
Collocations in Multilingual Natural Language Generation:
Lexical Functions meet Lexical Functional Grammar

François Lareau Mark Dras Benjamin Börschinger Robert Dale
Centre for Language Technology

Macquarie University
Sydney, Australia

Francois.Lareau|Mark.Dras|Benjamin.Borschinger|Robert.Dale@mq.edu.au

Abstract

In a collocation, the choice of one lexical item
depends on the choice made for another. This
poses a problem for simple approaches to lex-
icalisation in natural language generation sys-
tems. In the Meaning-Text framework, recur-
rent patterns of collocations have been char-
acterised by lexical functions, which offer an
elegant way of describing these relationships.
Previous work has shown that using lexical
functions in the context of multilingual natural
language generation allows for a more efficient
development of linguistic resources. We pro-
pose a way to encode lexical functions in the
Lexical Functional Grammar framework.

1 Introduction

Natural Language Generation (NLG) is the gener-
ation of natural language text from some underly-
ing representation: numerical data, knowledge bases,
predicate logic, and so on. Multilingual Natural
Language Generation (MNLG) is NLG where the
output is in more than one language. Most NLG
systems are in some way modular (see Reiter and
Dale (2000) for a discussion of typical architectures);
one advantage to modularity is the scope for sepa-
rating language-independent components from those
which are language-dependent, making it possible to
add multilinguality with much less work than would
be involved in building a new system from scratch
(Bateman et al., 1999). Such claims have been made
since the very first MNLG systems; the FoG system
generating weather forecasts in English and French
(Bourbeau et al., 1990) is a case in point.

Consequently, MNLG has been applied for a large
number of text types: government statistics reports
(Iordanskaja et al., 1992), technical instruction man-
uals (Paris et al., 1995), fairy tales (Callaway and
Lester, 2002), museum tours (Callaway et al., 2005),
medical terminology (Rassinoux et al., 2007), codes
of practice (Evans et al., 2008), and so on.

Marcu et al. (2000), in reviewing some of the ear-
lier work, comment that MNLG systems need to ab-
stract as much as possible away from the individual
language generated:

If an [MNLG] system needs to develop
language dependent knowledge bases, and
language dependent algorithms for con-
tent selection, text planning, and sentence
planning, it is difficult to justify its eco-
nomic viability. However, if most of
these components are language indepen-
dent and/or much of the code can be re-
used, an [MNLG] system becomes a viable
option.

Bateman et al. (1999) similarly emphasise the impor-
tance of reducing language dependence.

One kind of abstraction generalises across
language-specific collocations: for example, we
might note that heavy rain, strong wind or intense
bombardment all refer to the intensification of some
phenomenon, as similarly does the French pluie bat-
tante (‘beating rain’), but the particular intensifier
used is determined by collocational appropriateness.
These kinds of collocations are modeled within the
Meaning-Text Theory (MTT) framework via lexical
functions (LFs) (Mel’čuk, 1995); for some lexeme
L, the above semantic notion of intensification or

François Lareau, Mark Dras, Benjamin Börschinger and Robert Dale. 2011. Collocations in Multilingual
Natural Language Generation: Lexical Functions meet Lexical Functional Grammar. In Proceedings of
Australasian Language Technology Association Workshop, pages 95−104

strength is represented by Magn(L). MTT-based
MNLG systems, from the early works of Heid and
Raab (1989) and Iordanskaja et al. (1992) onwards,
have used LFs to abstract away from the specific
collocational phenomena of individual languages.

In terms of resources developed and applications
within the computational linguistics community, how-
ever, MTT has not been very prominent outside of
NLG. In work that is more geared towards natural
language understanding, other formalisms such as
Lexical Functional Grammar (LFG) (Bresnan, 2001),
Head-driven Phrase Structure Grammar (HPSG) (Pol-
lard and Sag, 1994), Tree Adjoining Grammar (TAG)
(Joshi and Schabes, 1997) and Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000) have received
much more attention. Of course, all of these frame-
works have also been applied in NLG. LFG, for
example, has a sophisticated grammar development
environment called Xerox Linguistic Environment
(XLE) (Maxwell and Kaplan, 1993) for both parsing
and generation, with wide-coverage grammars for a
number of languages such as English and German
(Butt et al., 2002), and advanced statistical models
for tasks such as realisation ranking (Cahill et al.,
2007).

The existence of a wide-coverage English LFG
grammar for XLE convinced us to build our resources
on this platform for the MNLG project described be-
low. However, LFG comes from a tradition quite
different from MTT, and has no concept that cor-
responds to MTT’s LFs. In this paper, we demon-
strate that LFs cannot be straightforwardly introduced
into the LFG formalism via direct manipulation of
f-structures, and then show how glue semantics (Dal-
rymple, 2001) can incorporate them in an elegant
way.

We first describe our MNLG system to provide a
contextual background for the problem (§2), along
with some basic notions on LFG (§3). We then de-
scribe LFs in more detail, and discuss how they have
been used in other MNLG systems (§4), along with
how they would fit into our system. We then return
to LFG and glue semantics (§5), and present our
proposal for incorporating LFs into LFG, using a
running example (§6).

2 Our System

The context for this work is a project involving
an MNLG system for generating commentary-style
textual descriptions of Australian Football League
(AFL) games, in both English and the Australian
Aboriginal language Arrernte. A typical sentence
in a human-authored commentary for a game might
look as follows:

Led by Brownlow medallist Adam Goodes
and veteran Jude Bolton, the Swans kicked
seven goals from 16 entries inside their
forward 50 to open a 30-point advantage at
the final change—to that point the largest
lead of the match.

For the games we want to describe, there is a cor-
responding database which contains quantitative
and other data regarding the game: who scored
which goal when, from where, and so on. The
system will use handwritten grammars in the LFG
formalism—for English, there is an already-existing
wide-coverage one developed for XLE as part of
the ParGram project (Butt et al., 2002)—and the re-
search around the grammar development will have
a number of foci. In particular, we are interested in
exploring how to handle morphologically rich non-
configurational languages such as Arrernte, which
are not usually tackled in the field of language tech-
nology; these exhibit a number of interesting and
complicated phenomena, as outlined by, for example,
Austin and Bresnan (1996) or Nordlinger and Bres-
nan (2011). Given the radical language differences
between such languages and those which are more
typically the focus of NLG projects, we are particu-
larly interested in investigating the possible extent of
language independence (see §4 for a discussion). LFs
are an important facet of the semantic abstractions
we require. For example, in the short text cited above,
the expression kick a goal would be rendered in Ar-
rernte as goal arrerneme, where arrerneme literally
means ‘put’. We view kick and arrerneme as sup-
port verbs in these expressions.1 These collocations
exhibit the same syntactic structure, and express the
same meaning; they are instances of the same pattern

1Note that in AFL one can only score goals by kicking the
ball, so in this context, the semantic contribution of kick is weak;
we believe that for practical purposes it can be viewed as empty.

96

Linguistic knowledgeNon-linguistic knowledge

Language-specificLanguage-independent

match
statistics

content selector

background
knowledge

user model dictionary

dictionary
compiler

grammar

XLE

morphology

XFST

facts

planner

plan

deep realizer

f-structure morphemes text

Figure 1: System architecture

of collocation, which is described in MTT by the LF
Oper1(L). We will return to this example in §4.

Our system more or less follows the “consensus
architecture” of Reiter and Dale (2000), as schema-
tised in Figure 1. Data is selected using domain-
specific knowledge and statistical methods, to pro-
duce a collection of facts to be expressed. These facts
are organised into a document plan, which is then
passed to a deep realiser that produces one or more
f-structures for each sentence of the text (cf. §3). This
is then passed to XLE, which uses linguistic knowl-
edge to produce ordered lexical items with attached
morphemes. This is finally passed to a two-level mor-
phology model compiled with the Xerox Finite-State
Tool (XFST) system, which produces fully inflected
text. The double-headed arrows in Figure 1 indicate
non-deterministic output; a stochastic reranking tech-
nique is used to select between alternative results.

The module which is the focus of the present dis-
cussion is the deep realiser, which maps a semantic
representation to one or more f-structures, for which
in turn XLE will produce textual realisations. It is not
our purpose in this paper to discuss the technical de-
tails of the implementation of this component; rather,
we focus on the mapping between semantic represen-
tations and f-structures from a theoretical point of
view. To explain the approach, and to motivate the
need for glue semantics, we now present an outline
of LFG.

3 Lexical Functional Grammar

LFG is a formalism for a non-derivational theory
of linguistic structure that posits at least two lev-
els of representation: c(onstituent)-structure and

f(unctional)-structure.2 Mappings specify the rela-
tionship between the different levels of structure. C-
structure is represented by phrase-structure trees, cap-
turing hierarchical relationships between constituents
and surface phenomena such as word order; while
f-structure is represented by attribute–value matri-
ces, describing more abstract functional relationships
such as subject and object (indeed, syntactic depen-
dencies). LFG assumes that these functional syntac-
tic concepts are universally relevant across languages
(Dalrymple, 2001, p. 3), and “so may be regarded as a
major explanatory source of the relative invariance of
f-structures across languages” (Bresnan, 2001, p 98).
As an illustration, the c- and f-structures for the sen-
tence (1) below are given in Figure 2.

(1) Bradshaw kicked a beautiful goal.

The mapping between f- and c-structures is given by
annotations on phrase structure and lexical rules as
in (2) and (3) below.

(2) S → NP
(↑SUBJ)=↓

VPall
↑=↓

(3) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑TENSE)=past

Lexical entries such as (3) are in fact only a differ-
ent notation used for terminal nodes in c-structures;
this could be written instead as in (4).

(4) V → kicked
(↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’

(↑TENSE)=past

2See Dalrymple (2001) or Bresnan (2001) for extensive dis-
cussions of LFG; here, we provide only the basic essentials
required to understand our treatment.

97

S[fin]

NP

NPadj

NPzero

NAME

Bradshaw

VPall[fin]

VPv[fin]

V[fin]

kicked

NP

D

a

NPadj

AP[attr]

A

beautiful

NPzero

N

goal

PRED ‘kick 〈 1:Bradshaw, 2:goal 〉’
TENSE past

OBJ

2

PRED ‘goal’

SPEC

[
DET

[
PRED ‘a’

]]
ADJUNCT

{[
PRED ‘beautiful’

]}
PERS 3
NUM sg

SUBJ

1

PRED ‘Bradshaw’
PERS 3
NUM sg

Figure 2: c-structure (left) and f-structure (right) for Bradshaw kicked a beautiful goal

The symbol ↑ is a metavariable representing the f-
structure of the parent of a node in the c-structure,
and ↓ the f-structure of that node itself. These can
be followed by a sequence of attributes that specify
a path to an element in the f-structure. For example,
in rule (2), the annotation on the NP means that the
SUBJ of the f-structure corresponding to the node
above it in the c-structure (S) is the f-structure cor-
responding to this NP (in plain English: this NP is
the subject of the sentence). The annotation on the
VPall node means that it shares the same f-structure
as its mother (i.e., it is the head of S). In the lexical
rule for kicked (3), the annotation (↑OBJ) inside the
PRED attribute refers to the f-structure numbered 2
in Figure 2, which represents goal. A less common
way of referring to elements of an f-structure, albeit
one that is necessary in a number of cases, is “inside-
out” function application, where the ↑ or ↓ follows
an attribute sequence. An annotation such as (OBJ↑)
refers to the f-structure of which the current one is
the OBJ.

First-order predicate logic is often used as the fun-
damental meaning representation in LFG, although
other more expressive representations are also pos-
sible, such as intensional logic or Discourse Repre-
sentation Theory. The issue then is how to relate
the core LFG structures above to this meaning repre-
sentation. Dalrymple (2001, p. 217) notes that early
work in LFG took the f-structure element PRED to
represent the locus of the semantics, with the PRED

in fact originally being referred to as the semantic
form. If our meaning representation for (1) were as in
(5a) (ignoring here tense and number), the mapping
to the f-structure in the right of Figure 2 would be

PRED ‘SV 〈 1:Bradshaw, 2:goal 〉’
TENSE past

OBJ

2

PRED ‘goal’

SPEC

[
DET

[
PRED ‘a’

]]
ADJUNCT

{[
PRED Good

]}
PERS 3
NUM sg

SUBJ

1

PRED ‘Bradshaw’
PERS 3
NUM sg

Figure 3: ‘Quasi-’f-structure with variables

straightforward: the basic hierarchical structure of
the f-structure is preserved, although predicativity is
reversed in the case of the adjunct.

(5) a. kick(bradshaw, beautiful(goal))

b. good(goal(bradshaw))

However, simple semantic forms like this cannot
represent many aspects of semantics, such as scope
of modifiers or quantification. More particularly for
our purposes, if we start from a semantic represen-
tation that abstracts away from the collocationally
determined use of beautiful to characterise the goal,
or from the collocational use of kick to refer to the
goal event,3 a suitable starting meaning representa-
tion might be as in (5b); what the mapping should
look like is then much less clear.

A (quasi-)f-structure corresponding to this might
be as in Figure 3. The top-level PRED could be a
variable (SV) that would have to be instantiated to

3We might think of this as the action of “goaling”; another
possible supporting verb would then be score.

98

a collocationally appropriate support verb; alterna-
tively, for some types of action, it could indicate that
both the top-level PRED and its object could be re-
alised as a single verb through some kind of structure
merging.4 The adjunct PRED could similarly be a
variable (Good) whose value is a word that retains
the desired semantics but is collocationally deter-
mined. However, it is not possible for f-structures to
have variable predicates, or to be of indeterminate
structure, because of their role in ensuring the LFG
wellformedness conditions of Coherence and Com-
pleteness; in addition, the mapping between meaning
representation and f-structure is less straightforward,
with quite different hierarchical relations.

In §6, we show how the mapping of such abstract
meaning representations to f-structures can be done
in an elegant way using glue semantics. First, we
present more formally the MTT notion of LFs that
these quasi-f-structure “variables” of Figure 3 are
trying to capture, and we then give a brief description
of glue semantics.

4 Lexical Functions and MNLG

An important step in the NLG task of surface reali-
sation is lexicalisation, where specific lexemes are
chosen to express the content of a message. Most
of the time, this can be achieved by mapping either
concepts or language-specific meanings to lexemes
in a straightforward way. For example, the concept
RAIN can be mapped to the lexemes rain (English),
pluie (French), lluvia (Spanish), and so on. Often,
however, concepts are lexicalised in a different way
depending on the lexemes they appear with, as with
our example from §3 above. Consider for exam-
ple the phrases strong preference, intense flavour,
heavy rain and great risk. While the lexemes pref-
erence, flavour, rain and risk are chosen freely ac-
cording to their meaning, the lexemes strong, intense,
heavy and great are not. They have roughly the same
meaning of intensification, but their choice is tied
to the lexeme they modify. Such collocations pose
a non-trivial problem for lexicalisation in NLG sys-
tems. Under the MTT framework these are modeled

4This kind of structure merging has not, to our knowledge,
been implemented in LFG. In practice, it could be carried out by
mapping from one f-structure to another, using the sort of mech-
anism found in XLE for use in machine translation. However, it
would inelegantly add an unprincipled layer to the formalism.

ATTENTION [of X to Y]

Magn close/whole/complete/undivided ∼
Func2 X’s ∼ is on Y
nonFunc0 X’s ∼ wanders
Oper12 X gives his/pays ∼ to Y
Oper2 Y attracts/receives/enjoys X’s ∼
Oper2+Magnquant-X Y is the center of ∼ (of many Xs)
IncepOper12 X turns his ∼ to Y
IncepOper2 Y gets X’s ∼
ContOper2 Y holds/keeps X’s ∼
CausFunc2 Z draws/calls/brings X’s ∼ to Y
LiquFunc2 Z diverts/distracts/draws X’s ∼

from Y

Figure 4: Dictionary entry for attention

via LFs. Collocations are viewed as instances of
recurrent patterns of semantico-syntactic mappings,
described in terms of functions (in a mathematical
sense) between lexemes. Hence, these four collo-
cations can be described in terms of a function f
such that f (preference)=strong, f (flavour)=intense,
etc. Over the years, more than fifty basic recur-
rent functions of this type, and hundreds of com-
plex ones, have been identified across languages and
given names; the one discussed above has been called
Magn. Detailed descriptions of these functions can
be found elsewhere (Mel’čuk, 1995; Wanner, 1996;
Kahane and Polguère, 2001; Apresjan et al., 2002).

The use of LFs allows the handling of lexicalisa-
tion in two steps. In the first step, unbound lexemes
are chosen, and collocation patterns identified, while
the actual value of the LF is only computed in the
second step: INTENSE+RAIN → Magn(rain)+rain
→ heavy+rain.

The values for these functions are stored in the
dictionary; for example, the entry for attention must
contain the information in Figure 4. We will not
discuss each of these functions here; the key point
is that LFs offer a very efficient way of describing a
wide range of collocations.

Each pattern must be defined in the grammar, but
this is done only once for all languages and domains.
We discuss in §6 how this can be done in LFG. The
fact that the patterns must be defined only once for all
languages makes this technique a cost-efficient way
of developing MNLG resources by sharing parts of
the grammar across languages, as advocated notably
by Bateman et al. (1991), Bateman et al. (1999) and

99

Cahill et al. (2000). This was the approach taken
by Lareau and Wanner (2007) for the system MAR-
QUIS, which generated air quality reports in eight Eu-
ropean languages (Catalan, English, Finnish, French,
German, Polish, Portuguese and Spanish). Their use
of LFs was an important factor that contributed to the
low number of language-specific rules they reported
for the deeper modules of their grammars, making
the addition of new languages in their framework
relatively cheap. It is LFs such as these that we wish
to incorporate into LFG.

5 Glue Semantics

In the context of LFG, there have been several ap-
proaches to developing a compositional notion of
semantics derived from the f-structure; one that is
well developed, and is the basis of our work, is glue
semantics (Dalrymple, 2001; Andrews, 2010). We
give only a brief summary here; for a full treatment,
see Dalrymple (2001).5

Glue semantics is based on linear logic. This dif-
fers from classical logic in its resource-sensitivity,
in that premises are treated as resources that can be
kept track of. For example, consider the statements
If you have $1, you can get an apple and You have
$1. In classical logic, you can deduce that you can
get an apple, but the original premises would still
be true, i.e. you would still have $1, and you could
still get an apple. In linear logic, these premises
are resources that will be consumed in the process
of deduction, and therefore not available for further
proof;6 notationally, the implication above in linear
logic is written $1 (apple.

This resource-sensitivity is particularly appropriate
when we are concerned with the linguistic expression
of semantic content: the contribution of each word
and phrase to the meaning of a sentence is unique,
and there should be no missing or redundant words
in terms of the meaning to be expressed.

We illustrate how this works by showing the more
straightforward mapping between our example sen-
tence (1) and its literal meaning representation (5a).
The lexical item representing Bradshaw is given be-
low in (6). The first line contains the wordform,

5It should be noted that the current version of XLE cannot
directly handle glue semantics.

6Somewhat counterintuitively, even the premise If you have
$1, you can get an apple is consumed.

its part of speech, and an annotation asserting that
the f-structure corresponding to the N node imme-
diately dominating the lexical item has an attribute
PRED whose value is the semantic form ‘Bradshaw’.
The second line (Bradshaw : ↑σ) contains what is
termed the meaning constructor, as it gives instruc-
tions on how to construct meanings. These are pairs:
the lefthand (meaning) side represents the meaning,
and the righthand (glue) side represents a logical for-
mula over semantic structures corresponding to those
meanings.

(6) Bradshaw N (↑PRED)=‘Bradshaw’
Bradshaw : ↑σ

The present example is trivial: it should be read as
the semantic projection of the mother node is the
meaning Bradshaw. A σ subscript indicates the se-
mantic projection of a node, so the notation ↑σ gives
the corresponding element of the semantics via the
projection of the mother node to the semantics. The
element goal is similar:

(7) goal N (↑PRED)=‘goal’
goal : ↑σ

The verb kick is transitive, so it will have the fol-
lowing form.

(8) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑TENSE)=past
λX.λY.kick(X,Y) :

(↑SUBJ)σ ([(↑OBJ)σ (↑σ]

In the meaning constructor, the semantics of the ac-
tion of kicking is represented by a lambda term, on
the left; the righthand glue side is given in terms
of the linear logic implication operator (. The
first implication says that if (↑SUBJ)σ is available
(i.e., if we have already built the semantic projection
for the verb’s subject—in our example, Bradshaw),
it will be consumed and will saturate the first vari-
able of the lambda expression, to produce the new
premise that follows the first (symbol, leaving us
with λY .kick(Bradshaw,Y) : (↑OBJ)σ (↑σ. This
in turn consumes the semantic projection for the ob-
ject (in our case, goal) to reduce the lambda term,
and produces the semantic resource ↑σ, i.e., the se-
mantic projection for the verb and its complements,
kick(Bradshaw,goal).

100

For the remaining two elements, we would have
the following.

(9) beautiful A (↑PRED)=‘beautiful’
λX.beautiful(X) :

(ADJ ∈ ↑)σ ((ADJ ∈ ↑)σ

(10) a D (↑PRED)=‘a’
λX.X : (DET ↑)σ ((DET ↑)σ

For beautiful in (9), the notation (ADJ ∈ ↑)σ differs
in two ways from that introduced earlier. First, it
uses an “inside-out” function to refer to the semantic
structure of the phrase it modifies; and second, it uses
set membership notation, as modifiers are typically
represented by sets (as in the f-structure of Figure 2).
The expression thus refers to the semantic structure
corresponding to the f-structure in which ↑ appears
as a member of the modifier set. In terms of the
glue side, all modifiers have this structure: they take
and return the same type of element. We treat the
determiner in (10) similarly; further, it does not add
any meaning element.7

All these combined together, then, give the literal
semantics of (5a). Such mechanics are more com-
plicated than is necessary for this simple example,
which was used only for illustrative purposes here.
However, they can equally well provide the more
abstract semantics of (5b), as we show in §6.

6 Adding Lexical Functions to LFG

There are a number of changes necessary to incorpo-
rate LFs, both in a less straightforward use of glue
semantics and in other aspects of the definitions of
lexical entries. The lexical entry for the proper noun
Bradshaw still has the same simple meaning con-
structor as above in (6). By contrast, goal in (11), is
a unary predicate: λX.goal(X), i.e., ‘X goals’, so to
speak. However, in the construction under considera-
tion here, its semantic predicativity is not echoed in
syntax, since there is no verb to goal in standard En-
glish. This is precisely why a support verb is needed
in the first place: kick ties the noun goal to its se-
mantic argument Bradshaw. This is rendered in the
lexical entry in (11) below with a meaning construc-
tor that checks that there is a meaning available for
the subject of the verb of which goal is the object.

7The determiner could be considered as a quantifier, which
would require a much more sophisticated treatment.

(11) goal N (↑PRED)=‘goal’
λX.goal(X) :

((OBJ↑) SUBJ)σ (↑σ

The lexeme kick serves only as a support verb to
turn Bradshaw’s goal into a verbal expression, so
that it forms a clause. It is a collocation of goal that,
in the context of football match summaries, does not
contribute to the meaning of the sentence in a sig-
nificant way. Hence, X kicks a goal means nothing
more than λX.goal(X), that is, the verb kick simply
recopies its object’s meaning, with the constraint that
its object is the lexeme goal in (12):

(12) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑OBJ PRED)=c‘goal’
(↑TENSE)=past
λX.X : (↑OBJ)σ (↑σ

In this example, the second line is a constraining
equation, which is LFG’s way of handling colloca-
tional constraints; it specifies that this rule can only
be applied if the predicate of the object of kick is goal.
And just as for the determiner in (10), the meaning
side adds nothing to the overall semantics.

We note here that the semantic description pro-
vided by glue semantics does not render obsolete the
PRED function. It is still needed to encode purely
syntactic information: the name of the lexeme and
its sub-categorisation. The verb kick could control its
own collocations, so we need to have access to the
name of the lexeme.

Beautiful, in (1), could be replaced with spectacu-
lar or brilliant, for instance. In these kinds of texts,
the semantic difference between these expressions is
not significant. The adjectives beautiful, brilliant and
spectacular, when they modify goal, merely denote
a positive appreciation: λX.good(X).

(13) beautiful A (↑PRED)=‘beautiful’
((ADJ ∈ ↑) PRED)=c‘goal’
λX.good(X) :

(ADJ ∈ ↑)σ ((ADJ ∈ ↑)σ

The second line is again an LFG constraining equa-
tion, which specifies that this rule can only be applied
if beautiful modifies the lexeme goal; the semantic
element λX.good(X) will be realised in other ways
in different contexts.

101

The extra lines in the lexical entries are regular,
and can be captured using templates, which are the
XLE instantiation of LFG’s lexical rules. These in
fact then correspond very closely to MTT’s LFs. For
example, for the LF Oper1(L), which represents the
use of support verbs in contexts such as that of kick
in our examples, the following template could be
defined:

(14) @OPER1(L)=
(↑PRED)=‘%stem〈(↑SUBJ),(↑OBJ)〉’
(↑OBJ PRED)=c‘L’
λX.X : (↑OBJ)σ (↑σ

The constraining equation on the second line restricts
the support verb to the particular lexical element with
which it is invoked. The third line constructs the
meaning by just passing along the meaning of the
existing components with no additions. The template
is then invoked in the dictionary:

(15) kick V @(OPER1 goal)
suffer V @(OPER1 loss)
have V @(OPER1 cold)

Such templates need only be described once for all
languages. For example, the Arrernte dictionary con-
tains the following entry for the expression goal ar-
rerneme (literally ‘put (a) goal’):

(16) arrerneme V (OPER1 goal)

One problem with this approach is that colloca-
tions must be described in the collocate’s entry, which
is not very elegant and obfuscates the lexicographer’s
work. Indeed it is a lot easier, for example, to answer
the question “how do you intensify smoker?” than
“what lexemes can heavy intensify?”. However, this
problem can easily be resolved by writing the dictio-
nary in the format of Figure 5 (similar to the attention
example in Figure 4), where all collocations are listed
under their base headword, and using a compiler to
build the corresponding XLE lexical entries.

goal [of X]

Bon beautiful/spectacular/brilliant ∼
Oper1 X kicks/scores/gets/makes a ∼

Figure 5: Dictionary entry for goal

In the example we have considered so far, the En-
glish expression kick a goal and its Arrernte equiva-
lent goal arrerneme have the same structure. How-
ever, this need not be the case. For example, consider
the contrast between the following two sentences:

(17) John abandons the baby.

(18) John-le
John-ERG

ampe-Ø
baby-NOM

ipmentye-Ø
abandonment-NOM

iwe-me
leave-N.PST

‘John abandons the baby’

Both sentences express the meaning aban-
don(John,baby), but in English, the predicate is
expressed by a single verb, while in Arrernte it
is expressed by a noun with a support verb. This
construction corresponds to an LF called Labor12,
which denotes a support verb that takes as its
subject the first semantic argument of the base of the
collocation (here, John), the second argument as its
direct object (baby), and the base itself as its second
object (ipmentye).8 The template for Labor12
would look like this:

(19) @LABOR12(L)=
(↑PRED)=‘%stem〈(↑SUBJ),(↑OBJ),(↑OBJ2)〉’
(↑OBJ2 PRED)=c‘L’
λX.X : (↑OBJ2)σ (↑σ

And just as we did for goal in (11), we also need a
specific entry for ipmentye that reflects its behaviour
in this collocation, as well as an entry for iweme that
says it is the Labor12 of ipmentye:

(20) ipmentye N
(↑PRED)=‘ipmentye’
λXλY.abandon(X,Y) :

((OBJ2↑) SUBJ)σ (
[((OBJ2↑) OBJ)σ (↑σ]

iweme V @(LABOR12 ipmentye)

Hence, given the same meaning as input, the gram-
mar produces different structures, as appropriate for
the language being processed.

8Since both ampe and ipmentye are in the nominative form,
it is hard to determine which is the first and which is the second
object, but this question is largely irrelevant here.

102

Of course, LFs have their limitations too. In the
context of MNLG, there are two problems related to
lexicalisation that are worth mentioning here. One
is that languages sometimes diverge at the semantic
level. For example, there is no direct equivalent to
the verb teach in Arrernte; one has to say akaltye
antheme, literally ‘give knowledge’. This is a col-
location of the noun akaltye ‘knowledge’ that can
be captured by an LF; but the problem here lies in
the fact that the semantic input in Arrernte should
be cause(X,know(Y ,Z)), while in English it would
be teach(X,Y ,Z). This is different from the aban-
donment case discussed above: there, one language
uses a straightforward realisation, while the other
uses a light verb, but there is no need to decompose
the meaning of these expressions to see that they
are identical; they both have the same semantic rep-
resentation. For teach∼akaltye antheme, the two
languages do not conceptualise the world in the same
way, and these conceptual/semantic differences must
be dealt with early in the generation process; the deep
realiser must produce different semantic representa-
tions depending on the language. At this stage, LFs
are irrelevant because we are operating on concepts
rather than at the lexical level, where LFs come into
play.

Another limitation is that LFs are designed to de-
scribe recurrent patterns of collocations. Although
most collocations found in languages are instances
of a few common patterns, there are many that ei-
ther express unusual meanings, or that exhibit a very
peculiar syntactic or morphological structure. For
example, the expression winning goal could be de-
scribed as a collocation. However, the meaning ex-
pressed here by winning is very specific to this do-
main, and it cannot be reduced to a recurrent pattern
across languages (beyond the equivalent expressions
for winning goal). Ad hoc LFs can still be defined
for such collocations, but their use will only be a
viable solution in the context of an application within
a restricted domain (such as ours).

7 Conclusion

We have proposed a technique for the description of
collocations in LFG based on MTT’s concept of LFs,
in order to solve the problem of complex lexicali-
sation in NLG. We showed that a direct treatment

within LFG’s f-structure is not possible because it
would require variable values for the attribute PRED,
which is not allowed. Also, the semantics of support
verbs in particular is tricky and cannot be captured
satisfactorily with a PRED attribute. We proposed a
treatment using glue semantics, which handles more
elegantly the complex correspondence between the
semantics and syntax of collocations. The rules that
describe collocates use constraining equations so that
they apply only in the context of the base of a colloca-
tion. We also showed how templates could be used in
XLE to define recurrent patterns, effectively defining
any given LF once for all languages. The result is
an elegant way of describing collocations within the
LFG framework. This technique simplifies the task
of preparing resources for MNLG by sharing these
patterns across languages.

Acknowledgments

We acknowledge the support of ARC grant
DP1095443, and thank Mark Johnson for his feed-
back on the idea.

References

Avery Andrews. 2010. Propositional Glue and the Cor-
respondence Architecture of LFG. Linguistics and
Philosophy, 33:141–170.

Jury Apresjan, Igor Boguslavsky, Leonid Iomdin, and
Leonid Tsinman. 2002. Lexical functions in actual
NLP applications. In Computational Linguistics for
the New Millennium: Divergence or Synergy?, pages
55–72. Peter Lang, Frankfurt.

Peter Austin and Joan Bresnan. 1996. Non-configura-
tionality in Australian aboriginal languages. Natural
Language and Linguistic Theory, 14(2):215–268.

John Bateman, Christian Matthiessen, Keizo Nanri, and
Licheng Zeng. 1991. The re-use of linguistic resources
across languages in multilingual generation compo-
nents. In Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, volume 2, pages
966–971, Sydney.

John Bateman, Christian Matthiessen, and Licheng Zeng.
1999. Multilingual Natural Language Generation for
Multilingual Software: A Functional Linguistic Ap-
proach. Applied Artificial Intelligence, 13(6):607–639.

Laurent Bourbeau, Denis Carcagno, Eli Goldberg, Richard
Kittredge, and Alain Polguère. 1990. Bilingual Gener-
ation of Weather Forecasts in an Operations Environ-
ment. In Proceedings of the 13th International Con-

103

ference on Computational Linguistics (COLING’90),
pages 90–92.

Joan Bresnan. 2001. Lexical-Functional Syntax. Black-
well, Oxford, UK.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi
Masuichi, and Christian Rohrer. 2002. The Parallel
Grammar Project. In Proceedings of COLING-2002
Workshop on Grammar Engineering and Evaluation,
pages 1–7.

Lynn Cahill, Christie Doran, Roger Evans, Rodger Kibble,
Chris Mellish, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper. 2000. Enabling resource sharing in
language generation: an abstract reference architecture.
In Proceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens.

Aoife Cahill, Martin Forst, and Christian Rohrer. 2007.
Stochastic realisation ranking for a free word order lan-
guage. In Proceedings of the Eleventh European Work-
shop on Natural Language Generation (ENLG’07),
pages 17–24, Schloss Dagstuhl, Germany.

Charles B. Callaway and James C. Lester. 2002. Narrative
prose generation. Artificial Intelligence, 139(2):213–
252.

Charles Callaway, Elena Not, Alessandra Novello, Ce-
sare Rocchi, Oliviero Stock, and Massimo Zancanaro.
2005. Automatic Cinematography and Multilingual
NLG for Generating Video Documentaries. Artificial
Intelligence, 165(1):57–89.

Mary Dalrymple. 2001. Lexical Functional Grammar,
volume 42 of Syntax and Semantics Series. Academic
Press, New York.

Roger Evans, Paul Piwek, Lynne J. Cahill, and Neil Tip-
per. 2008. Natural language processing in CLIME, a
multilingual legal advisory system. Natural Language
Engineering, 14(1):101–132.

Ulrich Heid and Sybille Raab. 1989. Collocations in
multilingual generation. In Proceedings of the fourth
conference of the European chapter of the Association
for Computational Linguistics (EACL’89), pages 130–
136.

Lidja Iordanskaja, Myunghee Kim, Richard Kittredge,
Benoı̂t Lavoie, and Alain Polguère. 1992. Generation
of Extended Bilingual Statistical Reports. In Proceed-
ings of the 15th International Conference on Compu-
tational Linguistics (COLING’92), pages 1019–1023.
Nantes, France.

Aravind Joshi and Yves Schabes. 1997. Tree-Adjoining
Grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 69–
124. Springer, Berlin.

Sylvain Kahane and Alain Polguère. 2001. Formal foun-
dation of lexical functions. In Proceedings of ACL
2001, Toulouse.

François Lareau and Leo Wanner. 2007. Towards a
generic multilingual dependency grammar for text gen-
eration. In Proceedings of Grammar Engineering
Across Frameworks (GEAF’07), pages 203–223, Palo
Alto.

Daniel Marcu, Lynn Carlson, and Maki Watanabe. 2000.
An Empirical Study in Multilingual Natural Language
Generation: What Should A Text Planner Do? In
Proceedings of the 1st International Conference on
Natural language Generation (INLG’00), pages 17–23.

John T. Maxwell and Ronald M. Kaplan. 1993. The
Interface between Phrasal and Functional Constraints.
Computational Linguistics, 19(4):571–590.

Igor Mel’čuk. 1995. The future of the lexicon in linguistic
description and the explanatory combinatorial dictio-
nary. In I.-H. Lee, editor, Linguistics in the morning
calm, volume 3. Hanshin, Seoul.

Rachel Nordlinger and Joan Bresnan. 2011. Lexical-
Functional Grammar: interactions between morphology
and syntax. In R. Borsley and K. Börjars, editors, Non-
Transformational Syntax: Formal and Explicit Models
of Grammar. Wiley-Blackwell, Chichester.

Cécile Paris, Keith Vander Linden, Markus Fischer, An-
thony Hartley, Lyn Pemberton, Richard Power, and
Donia Scott. 1995. A Support Tool for Writing Mul-
tilingual Instructions. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI’95), pages 1398–1404, Montreal.

Carl Pollard and Ivan Sag. 1994. Head-driven phrase
structure grammar. University of Chicago Press,
Chicago.

Anne-Marie Rassinoux, Robert H. Baud, Jean-Marie Ro-
drigues, Christian Lovis, and Antoine Geissbühler.
2007. Coupling Ontology Driven Semantic Represen-
tation with Multilingual Natural Language Generation
for Tuning International Terminologies. In Proceed-
ings of the 12th World Congress on Health (Medical)
Informatics (MEDINFO’07), pages 555–559, Brisbane.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge University
Press.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Leo Wanner, editor. 1996. Lexical functions in lexicog-
raphy and natural language processing, volume 31 of
Studies in Language Companion Series. John Ben-
jamins, Amsterdam/Philadelphia.

104

