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Abstract  

The two current approaches to language 
generation, Template-based and rule-based 
(linguistic) NLG, have limitations when 
applied to spoken dialogue systems, in part 
because they were developed for text 
generation. In this paper, we propose a new 
corpus-based approach to natural language 
generation, specifically designed for spoken 
dialogue systems. 

Introduct ion  

Several general-purpose rule-based generation 
systems have been developed, some of which 
are available publicly (cf. Elhadad, 1992). 
Unfortunately these systems, because of their 
generality, can be difficult to adapt to small, 
task-oriented applications. Bateman and 
Henschel (1999) have described a lower cost and 
more efficient generation system for a specific 
application using an automatically customized 
subgrammar. Busemann and Horacek (1998) 
describe a system that mixes templates and rule- 
based generation. This approach takes 
advantages of templates and rule-based 
generation as needed by specific sentences or 
utterances. Stent (1999) has proposed a similar 
approach for a spoken dialogue system. 
However, there is still the burden of writing and 
maintaining grammar rules, and processing time 
is probably too slow for sentences using 
grammar rules (only the average time for 
templates and rule-based sentences combined is 
reported in Busemann and Horacek, 1998), for 
use in spoken dialogue systems. 

Because comparatively less effort is needed, 
many current dialogue systems use template- 
based generation. But there is one obvious 

disadvantage: the quality of the output depends 
entirely on the set of templates. Even in a 
relatively simple domain, such as travel 
reservations, the number of templates necessary 
for reasonable quality can become quite large 
that maintenance becomes a serious problem. 
There is an unavoidfible trade-off between the 
amount of time and effort in creating and 
maintaining templates and the variety and 
quality of the output utterances. 

Given these shortcomings of the above 
approaches, we developed a corpus-based 
generation system, in which we model language 
spoken by domain experts performing the task of 
interest, and use that model to stochastically 
generate system utterances. We have applied this 
technique to sentence realization and content 
planning, and have incorporated the resulting 
generation component into a working natural 
dialogue system (see Figure 1). In this paper, we 
describe the technique and report the results of 
two evaluations. 

We used two corpora in the travel 
reservations domain to build n-gram language 
models. One corpus (henceforth, the CMU 
corpus) consists of 39 dialogues between a travel 
agent and clients (Eskenazi, et al. 1999). 
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Figure 1 : Overall Architecture 

27 



query_arrive_city 
query_arrive_time 
query_confirm 
query_depart_date 
query_depart_time 
query_pay_by_card 
query_preferred_airport 
query_returndate 
query_return_time 
hotel car info 
hotel_hotel_chain 
hotel_hotel_info 

inform_airport 
inform_confirm_utterance 
inform_flight 
inform_flight_another 
inform_flight_earlier 
n form_flight_earliest 
inform_flight_later 
inform_flight_latest 
inform_not_avail 
inform_num_flights 
inform_price 
other 

Figure 2 : utterance classes 
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name 
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pm 
price 

Figure 3 : word classes 

Another corpus (henceforth, the SRI corpus) 
consists of  68 dialogues between a travel agent 
and users in the SRI community (Kowtko and 
Price 1989). 

The utterances in the two corpora were 
tagged with utterance classes and word classes 
(see Figure 2 and Figure 3). The CMU corpus 
was manually tagged, and back-off trigram 
models built (using Clarkson and Rosenfeld, 
1997). These language models were used to 
automatically tag the SRI corpus; the tags were 
manually checked. 

1 Content  P l a n n i n g  

In content planning we decide which attributes 
(represented as word classes, see Figure 3) 
should be included in an utterance. In a task- 
oriented dialogue, the number of attributes 
generally increases during the course of the 
dialogue. Therefore, as the dialogue progresses, 
we need to decide which ones to include at each 
system turn. If we include all of them every time 
(indirect echoing, see Hayes and Reddy, 1983), 
the utterances become overly lengthy, but if we 
remove all unnecessary attributes, the user may 
get confused. With a fairly high recognition 
error rate, this becomes an even more important 
issue. 

The problem, then, is to find a compromise 
between the two. We compared two ways to 
systematically generate system utterances with 
only selected attributes, such that the user hears 
repetition of some of the constraints he/she has 
specified, at appropriate points in the dialogue, 
without sacrificing naturalness and efficiency. 
The specific problems, then, are deciding what 
should be repeated, and when. We first describe 
a simple heuristic of old versus new information. 
Then we present a statistical approach, based on 
bigram models. 

1.1 F i r s t  a p p r o a c h :  o ld  v e r s u s  n e w  

As a simple solution, we can use the previous 
dialogue history, by tagging the attribute-value 
pairs as old (previously said by the system) 
information or new (not said by the system yet) 
information. The generation module would 
select only new information to be included in the 
system utterances. Consequently, information 

• given by the user is repeated only once in the 
dialogue, usually in the utterance immediately 
following the user utterance in which the new 
information was given 1. 

Although this approach seems to work fairly 
well, echoing user's constraints only once may 
not be the right thing to do. Looking at human- 
human dialogues, we observe that this is not 
very natural for a conversation; humans often 
repeat mutually known information, and they 
also often do not repeat some information at all. 
Also, this model does not capture the close 
relationship between two consecutive utterances 
within a dialogue. The second approach tries to 
address these issues. 

1.2 S e c o n d  a p p r o a c h :  s ta t i s t ica l  m o d e l  

For this approach, we adopt the first of the two 
sub-maxims in (Oberlander, 1998) '•'Do the 
human thing". Oberlander (1998) talks about 
generation of referring expressions, but it is 
universally valid, at least within natural 
language generation, to say the best we can do is 

When the system utterance uses a template that does 
not contain the slots for the new information given in 
the previous user utterance, then that new 
information will be confirmed in the next available 
system utterance in which the template contains those 
slots. 
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to mimic human behavior. Hence, we built a 
two-stage statistical model of human-human 
dialogues using the CMU corpus. The model 
first predicts the number of attributes in the 
system utterance given the utterance class, then 
predicts the attributes given the attributes in the 
previous user utterance. 

1.2.1 The number of attributes model 

The first model will predict the number of 
attributes in a system utterance given the 
utterance class. The model is the probability 
distribution P(nk) = P(nklck), where nk is the 
number of attributes and Ck is the utterance class 
for system utte~anee k. 

1.2.2 The bigram model of the attributes 

This model will predict which attributes to use 
in a system utterance. Using a statistical model, 
what we need to do is find the set of attributes 
A* = {al, az . . . . .  an } such that 

A * = arg max F I  P(al, a2 ..... an) 

We assume that the distributions of the ai's 
are dependent on the attributes in the previous 
utterances. As a simple model, we look only at 
the utterance immediately preceding the current 
utterance and build a bigram model of the 
attributes. In other words, A* = arg max P(AIB), 
where B = { b l ,  b2 . . . . .  b in} ,  the set of m 
attributes in the preceding user utterance. 

If we took the above model and tried to 
apply it directly, we would run into a serious 
data sparseness problem, so we make two 
independence assumptions. The first assumption 
is that the attributes in the user utterance 
contribute independently to the probabilities of 
the attributes in the system utterance following 
it. Applying this assumption to the model above, 
we get the following: 

m 

A * = arg max ~ P(bk)P(A I bk) 
k=l 

The second independence assumption is that 
the attributes in the system utterance are 
independent of each other. This gives the final 
model that we used for selecting the attributes. 

m tl 

A*. = arg max ~ P(bk ) [ ' I  P(al I bk) 
k=l i=1 
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Although this independence assumption is 
an oversimplification, this simple model is a 
good starting point for our initial 
implementation of this approach. 

2 Stochastic Surface Realization 

We follow Busemann and Horacek (1998) in 
designing our generation engine with "different 
levels of granularity." The different levels 
contribute to the specific needs of the various 
utterance classes. For example, at the beginning 
of the dialogue, a system greeting can be simply 
generated by a "canned" expression. Other short, 
simple utterances can be generated efficiently by 
templates. In Busemann and Horacek (1998), the 
remaining output is generated by grammar rules. 
We replace the gefieration grammar with a 
simple statistical language model to generate 
more complex utterances. 

There are four aspects to our stochastic 
surface realizer: building language models, 
generating candidate utterances, scoring the 
utterances, and filling in the slots. We explain 
each of these below. 

2.1 Building Language Models 

Using the tagged utterances as described in 
the introduction, we built an unsmoothed n-gram 
language model for each utterance class. Tokens 
that belong in word classes (e.g., "U.S. 
Airways" in class "airline") were replaced by the 
word classes before building the language 
models. We selected 5 as the n in n-gram to 
introduce some variability in the output 
utterances while preventing nonsense utterances. 

Note that language models are not used here 
in the same way as in speech recognition. In 
speech recognition, the language model 
probability acts as a 'prior' in determining the 
most probable sequence of words given the 
acoustics. In other words, 

W* = arg max P(WIA) 
= arg max P(AI W)Pr(W) 

where W is the string of words, wl, ..., wn, and 
A is the acoustic evidence (Jelinek 1998). 

Although we use the same statistical tool, 
we compute and use the language model 
probability directly to predict the next word. In 
other words, the most likely utterance is W* = 



arg max P(WIu), where u is the utterance class. 
We do not, however, look for the most likely 
hypothesis, but rather generate each word 
randomly according to the distribution, as 
illustrated in the next section. 

2.2 G e n e r a t i n g  U t t e r a n c e s  

The input to NLG from the dialogue 
manager is a frame of attribute-value pairs. The 
first two attribute-value pairs specify the 
utterance class. The rest of the frame contains 
word classes and their values. Figure 4 is an 
example of an input frame to NLG. 

- act-query 
content depart_time 
depart_city New York 
arrive_city San Francisco 
depart_date 19991117 

} 

Figure 4 : an input frame to NLG 

The generation engine uses the appropriate 
language model for the utterance class and 
generates word sequences randomly according 
to the language model distributions. As in 
speech recognition, the probability of a word 
using the n-gram language model is 

P(wi) = P(wilwi.1, wi.2 . . . .  Wi.(n.1) , U) 

where u is the utterance class. Since we have 
built separate models for each of the utterance 
classes, we can ignore u, and say that 

P(wi) = P(wilw|.l, wi-2 . . . .  Wi.(n.1))  

using the language model for u. 
Since we use unsmoothed 5,grams, we will 

not generate any unseen 5-grams (or smaller n- 
grams at the beginning and end of an utterance). 
This precludes generation of nonsense 
utterances, at least within the 5-word window. 
Using a smoothed n-gram would result in more 
randomness, but using the conventional back-off 
methods (Jelinek 1998), the probability mass 
assigned to unseen 5-grams would be very 
small, and those rare occurrences of unseen n- 
grams may not make sense anyway. There is the 
problem, as in speech recognition using n-gram 
language models, that long-distance dependency 
cannot be captured. 

= 

2.3 Scoring Utterances 

For each randomly generated utterance, we 
compute a penalty score. The score is based on 
the heuristics we've empirically selected. 
Various penalty scores are assigned for an 
utterance that 1. is too short or too long 
(determined by utterance-class dependent 
thresholds), 2. contains repetitions of any of the 
slots, 3. contains slots for which there is no valid 
value in the frame, or 4. does not have some 
required slots (see section 2 for deciding which 
slots are required). 

The generation engine generates a candidate 
utterance, scores it, keeping only the best-scored 
utterance up to that point. It stops and returns the 
best utterance when it finds an utterance with a 
zero penalty scoreTor runs out of time. 

2.4 Fi l l ing Slots 

The last step is filling slots with the appropriate 
values. For example, the utterance "What time 
would you like to leave {depart_city}?" 
becomes "What time would you like to leave 
New York?". 

3 Evaluation 

It is generally difficult to empirically evaluate a 
generation system. In the context of spoken 
dialogue systems, evaluation of NLG becomes 
an even more difficult problem. One reason is 
simply that there has been very little effort in 
building generation engines for spoken dialogue 
systems. Another reason is that it is hard to 
separate NLG from the rest of the system. It is 
especially hard to separate evaluation of 
language generation and speech synthesis. 

As a simple solution, we have conducted a 
comparative evaluation by running two identical 
systems varying only the generation component. 
In this section we present results from two 
preliminary evaluations of our generation 
algorithms described in the previous sections. 

3.1 Content  Planning: Exper iment  

For the content planning part of the generation 
-system, we conducted a comparative evaluation 
of the two different generation algorithms: 
old/new and bigrams. Twelve subjects had two 
dialogues each, one with the old/new generation 
system, and another with the bigrams generation 
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system (in counterbalanced order); all other 
modules were held fixed. Afterwards, each 
subject answered seven questions on a usability 
survey. Immediately after, each subject was 
given transcribed logs of his/her dialogues and 
asked to rate each system utterance on a scale of 
1 to 3 (1 = good; 2 = okay; 3 = bad). 

3.2 Content Planning: Results 

For the usability survey, the results seem to 
indicate subjects' preference for the old/new 
system, but the difference is not statistically 
significant (p - 0.06). However, six out of the 
twelve subjects chose the bigram system to the 
question "Durqng-the session, which system's 
responses were easier to understand?" compared 
to three subjects choosing the old/new system. 

3.3 Surface Realization: Experiment 

For surface realization, we conducted a batch- 
mode evaluation. We picked six recent calls to 
our system and ran two generation algorithms 
(template-based generation and stochastic 
generation) on the input frames. We then 
presented to seven subjects the generated 
dialogues, consisting of decoder output of the 
user utterances and corresponding system 
responses, for each of the two generation 
algorithms. Subjects then selected the output 
utterance they would prefer, for each of the 
utterances that differ between the two systems. 
The results show a trend that subjects preferred 
stochastic generation over template-based 
generation, but a t-test shows no significant 
difference (p = 0.18). We are in the process of 
designing a larger evaluation. 

4 Conclusion 

We have presented a new approach to language 
generation for spoken dialogue systems. For 
content planning, we built a simple bigram 
model of attributes, and found that, in our first 
implementation, it performs as well as a 
heuristic of old vs. new information. For surface 
realization, we used an n-gram language model 
to stochastically generate each utterance and 
found that the stochastic system performs at 
least as well as the template-based system. 

Our stochastic generation system has several 
advantages. One of those, an important issue for 

spoken dialogue systems, is the response time. 
With stochastic surface realization, the average 
generation time for the longest utterance class 
(10 - 20 words long) is about 200 milliseconds, 
which is much faster than any rule-based 
systems. Another advantage is that by using a 
corpus-based approach, we are directly 
mimicking the language of a real domain expert, 
rather than attempting to model it by rule. 
Corpus collection is usually the first step in 
building a dialogue system, so we are leveraging 
the effort rather than creating more work. This 
also means adapting this approach to new 
domains and even new languages will be 
relatively simple. 

The approach we present does require some 
amount of knowledge engineering, though this 
appears to overlap with work needed for other 
parts of the dialogue system. First, defining the 
class of utterance and the attribute-value pairs 
requires care. Second, tagging the human-human 
corpus with the right classes and attributes 
requires effort. However, we believe the tagging 
effort is much less difficult than knowledge 
acquisition for most rule-based systems or even 
template-based systems. Finally, what may 
sound right for a human speaker may sound 
awkward for a computer, but we believe that 
mimicking a human, especially a domain expert, 
is the best we can do, at least for now. 
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