams, we will

not generate any unseen 5-grams (or smaller n-
grams at the beginning and end of an utterance).
This precludes generation of nonsense
utterances, at least within the 5-word window.
Using a smoothed n-gram would result in more
randomness, but using the conventional back-off
methods (Jelinek 1998), the probability mass
assigned to unseen 5-grams would be very
small, and those rare occurrences of unseen n-
grams may not make sense anyway. There is the
problem, as in speech recognition using n-gram
language models, that long-distance dependency
cannot be captured.

=

2.3 Scoring Utterances

For each randomly generated utterance, we
compute a penalty score. The score is based on
the heuristics we've empirically selected.
Various penalty scores are assigned for an
utterance that 1. is too short or too long
(determined by utterance-class dependent
thresholds), 2. contains repetitions of any of the
slots, 3. contains slots for which there is no valid
value in the frame, or 4. does not have some
required slots (see section 2 for deciding which
slots are required).

The generation engine generates a candidate
utterance, scores it, keeping only the best-scored
utterance up to that point. It stops and returns the
best utterance when it finds an utterance with a
zero penalty scoreTor runs out of time.

2.4 Fi l l ing Slots

The last step is filling slots with the appropriate
values. For example, the utterance "What time
would you like to leave {depart_city}?"
becomes "What time would you like to leave
New York?".

3 Evaluation

It is generally difficult to empirically evaluate a
generation system. In the context of spoken
dialogue systems, evaluation of NLG becomes
an even more difficult problem. One reason is
simply that there has been very little effort in
building generation engines for spoken dialogue
systems. Another reason is that it is hard to
separate NLG from the rest of the system. It is
especially hard to separate evaluation of
language generation and speech synthesis.

As a simple solution, we have conducted a
comparative evaluation by running two identical
systems varying only the generation component.
In this section we present results from two
preliminary evaluations of our generation
algorithms described in the previous sections.

3.1 Content Planning: Exper iment

For the content planning part of the generation
-system, we conducted a comparative evaluation
of the two different generation algorithms:
old/new and bigrams. Twelve subjects had two
dialogues each, one with the old/new generation
system, and another with the bigrams generation

3 0

system (in counterbalanced order); all other
modules were held fixed. Afterwards, each
subject answered seven questions on a usability
survey. Immediately after, each subject was
given transcribed logs of his/her dialogues and
asked to rate each system utterance on a scale of
1 to 3 (1 = good; 2 = okay; 3 = bad).

3.2 Content Planning: Results

For the usability survey, the results seem to
indicate subjects' preference for the old/new
system, but the difference is not statistically
significant (p - 0.06). However, six out of the
twelve subjects chose the bigram system to the
question "Durqng-the session, which system's
responses were easier to understand?" compared
to three subjects choosing the old/new system.

3.3 Surface Realization: Experiment

For surface realization, we conducted a batch-
mode evaluation. We picked six recent calls to
our system and ran two generation algorithms
(template-based generation and stochastic
generation) on the input frames. We then
presented to seven subjects the generated
dialogues, consisting of decoder output of the
user utterances and corresponding system
responses, for each of the two generation
algorithms. Subjects then selected the output
utterance they would prefer, for each of the
utterances that differ between the two systems.
The results show a trend that subjects preferred
stochastic generation over template-based
generation, but a t-test shows no significant
difference (p = 0.18). We are in the process of
designing a larger evaluation.

4 Conclusion

We have presented a new approach to language
generation for spoken dialogue systems. For
content planning, we built a simple bigram
model of attributes, and found that, in our first
implementation, it performs as well as a
heuristic of old vs. new information. For surface
realization, we used an n-gram language model
to stochastically generate each utterance and
found that the stochastic system performs at
least as well as the template-based system.

Our stochastic generation system has several
advantages. One of those, an important issue for

spoken dialogue systems, is the response time.
With stochastic surface realization, the average
generation time for the longest utterance class
(10 - 20 words long) is about 200 milliseconds,
which is much faster than any rule-based
systems. Another advantage is that by using a
corpus-based approach, we are directly
mimicking the language of a real domain expert,
rather than attempting to model it by rule.
Corpus collection is usually the first step in
building a dialogue system, so we are leveraging
the effort rather than creating more work. This
also means adapting this approach to new
domains and even new languages will be
relatively simple.

The approach we present does require some
amount of knowledge engineering, though this
appears to overlap with work needed for other
parts of the dialogue system. First, defining the
class of utterance and the attribute-value pairs
requires care. Second, tagging the human-human
corpus with the right classes and attributes
requires effort. However, we believe the tagging
effort is much less difficult than knowledge
acquisition for most rule-based systems or even
template-based systems. Finally, what may
sound right for a human speaker may sound
awkward for a computer, but we believe that
mimicking a human, especially a domain expert,
is the best we can do, at least for now.

Acknowledgements

We are thankful for significant contribution by
other members of the CMU Communicator
Project, especially Eric Thayer, Wei Xu, and
Rande Shern. We would like to thank the
subjects who participated in our evaluations. We
also extend our thanks to two anonymous
reviewers.

References

Bateman, J. and Henschel, R. (1999) From full
generation to 'near-templates' without losing
generality. In Proceedings of the KI'99 workshop,
"May I Speak Freely?"

Busemann, S. and Horacek, H. (1998) A flexible
shallow approach to text generation. In
Proceedings of the International Natural Language
Generation Workshop. Niagara-on-the-Lake,
Canada..

31

