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Abstract

Interpreting event mentions in text is cen-
tral to many tasks from scientific research
to intelligence gathering. We present an
event trigger detection system and explore
baseline configurations. Specifically, we
test whether it is better to use a single
multi-class classifier or separate binary
classifiers for each label. The results sug-
gest that binary SVM classifiers outper-
form multi-class maximum entropy by 6.4
points F-score. Brown cluster and Word-
Net features are complementary with more
improvement from WordNet features.

1 Introduction

Events are frequently discussed in text, e.g., crim-
inal activities such as violent attacks reported in
police reports, corporate activities such as merg-
ers reported in business news, biological processes
such as protein interactions reported in scientific
research. Interpreting these mentions is central to
tasks like intelligence gathering and scientific re-
search. Event extraction automatically identifies
the triggers and arguments that constitute a textual
mention of an event in the world. Consider:

Bob bought the book from Alice.

Here, a trigger – “bought” (Transaction.Transfer–
Ownership) – predicates an interaction between
the arguments – “Bob” (Recipient), “the book”
(Thing) and “Alice” (Giver). We focus on the trig-
ger detection task, which is the first step in event
detection and integration.

Many event extraction systems use a pipelined
approach, comprising a binary classifier to detect
event triggers followed by a separate multi-class
classifier to label the type of event (Ahn, 2006).
Our work is different in that we use a single clas-
sification step with sub-sampling to handle data

skew. Chen and Ji (2009) use Maximum Entropy
(ME) classifier in their work. However, their ap-
proach is similar to (Ahn, 2006) where they iden-
tify the trigger first then classify the trigger at later
stage. Kolya et al. (2011) employ a hybrid ap-
proach by using Support Vector Machine (SVM)
classifier and heuristics for event extraction.

We present an event trigger detection system
that formulates the problem as a token-level clas-
sification task. Features include lexical and syn-
tactic information from the current token and sur-
rounding context. Features also include addi-
tional word class information from Brown clus-
ters, WordNet and Nomlex to help generalise from
a fairly small training set. Experiments explore
whether multi-class or binary classification is bet-
ter using SVM and ME.

Contributions include: (1) A comparison of bi-
nary and multi-class versions of SVM and ME on
the trigger detection task. Experimental results
suggest binary SVM outperform other approaches.
(2) Analysis showing that Brown cluster, Nom-
lex and WordNet features contribute nearly 10
points F-score; WordNet+Nomlex features con-
tribute more than Brown cluster features; and im-
provements from these sources of word class in-
formation increase recall substantially, sometimes
at the cost of precision.

2 Event Trigger Detection Task

We investigate the event trigger detection task
from the 2015 Text Analysis Conference (TAC)
shared task (Mitamura and Hovy, 2015). The task
defines 9 event types and 38 subtypes such as
Life.Die, Conflict.Attack, Contact.Meet. An event
trigger is the smallest extent of text (usually a word
or short phrase) that predicates the occurrence of
an event (LDC, 2015).

In the following example, the words in bold trig-
ger Life.Die and Life.Injure events respectively:
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The explosion killed 7 and injured 20.

Note that an event mention can contain multiple
events. Further, an event trigger can have multiple
events. Consider:

The murder of John.

where “murder” is the trigger for both a Con-
flict.Attack event and a Life.Die event. Table 1
shows the distribution of the event subtypes in the
training and development datasets.

3 Approach

We formulate event trigger detection as a token-
level classification task. Features include lexical
and semantic information from the current token
and surrounding context. Classifiers include bi-
nary and multi-class versions of SVM and ME.

As triggers can be a phrase, we experimented
with Inside Outside Begin 1 (IOB1) and Inside
Outside Begin 2 (IOB2) encodings (Sang and
Veenstra, 1999). Table 2 contains an example il-
lustrating the two schemes. Preliminary results
showed little impact on accuracy. However, one
of the issues with this task is data sparsity. Some
event subtypes have few observations in the cor-
pus. IOB2 encoding increases the total number
of categories for the dataset. Thus make the data
sparsity issue worse. Therefore we use the IOB1
encoding for the rest of the experiments.

Another challenge is that the data is highly un-
balanced. Most of the tokens are not event trig-
gers. To address this, we various subsets of nega-
tive observations. Randomly sampling 10% of the
negative examples for training works well here.

3.1 Features

All models used same rich feature sets. The fea-
tures are divided into three different groups.

Feature set 1 (FS1): Basic features includ-
ing following. (1) Current token: Lemma, POS,
named entity type, is it a capitalised word. (2)
Within the window of size two: unigrams/bigrams
of lemma, POS, and name entity type. (3)
Dependency: governor/dependent type, gover-
nor/dependent type + lemma, governor/dependent
type + POS, and governor/dependent type +
named entity type.

Feature set 2 (FS2): Brown cluster trained on
the Reuters corpus (Brown et al., 1992; Turian et

Event Subtype Train Dev
Business.Declare-Bankruptcy 30 3
Business.End-Org 11 2
Business.Merge-Org 28 0
Business.Start-Org 17 1
Conflict.Attack 541 253
Conflict.Demonstrate 162 38
Contact.Broadcast 304 112
Contact.Contact 260 77
Contact.Correspondence 77 18
Contact.Meet 221 23
Justice.Acquit 27 3
Justice.Appeal 25 12
Justice.Arrest-Jail 207 79
Justice.Charge-Indict 149 41
Justice.Convict 173 49
Justice.Execute 51 15
Justice.Extradite 62 1
Justice.Fine 53 2
Justice.Pardon 221 18
Justice.Release-Parole 45 28
Justice.Sentence 118 26
Justice.Sue 54 1
Justice.Trial-Hearing 172 24
Life.Be-Born 13 6
Life.Die 356 157
Life.Divorce 45 0
Life.Injure 63 70
Life.Marry 60 16
Manufacture.Artifact 18 4
Movement.Transport-Artifact 52 18
Movement.Transport-Person 390 125
Personnel.Elect 81 16
Personnel.End-Position 130 79
Personnel.Nominate 30 5
Personnel.Start-Position 60 17
Transaction.Transaction 34 17
Transaction.Transfer-Money 366 185
Transaction.Transfer-Ownership 233 46

Table 1: Event subtype distribution.

al., 2010) with prefix of length 11, 13 and 16.1

Feature set 3 (FS3): (1) WordNet features in-
cluding hypernyms and synonyms of the current
token. (2) Base form of the current token extracted
from Nomlex (Macleod et al., 1998).2

1
http://metaoptimize.com/projects/wordreprs/

2
http://nlp.cs.nyu.edu/nomlex/
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Word IOB1 IOB2
He O O
has O O
been O O
found I-Justice.Convict B-Justice.Convict
guilty I-Justice.Convict I-Justice.Convict
for O O
the O O
murder I-Life.Die B-Life.Die
. O O

Table 2: IOB1 and IOB2 encoding comparison.
“B” represents the first token of an event trigger.
“I” represents a subsequent token of a multi-word
trigger. “O” represents no event.

3.2 Classifiers
We train multi-class ME and SVM classifiers to
detect and label events. L-BFGS (Liu and No-
cedal, 1989) is used as the solver for ME. The
SVM uses a linear kernel. We also compare bi-
nary versions of ME and SVM by building a single
classifier for each event subtype.

4 Experimental setup

4.1 Dataset
The TAC 2015 training dataset (LDC2015E73)
is used for the experiment. The corpus has a
total of 158 documents from two genres: 81
newswire documents and 77 discussion forum
documents. Preprocessing includes tokenisation,
sentence splitting, POS tagging, named entity
recognition, constituency parsing and dependency
parsing using Stanford CoreNLP 3.5.2.3

The dataset is split into 80% for training (126
documents) and 20% for development (32 docu-
ments. Listed in Appendix A).

4.2 Evaluation metric
Accuracy is measured using the TAC 2015 scorer.4

Precision, recall and F-score are defined as:

P =
TP

NS
;R =

TP

NG
;F1 =

2PR

P +R

where TP is the number of correct triggers (true
positives), NS is the total number of predicted sys-
tem mentions, and NG is the total number of an-
notated gold mentions. An event trigger is counted

3
http://nlp.stanford.edu/software/corenlp.shtml

4
http://hunterhector.github.io/EvmEval/

as correct only if the boundary, the event type and
the event subtype are all correctly identified. We
report micro-averaged results.

5 Results

Table 3 shows the results from each classifier. The
binary SVMs outperform all other models with an
F-score of 55.7. The score for multi-class SVM is
two points lower at 53.2. Multi-class and binary
ME comes next with binary performing worst.

System P R F1
Multi-class ME 62.2 40.8 49.2

Multi-class SVM 55.6 50.9 53.2
Binary ME 77.8 28.2 41.4

Binary SVM 64.7 48.9 55.7

Table 3: System performance comparison.

5.1 Feature set
We perform a cumulative analysis to quantify the
contribution of different feature sets. Table 4
shows that feature set 2 (Brown cluster) helped
with recall sometimes at the cost of precision. The
recall is further boosted by feature set 3 (WordNet
and Nomlex). However, the precision dropped no-
ticeably for SVM models.

System P R F1
Multi-class systems
ME FS1 54.1 16.9 25.8
ME FS1+FS2 57.8 21.3 31.1
ME FS1+FS2+FS3 62.2 40.8 49.2
SVM FS1 62.1 35.3 45.0
SVM FS1+FS2 60.9 39.3 47.8
SVM FS1+FS2+FS3 55.6 50.9 53.2
Binary systems
ME FS1 64.7 6.1 11.2
ME FS1+FS2 72.7 10.1 17.8
ME FS1+FS2+FS3 77.8 28.2 41.4
SVM FS1 71.0 34.2 46.2
SVM FS1+FS2 70.5 38.4 49.7
SVM FS1+FS2+FS3 64.7 48.9 55.7

Table 4: Feature sets comparison.

5.2 Performance by event subtype
Figure 1 shows how classifiers perform on each
event subtype. Binary SVM generally has bet-
ter recall and slightly lower precision. Hence, the
overall performance of the model improves.
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Figure 1: Performance by subtype.

5.3 Error analysis

We sampled 20 precision and twenty recall errors
from the binary SVM classifier. 40% of preci-
sion errors require better modelling of grammat-
ical relations, e.g., labelling “focus has moved” as
a transport event. 35% require better use of POS
information, e.g., labelling “said crime” as a con-
tact event. 65% of recall errors are tokens in multi-
word phrases, e.g., “going to jail”. 45% are trig-
gers that likely weren’t seen in training and require
better generalisation strategies. Several precision
and recall errors seem to actually be correct.

6 Conclusion

We presented an exploration of TAC event trigger
detection and labelling, comparing classifiers and
rich features. Results suggest that SVM outper-
forms maximum entropy and binary SVM gives
the best results. Brown cluster information in-
creases recall for all models, but sometimes at the
cost of precision. WordNet and Nomlex features
provide a bigger boost, improving F-score by 6
points for the best classifier.
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Appendix A: Development set document
IDs

3288ddfcb46d1934ad453afd8a4e292f
AFP_ENG_20091015.0364
AFP_ENG_20100130.0284
AFP_ENG_20100423.0583
AFP_ENG_20100505.0537
AFP_ENG_20100630.0660
APW_ENG_20090605.0323
APW_ENG_20090611.0337
APW_ENG_20100508.0084
APW_ENG_20101214.0097
CNA_ENG_20101001.0032
NYT_ENG_20130628.0102
XIN_ENG_20100114.0378
XIN_ENG_20100206.0090
bolt-eng-DF-170-181103-8901874
bolt-eng-DF-170-181103-8908896
bolt-eng-DF-170-181109-48534
bolt-eng-DF-170-181109-60453
bolt-eng-DF-170-181118-8874957
bolt-eng-DF-170-181122-8791540
bolt-eng-DF-170-181122-8793828
bolt-eng-DF-170-181122-8803193
bolt-eng-DF-199-192783-6864512
bolt-eng-DF-199-192909-6666973
bolt-eng-DF-200-192403-6250142
bolt-eng-DF-200-192446-3810246
bolt-eng-DF-200-192446-3810611
bolt-eng-DF-200-192451-5802600
bolt-eng-DF-200-192453-5806585
bolt-eng-DF-203-185933-21070100
bolt-eng-DF-203-185938-398283
bolt-eng-DF-212-191665-3129265
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