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Preface

The Australasian Language Technology Association is proud to present its
inaugural Summer School and Workshop. The Summer School consists of
eight intensive courses and eight standalone lectures presented by
experts in the field, and targetted at postgraduate students and researchers from academia and
industry. The Workshop, chaired by Alistair Knott and Dominique Estival, provides a forum for the
presentation and discussion of new research in language technology. On Wednesday evening, the
Language Technology Forum will promote language technology to the wider community, as a field which
is addressing fundamental questions in cognitive science and generating important new social
applications.

At a time when the field of language technology is experiencing unprecedented growth in Asia, Europe
and North America, it is encouraging to see a healthy community taking shape in Australasia. The
isolation of our region, its linguistic diversity, and its rapid uptake of new technologies, present
important challenges and opportunities. With timely cooperation in research and training, such as the
events on offer this week, the language technology community will continue to expand. Major goals will
be to develop more natural human-machine interfaces, and more efficient ways to access the
information contained in large collections of text and speech. Progress in these areas will lay the
groundwork for new applications which address the challenges and opportunities of our region and,
more generally, support the multilingual information society of the future.

On behalf of the ALTA Executive Committee, I would like to thank all the speakers, sponsors, editors,
and participants for making this week a success. 

Associate Professor Steven Bird 
Department of Computer Science and Software Engineering, University of Melbourne 
President, Australasian Language Technology Association
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Incremental Chart Parsing with Predictive Hints 

 

 

 

Abstract 

This paper describes an incremental chart 
parser that generates look-ahead catego-
ries on the fly for a controlled natural lan-
guage. These predictive hints tell the au-
thor what kind of syntactic (or semantic) 
structure can follow the current input 
string and thereby aim at helping the au-
thor to reduce the cognitive burden to 
learn and remember the rules of the con-
trolled language. The parser can handle 
modifications (insertion, deletion, and re-
placement) to the input string without the 
need to reparse the entire string. These 
modifications are a function of the size of 
the tokens changed rather than the size of 
the entire input. 

1 Introduction 

Over the last decade two types of controlled natu-
ral languages have been developed: human-ori-
ented controlled languages and machine-oriented 
controlled languages (Huijsen, 1998; O’Brien, 
2003). 

The main goal of human-oriented controlled 
natural languages is to improve the readability and 
understandability of technical documents for hu-
man readers, especially non-native speakers 
(AECMA, 2001). Machine-oriented controlled nat-
ural languages, on the other hand, try to ease the 
translation process (Kamprath, 1998) and to facili-
tate the subsequent inference processes (Fuchs and 
Schwertel, 2003; Schwitter et al., 2003; Sukkarie, 
2003). 

In general, a controlled natural language can be 
defined as a subset of a natural language that has 
been restricted with respect to its grammar and its 
lexicon. Grammatical restrictions usually result in 
less complex and less ambiguous texts. Lexical re-
strictions reduce the size of the vocabulary and the 
meaning of the lexical entries for a particular ap-
plication domain. 

To allow writing unambiguous and precise spe-
cifications, we have developed a machine-oriented 
controlled natural language (PENG – Processable 
ENGlish) for knowledge representation (Schwitter, 
2002). Specifications written in PENG can be 
translated unambiguously into first-order predicate 
logic via discourse representation structures and 
can be automatically checked for consistency and 
informativeness with the help of third-party reas-
oning services (McCune, 2001; Bos, 2001; 
McCune, 2003; Bos, 2003). 

It is well known that writing documents in a 
controlled natural language is hard and time-con-
suming without the support of intelligent writing 
assistance (Goyvaerts, 1996; Power et al., 2003). 
To ease the writing process and to guarantee well-
formed syntactic structures, PENG uses a look-
ahead editor that displays after each word form a 
set of syntactic categories that inform the author 
how the input string can be continued (Schwitter et 
al., 2003). 

The look-ahead editor of PENG communicates 
with a chart parser that processes a unification-
based grammar. The chart parser generates these 
predictive hints dynamically while the text is writ-
ten and thereby enforces the restrictions placed 
upon the language. Apart from these hints, the 
chart parser also generates for each input string a 
discourse representation structure (Kamp and 
Reyle, 1993) as well as a paraphrase (Schwitter 
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and Ljungberg, 2002) that reflects the interpreta-
tion of the machine in controlled natural language. 

So far, it has not been possible to modify a sub-
string of the text without having to reparse the en-
tire text and regenerate the output (discourse re-
presentation structure and paraphrase) from 
scratch. This is unsatisfactory and demands for a 
more sophisticated approach to deal with modifica-
tions. It would be desirable to be able to edit the 
text during the writing process without the need for 
extensive reparsing. The chart parser should be 
able to handle modifications (insertion, deletion, 
and replacement) as efficiently as possible and to 
do its job in a piecemeal fashion constructing the 
representation of the text word by word and pro-
viding, at the same time, look-ahead categories that 
are contingent on the current input.  

We will call such a chart parser that is capable 
of constructing a representation bit by bit and han-
dling modifications without the need for exhaus-
tive reparsing and reconstructing of the underlying 
representation an incremental chart parser. 

Ideally, the time that the incremental parser 
spends to process a modification of arbitrary length 
(without violating the approved rules of the con-
trolled language) should be proportional to the 
complexity of the change. 

The reminder of this paper is organised in the 
following way: In Section 2, I will set up the re-
quirements for an incremental chart parser. In Sec-
tion 3, I will discuss the properties and short-
comings of a naïve chart parser for the task at 
hand. In Section 4, I will present the benefits of an 
incremental chart parser and show that the in-
tended solution fulfills the requirements that have 
been specified in Section 2. In Section 5, I will 
present update handling algorithms for generating 
look-ahead categories and for dealing with modifi-
cations. In Section 6, I will evaluate the introduced 
algorithms and compare them with naïve reparsing. 
Finally, in Section 7, I will summarize the advan-
tages of the presented approach and give some in-
dicators for further research. 

2 Requirements to an Incremental Chart 
Parser for PENG 

PENG is a machine-oriented controlled natural 
language designed to write precise specifications 
and aims at supporting the knowledge acquisition 
process for various tasks (Schwitter, 2002). PENG 

consists of a strict subset of standard English. The 
restrictions of the language are defined with the 
help of a controlled grammar and a controlled lexi-
con, and enforced by a look-ahead editor (Schwit-
ter et al., 2003).  
 As shown in the dataflow diagram for the 
PENG system in Figure 1, sentences written in 
PENG are first sent to the controlled language 
(CL) processor and then translated into first-order 
predicate logic via discourse representation struc-
tures. This logical representation is subsequently 
checked for consistency and informativeness with 
the help of a theorem prover and a model builder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Dataflow diagram for the PENG system  
 

The look-ahead editor of PENG communicates 
with the CL processor (chart parser and unifica-
tion-based grammar) via a socket interface. The 
CL processor is running as a client process and is 
connected via a server with a theorem prover (OT-
TER; McCune, 2003) and a model builder 
(MACE; McCune 2001). The theorem prover and 
the model builder are both running separate client 
processes.  

One of the deciding factors for the acceptability 
of a controlled language is the availability of auto-
matic writing assistance. Texts in controlled natu-
ral language should not only be easy to write but 
also easy to modify without the need for time-con-
suming reprocessing.  

This is why we need a processing strategy that 
informs the author about the permissible structure 
of the text and that supports basic editing opera-
tions in an efficient way. 

Look-ahead Editor 

CL Processor 

Server 

Theorem Prover Model Builder 



2.1 Look-ahead categories 
Given a set of grammar rules that define a con-
trolled natural language such as PENG, the incre-
mental chart parser should be able to generate a set 
of look-ahead categories after each word form that 
the author enters. For example, for the sentence 

1. The customer inserts a credit card. 
the following look-ahead categories should be gen-
erated (simplified here): 

The  [ adjective | noun ] 

…  customer [ relpron | negation | verb ] 

…  inserts [ determiner ] 

… the [ adjective | noun ] 

… credit [ 'card' | relpron |  prep | conj | '. ' ] 

… card [ relpron |  prep | conj | '. ' ] 

In this example, all the look-ahead categories 
are either lexical categories or word forms. How-
ever, the algorithm should be easily parameteriz-
able so that predictive categories for various syn-
tactic strata as well as for semantic information can 
be generated. 

2.2 Insertion 
The insertion operation should allow the addition 
of an arbitrary number of words into the input 
string as long as this modification does not violate 
the rules of the controlled language. For example, 
the insertion of the relative pronoun who into sen-
tence 1 should lead to the noun phrase: 

2. The customer who inserts the credit card …  

that is part of the controlled natural language 
PENG. 

Note that the insertion results here in a cate-
gorial change; instead of a complete sentence we 
have now to deal with a complex noun phrase.  
This means that the punctuation mark introduced 
by the sentence needs to be removed automatically 
and a new set of look-ahead categories has to be 
generated and displayed for the last word form of 
the input string: 

… card [ relpron | prep | verb | conj ] 

As this example shows, the noun phrase in 2 
could now be continued with a relative clause (3), 

a prepositional phrase (4), a verb phrase (5), or a 
coordinated nominal structure (6): 

3. … that is valid owns a password. 
4. … into the slot owns a password. 
5. … owns a password. 
6. … and enters the PIN owns a password. 

Each of these sentences constitutes a well-
formed structure in the controlled natural language. 

2.3 Deletion 
The deletion operation should allow the cutting of 
an arbitrary sequence of words in the input string. 
For example, the deletion of the prepositional 
phrase into the slot in  

6. The customer who inserts the credit card 
into the slot owns a password. 

should result in a well-formed sentence in con-
trolled language: 

7. The customer who inserts the credit card 
owns a password. 

The author should be able to delete a substring 
first by highlighting it and then by cutting it: 

8. The customer who inserts the credit card 
into the slot owns a password. 

This design decision reduces the complexity of 
the algorithm, since it results in one single cutting 
event that tells the parser when recomputation 
should be resumed.  

2.4 Replacement 
If the insertion and deletion operation are in place, 
then the infrastructure for the replacement opera-
tion exists. In essence, the replacement operation is 
a deletion followed by an insertion operation. For 
example, the replacement of the compound noun 
credit card with MasterCard in sentence 1 results 
in 

9. The customer inserts the MasterCard. 

It seems that a replacement operation is more 
complex than a deletion or an insertion operation, 
since these two operations need to be applied in 
sequence. However, as we will discuss in detail in 
Section 5, this is not the case, since the replace-
ment operation can be implemented in a way that 
does not demand for extensive reprocessing. 



3 Chart Parsing 

Parsing is the process of analyzing the syntactic 
structure of an input string and has traditionally 
been understood as a batch-mode process.  

The problem with any naïve parsing algorithm 
– independent of the parsing strategy – is the un-
necessary repetition of work that will occur for 
processing any non-trivial grammar.  

Suppose a top-down parser is attempting to 
parse the sentence: 

10. The password is valid. 

Given the following simple (context-free) 
phrase structure grammar 

s  → np, vp. 
np → det, noun, rc. 
np → det, noun. 
rc → relpro, vp. 
vp → verb, adj. 

the parser will first attempt using the rule 

np → det, noun, rc. 

and then after failing with that rule, it will try the 
alternative rule 

np → det, noun. 

That means the parser will repeat the work of 
analyzing the determiner (det) and the noun 
(noun) once for each rule.  

An active chart parser (Kay, 1980; Gazdar and 
Mellish, 1989; Ferro and Pardo, 1995) avoids this 
repetition of work by storing information about 
well-formed substrings as well as information 
about substring hypotheses that it has partially ex-
plored in a table (chart). The chart parser can then 
look up these substrings in the chart and expand 
them – if necessary – instead of recomputing them. 

Given an input string I and a grammar G, we 
can define a chart as a set of edges where an edge 
is a triple of the form <vi, vt, R>. The first two 
elements vi and vt are integers and represent start-
ing and ending vertices of I or of a substring of I 
and R represents a dotted rule. A dotted rule is a 
rule of the form X → α • β and corresponds to an 
X edge containing an analysis of confirmed con-
stituents α that are seeking for constituents β.  

For example, if s → np, vp. is a rule of the 
grammar and sentence 10 is an input string, then 

the first two dotted rules below represent uncon-
firmed hypotheses while the third rule represents a 
fully confirmed hypothesis: 

<0,0,s →  np vp> 

<0,2,s → np  vp> 
<0,4,s → np vp > 

Edges that correspond to unconfirmed hypothe-
ses are known as active edges and those that corre-
spond to confirmed hypotheses as inactive edges. 

The basic operation of a chart parser involves 
combining an active edge with a completed inac-
tive edge. The result is either a new inactive edge 
or a new active edge that spans both the active and 
inactive edges. This fundamental rule cannot be 
applied to a chart that contains no edges. Before 
anything can happen, an initialization process 
needs to set the chart up with inactive word edges 
and a rule invocation strategy needs to be defined 
that creates new active edges as a result of the ap-
plication of the fundamental rule. 

A chart parser usually uses an agenda to keep 
track of the edges that need to be processed. Such 
an agenda can be thought of as a list of edges. 
Adding new edges to the front of the agenda leads 
to a depth-first search strategy and adding them to 
the end would lead to breath-first search. 

In our implementation, edges are stored in the 
following modified format: 

edge(ID,vs,vt,LHS,RHSL) 

 ID is an integer that stands for a sentence iden-
tifier. LHS represents the category on the left hand 
side of a dotted rule and RHSL represents a list of 
unconfirmed daughter categories on the right hand 
side of the rule. If RHSL is empty ([]), then the 
edge is inactive, otherwise active.  

For example, a top-down chart parser will pro-
duce the following edges1 for sentence 10 using 
our simplified grammar rules introduced above: 

edge(0,0,s,[np,vp]) 
edge(0,0,np,[det,noun]) 
edge(0,1,np,[noun]) 

                                                           
1 The sentence identifier is not displayed in the edges. The 
categories of the grammar are atomic and do not contain any 
additional syntactic or semantic arguments. The grammar is 
not complete, since preterminal rules such as det → [the] 
are missing. As a consequence inactive edges such as 
edge(0,1,det,[]) do not appear in the simplified chart.  



edge(0,2,np,[]) 
edge(0,2,s,[vp]) 
edge(2,2,vp,[verb,adj]) 
edge(2,3,vp,[adj]) 
edge(2,4,vp,[]) 
edge(0,4,s,[]) 
edge(0,0,np,[det,noun,rc]) 
edge(0,1,np,[noun,rc]) 
edge(0,2,np,[rc]) 
edge(2,2,rc,[relpro,vp]) 

 Although such a batch-mode chart parser 
avoids repeating work and keeps active and pas-
sive edges in the chart, it cannot deal with modifi-
cations to the current input string without repro-
cessing the entire string.  

4 Incremental Chart Parsing 

An incremental chart parser, by contrast, can 
handle modifications to an input string that it has 
already parsed without having to reprocess the en-
tire string from scratch. The key idea of incre-
mental chart parsing is to use information about 
edge dependencies for keeping track of edges that 
have to be updated  (Wirén, 1989; Wirén 1994).  

Let us explore this idea by an example and then 
refine it. Suppose we modify sentence 10 by insert-
ing the relative pronoun that between the noun 
phrase and the verb phrase, then we get a complex 
noun phrase as result: 

11. The password that is valid … 

In comparison to the chart for sentence 10 in 
Section 3, the processing of this noun phrase re-
sults in 4 new edges 

edge(2,3,rc,[vp]) 
edge(2,5,rc,[]) 
edge(0,5,np,[]) 
edge(5,5,vp,[verb,adj]) 

and in 4 modified edges (with modifications in 
bold face) 

edge(3,3,vp,[verb,adj]) 
edge(3,4,vp,[adj]) 
edge(3,5,vp,[]) 
edge(0,5,s,[vp]) 

 We can make the following observations when 
we compare the charts for sentence 10 and for the 
noun phrase 11 in more detail: 
• The active edge edge(0,2,np,[rc]) for 

sentence 10 hypothesizing that the password 
was the beginning of a noun phrase followed by 
a relative clause has been expanded to an inac-
tive edge edge(0,5,np,[]) to cover the 
relative clause in 11. 

• All the edges that make up the noun phrase the 
password in sentence 10 remain unaffected by 
the modification. 

• All the edges that make up the verb phrase is 
valid in sentence 10 remain unaffected apart 
from the indices of the vertices (displayed in 
bold face) that have been updated. 

• The passive edge edge(0,4,s,[]) repre-
senting sentence 10 has been replaced by an  
active edge edge(0,5,s,[vp]), because 11 
is a noun phrase and not a complete sentence. 

In summary, we can state that there is no need 
to recompute an edge, if that edge does not in any 
way depend upon the vertices that have been 
changed or on any edges that were based on those 
edges. 

A closer look into the chart for sentence 10 re-
veals that the edge edge(0,4,s,[]) is the only 
one that spans the vertex (insertion point) where 
the relative pronoun would be inserted. This sug-
gests the following informal solution to process the 
modification: 
1) Find all edges on the right hand side of the in-

sertion point, in our case all those edges whose 
starting vertex is greater than or equal to the in-
sertion point, and create a new subchart CR for 
them. 

2) Renumber all starting and ending vertices of the 
edges in CR to be vs+1 and vt+1. 

3) Find all edges on the left hand side of the inser-
tion point, in our case all those edges whose 
ending vertex is smaller than or equal to the in-
sertion point, and create a new subchart CL for 
them. 

4) Create a new chart C by appending the subchart 
CR to the end of the subchart CL. 

5) Create new hypotheses beginning at the inser-
tion point for the word form that. 



6) Reparse the string, using only the new edges in 
the agenda and the new chart C. 

 Note that this solution automatically excludes 
edges such as edge(0,4,s,[]) from the new 
chart C, since we considered only edges that do not 
bridge the insertion point. At first glance, it seems 
that an optimization should be possible, since not 
all edges in the subcharts are affected by the edit-
ing operation. For example, only the modified edge 
edge(3,5,vp,[]) in the subchart CR spanning 
the verb phrase on the right hand side of the inser-
tion point takes part in reparsing. Similar observa-
tions can be made for the subchart CL where only 
those edges that end at the insertion point are af-
fected by reparsing. However, it turns out that first 
filtering the subchart CR and then reconstructing 
the entire chart after parsing is costly and does not 
result in a speed-up of parsing in comparison with 
the unfiltered version of the chart. 

5 Update Handling Algorithms 

After this informal discussion of the problem, I 
will give a more formal description of the update 
handling algorithms for finding look-ahead catego-
ries and for dealing with modification (insertion, 
deletion, and replacement). 

5.1 Finding look-ahead categories 
Look-ahead categories are generated after each 
word form that the author enters or whenever an 
approved modification results in a syntactic struc-
ture that needs to be completed by the author. 

Formally, a set of look-ahead categories LC for 
a word w ending at vertex vi can be calculated in 
the following way: 

1) Find all active edges ending at vi. 
2) For each active edge: 

a) Select the RHSL of remaining categories. 
b) For the first category in RHSL, check if it 

is a lexical category: 
i) If yes, then store the solution in LC. 
ii) If not, find a rule that rewrites the 

category into further categories, then 
select the first category and return to 
2b. 

Apart from lexical categories, it is also possible 
to collect other categories, for example non-ter-

minal categories by extracting them from the 
grammar rules, or semantic categories if they are 
stored in the lexicon and accessible via lexical 
categories. Collecting also look-ahead categories 
for non-terminal symbols in Step 2ii results in a list 
of hierarchically order categories and eases cus-
tomization of this functionality for the user inter-
face. 

5.2 Editing operations 
According to our definition, the incremental chart 
parser should not only be able to handle piecemeal 
additions to a string but also to handle arbitrary 
modifications efficiently. Ideally, the time that the 
incremental algorithm uses for processing a modi-
fication should be a function of the size of the 
modification rather then the size of the entire input. 
In simple words: a small modification should re-
quire less work than a big modification. Note that 
the algorithms presented below for the editing op-
erations do not explicitly delete bridging edges but 
rather exclude them by reconstructing the chart. 

Insertion 
Inserting a word w at a vertex vi in a string can be 
calculated in the following way: 

1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that 
is s  i, and create a new subchart CR for them. 

2) For all the edges in CR 
a) renumber the starting vertex to be vs+1, 
b) renumber the ending vertex to be vt+1. 

3) Find all edges for which the index of the end-
ing vertex vt is smaller than or equal to vi and 
the starting vertex vs is not equal to vi, that is t 
  i ∧ s ≠ i, and create a new subchart CL. 

4) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL. 

5) Create new hypotheses beginning at vi for each 
category that the new word w belongs to. 

6) Reparse the string, using only these new edges 
as the agenda for the parser, and providing it 
with the updated chart C. 

Deletion 
Deleting a word w at a vertex vi in a string is to 
some extent similar to the reverse of inserting a 
word. The algorithm looks as follows: 



1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that 
is s  i, and create a new subchart CR for them. 

2) For all the edges in CR 
a) renumber the starting vertex to be vs-1, 
b) renumber the ending vertex to be vt-1. 

3) Find all edges for which the index of the end-
ing vertex vt is smaller than vi and the starting 
vertex vs is not equal to vi, that is t <  i ∧ s ≠ i, 
and create a new subchart CL1. 

4) Find all edges for which the index of the end-
ing vertex vt is equal to vi, that is t = i, and cre-
ate a new subchart CL2. 

5) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL1. 

6) Reparse the string, using the subchart CL2 as 
the agenda for the parser, and providing it with 
the subchart C as new chart. 

Note that the agenda above consists of the sub-
chart CL2 in contrast to the insertion operation 
where the agenda for reparsing consists only of the 
new word hypothesis. 

Replacement 
Replacing a word w at a vertex vi in a string can be 
described as a deletion followed by an insertion 
operation. This is what authors do when they re-
place a word in an interactive text editor. They first 
delete the word and then insert a new word.  

However, simply executing these two opera-
tions in sequence would not be very efficient. For 
example, if the word customer is replaced with 
client in sentence 10, then all words lie between 
the same vertices as they did before the replace-
ment operation. In this case, the chart does not 
need to be partially recreated twice, since the first 
recreation will renumber vertices and create edges 
that will immediately be reset or deleted again.  

This observation results in the following opti-
mized algorithm: 

1) Create new hypotheses beginning at vi for each 
category Cat that the new word w belongs to. 

2) Replace the inactive word edge E in the chart 
starting at vertex vi with the new word edge E’ 
so that the categories of E and E’ are identical. 

This is a significant improvement over execut-
ing the two operations in sequence. 

6 Evaluation 

The presented algorithms that incrementally update 
the chart result in a speed-up for all modification 
operations compared with naïve reparsing of the 
input string after an editing operation. The average 
improvement for insertion is of a factor of 1.44, for 
deletion 1.28, and for replacement 17.64. As the 
results show, replacement can be implemented 
very efficiently. As already mentioned, additional 
filtering of the subchart CR does not result in any 
speed-up. It seems that in our Prolog implementa-
tion renumbering of the vertices in the affected 
edges is the biggest cost factor, since this involves 
arithmetic operations and not pure unification. 

7 Conclusion 

In this paper, I discussed an incremental chart 
parser that generates predictive hints and allows 
for arbitrary editing operation as long as the result 
is an approved structure in controlled natural lan-
guage. The generated look-ahead categories consist 
of syntactic (or semantic) categories and aim at 
supporting the writing process of the controlled 
natural language. These predictive hints ensure that 
the author follows the rules of the controlled natu-
ral language and guarantee unambiguous and pre-
cise texts (in our case “seemingly informal” spe-
cifications).  

The editing operations (insertion, deletion, re-
placement) are bound to the affected part of the 
string and require only minimal reparsing. This 
means that the modifications are a function of the 
size of the words changed rather than the size of 
the entire text. The current solution deals only with 
local updates. In the future, I would like to look 
into the problem of updating anaphoric references 
in the text and in the underlying discourse repre-
sentation structure after a nominal expression has 
been modified. The goal is to find a solution that 
does not require extensive reparsing of the input 
text. 
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Abstract

Conventional approaches to the
generation of referring expressions
place the task within a pipelined ar-
chitecture, typically somewhere be-
tween text planning and linguis-
tic realisation. In this paper, we
look at the issues that arise in
generating one-anaphoric referring
expressions; examination of this
task causes us to reflect on the
current predominant architectural
models for natural language gener-
ation, and leads us to suggest an
alternative architecture where de-
cisions that influence forms of ref-
erence happen much earlier in the
process of natural language genera-
tion.

1 Introduction

Referring expression generation is a much-
explored task within natural language gen-
eration: given an internal symbol that corre-
sponds to an entity in some real or imagined
world, we need to work out what properties of
that entity should be used to describe the en-
tity so that our hearer will be able to identify
it as the intended referent. Many different al-
gorithms have been developed to address this
task, which is generally conceived of as map-
ping from a symbol—effectively, a referent—
to a set of properties—a sense. The com-
putation of the appropriate set of properties

to use takes account of the other potential
referents in the context, selecting properties
which rule these distractors out of consider-
ation.

Conventional approaches to the process of
generating referring expressions place the
task within a pipelined architecture, where
it is assumed that questions of what content
should be conveyed in a text are resolved be-
fore questions of surface form are considered;
this is the well-known strategy vs tac-
tics distinction first discussed in the context
of natural language generation in the mid-
1970s. However, it is not clear exactly where
in the pipeline the process of generating re-
ferring expressions should belong. In Reiter
and Dale [2002], reflecting current practice in
the field, we positioned it in the microplan-
ning stage, where microplanning is an inter-
mediate stage lying between text planning
and surface realisation. Even there, how-
ever, we noted that there are interactions be-
tween the three microplanning tasks of sen-
tence planning, lexical selection and referring
expression generation that argue for a more
interleaved constraint-based approach to the
problem.

The principal focus of existing work has been
the generation of definite noun phrase refer-
ences; relatively little has been written on
generating other kinds of referring expres-
sions. In particular, there is virtually no work
on the generation of one-anaphora. Taking
up some ideas first explored in [Dale 1992,
1995], this paper looks at how a considera-
tion of where one-anaphora fits into the gen-



eration process might cause us to review the
kinds of architecture that are required for
natural language generation.

Section 2 first summarises the conventional
approach to referring expression generation,
and reviews how this fits into the standard
architectural models for natural language
generation. Section 3 introduces the phe-
nomenon of one-anaphora, before going on to
explore how the generation of one-anaphora
might be integrated into existing approaches
of referring expression generation. Section 4
then suggests an alternative approach, where
the decision to use a one-anaphor is made
much earlier in the generation process. Sec-
tion 5 concludes by discussing how this alter-
nate approach might impact both on other
aspects of referring expression generation,
and on natural language interpretation.

2 Conventional Approaches to
Referring Expression
Generation

Anaphoric reference to an entity previously
mentioned in a discourse can be carried out
using any of a number of different strategies:
in particular, pronominal anaphora, defi-
nite noun phrase anaphora and one-anaphora
may each be used in appropriate discourse
contexts, as demonstrated in examples (1)–
(3) respectively.

(1) a. John has a red jumper.
b. He wears it on Sundays.

(2) a. John has a red jumper and a blue
cardigan.

b. He wears the jumper on Sundays.

(3) a. John has a red jumper and a blue
one.

b. He wears the red one on Sundays.

There is now a well-established body of work
in natural language generation that focusses
on the problem of generating definite noun
phrase anaphora; see Chapter 5 in Reiter and

Dale [2000] for a review. Work on the gen-
eration of pronominal anaphora is somewhat
less developed, with researchers often falling
back on some notion of focus as the prime
determinant of whether pronominalisation is
possible; the major problem here is coming
up with an independently motivated notion
of what it means to be ‘in focus’. The gener-
ation of one-anaphoric expressions, however,
has been virtually ignored, apart from some
initial explorations in Davey [1979], Jameson
and Wahlster [1982], and Dale [1992, 1995].

A high-level characterisation of the algorithm
that underlies much work in referring expres-
sion generation is shown in Figure 1. This is
deficient in a number of regards: pronouns
may be used even if the intended referent
is not in focus—see, for example, the cen-
tering algorithm of Grosz et al [1983]—and
a definite noun phrase may be used even if
the referent has not been mentioned before,
or alternatively its form may be further con-
strained in some way by the structure of the
discourse. However, these complications are
not important for our present purposes. The
question this paper addresses is as follows:
how does the decision to use a one-anaphoric
expression fit into this kind of algorithm?

3 One-Anaphora

3.1 One-Anaphora as Syntactic
Substitution

The phenomenon of one-anaphora is reason-
ably well discussed in the linguistics litera-
ture: in terms of X-bar theory, for exam-
ple, the pro-form one is generally charac-
terised as a substitute for an n̄ constituent
(see, for example, Radford [1981:94–95], Mc-
Cawley [1988:185–186]); and the systemic lit-
erature provides some discussion of the na-
ture of one as a substitute (see, for example,
Halliday and Hasan [1976:89–98]). Although
these treatments differ in a number of re-
spects, both characterise effectively the same
syntactic constraints on when one-anaphora



Given an intended referent r:
begin

if r is in focus then use a pronoun
elseif r has been mentioned in the discourse already
then build a definite noun phrase
else build an initial indefinite reference

end

Figure 1: A Skeletal Referring Expression Generation Algorithm

is possible: the one form is seen to substitute
for a head noun and some number of modi-
fiers of that noun.

For the purposes of natural language gener-
ation, we could take this notion of substitu-
tion literally: each time we generate a noun
phrase structure, we could then compare this
against noun phrases in some locally specified
discourse context, and then replace any repli-
cated substructure by the form one. Assume,
for the moment, that a one-anaphor always
has its antecedent in the previous clause.1

The generation of one-anaphora can then be
characterised as follows. Suppose P is a set
consisting of the noun phrase structures that
appear in the previous clause:

• Given an intended referent r, determine
the semantic content needed to identify
this referent to the hearer.

• Work out the syntactic structure that re-
alizes this semantic content; call this s.

• Compare s against each p ∈ P , and look
for common substructure starting at the
head noun and working outwards; re-
place the largest common substructure
found in s by the form one.

So, given an antecedent noun phrase as in
(4a) and a subsequent noun phrase as in
(4b), we can substitute the one form to pro-
duce (4c), with the one-anaphor substitut-

1This is not always true, but the algorithm de-
scribed here can be trivially extended to deal with
other cases.

ing for the n̄ constituent mouldy Germanic
manuscript. 2

(4) a. [a [large [mouldy [Germanic
[manuscript n]n̄]n̄]n̄]np]

b. [a [small [mouldy [Germanic
[manuscript n]n̄]n̄]n̄]np]

c. [a [small [one n̄]n̄]np]

There are a number of problems with this
approach. First, it sanctions the use of one-
anaphora where we would want to rule it out
on semantic grounds, as in the following con-
structed example:

(5) a. Do you have any wine bottles?
b. No, but I have a red one.

Second, it rules out one-anaphora in cases
where the syntactic structures are more dis-
tinct, yet we would still want to allow the use
of one-anaphora, as in the following example:

(6) a. Mary chained her bicycle to a
steel fence.

b. Fred chained his to one made of
wood.

But quite apart from these concerns (see
[Dale 1992:215-230] for a discussion), it also

2We will fairly randomly switch between consider-
ation of definite and indefinite one-anaphoric forms:
for the purposes of the present discussion, any compli-
cations introduced by this aspect of discourse status
appear to be orthogonal to the issues we are con-
cerned with.



seems a rather wasteful approach. Since the
commonality between the antecedent and the
anaphor has something to do with shared se-
mantic content, why should we go as far as
working out the syntactic structure required
to realise the second NP in order to deter-
mine if one-anaphora can be used? Syn-
tactic substitution may be an appropriate
way to characterise the behaviour of the one
form when discussing it as a linguistic phe-
nomenon, but that does not mean it should
serve as the basis of a generation algorithm.

3.2 One-Anaphora as Semantic
Substitution

The above objection to the syntactic sub-
stitution approach suggests a better solu-
tion: look for shared structure at the se-
mantic level. Suppose we have the seman-
tic structure that corresponds to the noun
phrase the red jumper, and suppose we have
gone as far as to generate the semantic con-
tent that could be ultimately realised as the
noun phrase the blue jumper. These semantic
structures could be represented as follows:

(7) type(x1, jumper) ∧ colour(x1, red)

(8) type(x2, jumper) ∧ colour(x2, blue)

By identifying what it is that the antecedent
np and the anaphoric np have in common at
the level of semantics, we both avoid unneces-
sary work in building syntactic structure, and
at the same time constrain more correctly
the use of one-anaphoric forms. This method
is elaborated further in [Dale 1992:220–226],
and is based on observations made in the
work of Webber [1979].

This approach provides us with a way of gen-
erating one-anaphoric expressions that fits
into the general algorithmic structure we
sketched in Figure 1; all that is required
is that the algorithm maintain a distinc-
tion between determining the semantic con-
tent of a referring expression and the lin-
guistic realisation of that content, a fairly

standard separation useful for other purposes
in any case.3 We then complicate the algo-
rithm to check for the possibility of using a
one-anaphoric construction once the seman-
tic content has been determined, simply by
checking whether there is a replication of se-
mantic content that includes at least the con-
tent that would be realised by the head noun.
A revised version of the skeletal algorithm is
shown in Figure 2.

In suggesting this approach, we have ef-
fectively shifted the decision to use one-
anaphora further back in the generation pro-
cess, replacing a process of syntactic substi-
tution by one of semantic substitution. In
the next section, we argue that we can shift
the decision further back still: if we take the
stance that one-anaphora is typically used
to achieve a specific range of discourse func-
tions, that it makes sense to have the dis-
course planning stage of a generation sys-
tem impose a requirement that one-anaphora
should be used when those discourse func-
tions are being realised.

4 Discourse-Driven Generation of
One-Anaphoric Expressions

4.1 The Functions of One-Anaphora
in Discourse

Observation suggests that one-anaphoric
forms are used to achieve particular discourse
functions; a common such function, for ex-
ample, is when a speaker contrasts two en-
tities.4 It seems reasonable to suppose that,
at the discourse planning stage, a generator
will already know that it is contrasting two
entities; but if the system knows that it is
performing a contrast, then at that stage it
should already be able to suggest that a one-

3For example, it allows us to generate a red jumper
and a jumper which is red as variants of the same
basic semantic content.

4Clearly, an appropriate corpus analysis would de-
termine which particular discourse functions are char-
acteristic of the use of one. Just such an analysis is
currently underway by Gardiner (forthcoming).



Given an intended referent r:
begin

if r is in focus then use a pronoun
elseif r has been mentioned in the discourse already
then begin

build the semantics for a definite noun phrase
if there is shared structure with a previous noun phrase then elide it

end
else begin

build the semantics for an initial indefinite reference
if there is shared structure with a previous noun phrase then elide it

end
end

Figure 2: A Revised Skeletal Referring Expression Generation Algorithm

anaphor may be used. In other words: why
construct an elaborate mechanism to deter-
mine a semantic structure that can be sub-
sequently elided if this means rediscovering
something the generator already knew?

The idea that one-anaphora is used in the
context of particular discourse functions has
been noted in the literature before: Dahl
[1985] and LuperFoy [1991:114–159] both dis-
cuss this aspect of one-anaphora at some
length. LuperFoy’s observations are clos-
est to those that lie behind the view taken
here. She suggests that uses of one-anaphoric
forms correspond to three particular dis-
course functions: to contrast two sets of in-
dividuals, to denote a representative sample
of a set introduced by the antecedent, and
to refer to a new specimen of a type that is
salient in the discourse; examples of each of
these categories are provided in (9)–(11) re-
spectively:

(9) a. John has a magenta Capri.
b. Robert has a reef-green one.

(10) a. John has several cars.
b. The smallest one is a Capri.

(11) a. John has several old cars.
b. Mary wants to buy him a new

one.

In the terms of Rhetorical Structure Theory
[Mann and Thompson 1987], the discourse
function in (9) is one of contrast, and those
in (10) and (11) are instances of the elabo-
ration relation.

4.2 How We Might Integrate
One-Anaphora in Text Planning

We are concerned in the first instance with
the monologic case, where both the sentence
containing the one-anaphora and the sen-
tence containing its antecedent are spoken by
the same conversational participant; as will
become clear, a quite separate explanation is
likley to be required for dialogic uses of one.

In the sample discourses just presented, it
seems plausible to suggest that the two sen-
tences are ‘spoken as pairs’. In (9), the
speaker utters the two sentences precisely in
order to draw a contrast; in (10) and (11),
the second sentence is only a coherent con-
tribution to a discourse given the background
provided by the first sentence.

In a natural language generation system
which performs text planning, we take the
view that the contrast or elaboration that
is being performed is the most important is-
sue; the particular linguistic expressions con-



structed are subsidiary to these aims. Viewed
in this way, it makes sense for the text
planner to preselect some of the linguis-
tic features of the utterances to be produced
when the discourse relation has been de-
cided upon.5 Clearly there are other forms
of contrast than those realised by means of
one-anaphors, and a fully-fleshed out model
of how this preselection mechanism might
work will require finding an appropriate level
of abstraction for expressing ‘linguistically-
realised contrast’; however, for present pur-
poses we can focus on instances of contrast
where it is similar entities that are being con-
trasted, and assume for simplicity that one-
anaphora is the only appropriate contrastive
device available.

Any text planning component has to decide
when it wants to use rhetorical devices such
as contrast. The proposal here is that, when
such a goal has been selected for whatever
reason, then, provided some additional con-
straints are met, the text planner can al-
ready at that point determine that specific
linguistic forms should be used. In effect, the
choice of a specific discourse relation brings
with it linguistic consequences. This is en-
tirely plausible where discourse connectives
are concerned: a decision to use, for exam-
ple, a relationship of cause might lead auto-
matically to the decision to use the discourse
connective because. Here, we are extending
this idea to cover also elements within the ex-
pression of the propositions to be conveyed.
The present case under discussion is shown
schematically in Figure 3, where a desire to
use a contrast relation, combined with a
particular configuration of knowledge in the
knowledge base, results in the use of a specific
rhetorical structure with some prespecified
lexical content. In this case, the constraints
on the configuration of knowledge are that
the two entities x1 and x2 share the same

5The use of the term ‘preselect’, a term from work
in systemic approaches to generation, is deliberate.
What we are arguing for here amounts to an inter-
stratal preselection of lexicogrammatical features in
the sense of Matthiessen and Bateman [1991:62–65].
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Figure 3: A schematic discourse structure
that preselects lexical material

semantic type but have differing values for
other attributes, here expressed by the adjec-
tives A1 and A2; precisely the circumstances
under which one-anaphora is possible.

Clearly the picture is considerably more com-
plicated than this simple sketch implies, but
the general idea should be clear. As sug-
gested above, what this view does is to push
the decision to use a one-anaphoric expres-
sion further back still in the generation pro-
cess. This sites the decision in a far more
appropriate place: deciding when a contrast
should be made is a much larger question
that must be faced by any text planning sys-
tem. Ultimately, the view taken here is that
contrast is just one device that we use to pro-
duce coherent discourse: one way of charac-
terising the general problem for a text plan-
ner is as the decision of what to say next,
and here notions like topic maintenance and
topic chaining are crucially important. Con-
trasting two clusters of information stored in
a knowledge base is just another of these as-
sociative devices that can be used to build a
coherent text on the basis of relations that
reside in the underlying knowledge base.



5 Conclusions and Future Work

We have argued that one-anaphora is best
viewed as a linguistic phenomenon that is a
natural consequence of the speaker’s choice
to use specific subject-matter discourse rela-
tions, and that a consequence of this is that
the decision to use one-anaphora should, at
least in part, be determined at the level of
discourse planning. We have sketched how
this might work in the case of contrastive uses
of one, but a similar story can be told for the
set-elaborative function.

At the outset, we asked how the generation
of one-anaphora could be integrated into ex-
isting referring expression generation algo-
rithms. These algorithms assume that they
are given some symbol that corresponds to
the intended referent, and then attempt to
determine what content should be used to
identify this intended referent. This model
is incompatible with the approach proposed
here, since the approach we have argued for
lacks a distinct stage in the processing where
the intended referent is only indicated by
some internal symbol. In order to integrate
the generation of one-anaphora into conven-
tional generation algorithms, the assump-
tion that the referring expression generator
is given nothing more to work with than the
symbol that corresponds to the intended ref-
erent has to be abandoned, and the band-
width of communication between the dis-
course planner and the referring expression
generator increased: ideally, the referring ex-
pression generator is told not only what the
intended referent is, but also what its func-
tion in the discourse is.

There is some precedent for this idea. Mc-
Donald’s [1980] work on referring expression
generation within mumble includes a facil-
ity whereby the expert system driving the
generator can specify that a message element
(i.e., an internal symbol corresponding to the
intended referent) is ‘ontologically of a sort
that cannot be pronominalized’ [1980:217]:

this allows the expert system to specify that
some information has to be expressed for de-
scriptive, rather than purely referential, pur-
poses. A similar broadening of the band-
width is visible in McKeown’s text [McK-
eown 1985], where the text planning compo-
nent can indicate to the linguistic realisation
component that a particular entity is the fo-
cus of the utterance, resulting in pronominal-
isation; and the same idea finds expression
in the use of the centre attribute in Dale’s
epicure [1992:170–171]. The present work
suggests that these devices can be seen as in-
stances of a more general mechanism where
the discourse purpose of a referring expres-
sion plays a role in how that referring ex-
pression is best realised. Above, we have
discussed one specific discourse function,
which we might characterise more precisely
as contrast-two-similar-entities; other
instances of the use of one would be char-
acterised by the discourse function select-
element-from-mentioned-set. The same
idea, however, can be used to provide a
new way of thinking about existing well-
explored reference tasks: so, for example,
in appropriate discourse contexts, pronomi-
nalisation may be an automatic consequence
of the discourse functions maintain-as-
focus and shift-into-focus; initial refer-
ence might be best thought of as a conse-
quence of the discourse function introduce-
entity; and different instances of sub-
sequent reference might be cases of ei-
ther distinguish-entity or attribute-
additional-information, or even combi-
nations of both.

Further work is required in order to deter-
mine how best to rearrange generation ar-
chitectures to integrate these observations.
By abandoning traditional architectural di-
visions into pipelined components, systems
based on systemic functional grammar (see,
for example, [Matthiessen and Bateman
1991]) already allow sufficient flexibility to
incorporate the mechanisms discussed here.
However, the absence of distinct processing



modules with well-defined interfaces between
them is generally considered to make it more
difficult to build practical systems which can
be easily re-used and maintained. A ques-
tion for further research is whether, taking
the observations of this paper into account,
we can characterise the required interactions
between referring expression generation and
other aspects of the generation task in such
a way that modular systems can be built.

An additional interesting direction that is
opened up by this view is that of how we
might revise our models of natural language
analysis to take account of the interstratal
relationships between discourse planning el-
ements and surface forms. If, for exam-
ple, we can characterise the generation of a
pronominal form as discourse-planning con-
struct that has as its base a discourse func-
tion of maintain-as-focus, then we may
also be able to use such a multi-level con-
struct when interpreting a pronoun: the idea
here would be that, instead of using a more
traditional level-by-level analysis (syntactic
analyis, then semantic analysis, followed by
interpretation in context), we can hypothe-
sis information at all of these higher levels
simultaneously on the basis of the presence
of the surface form. Of course, this is only
a sketch, and there is significant work to be
done in fleshing this out; however, the basic
idea offers a novel way of thinking about both
language analysis and language generation.
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Abstract 

Currently, the most common technique 
for Natural Language parsing is done by 
using pattern matching through references 
to a database with the aid of grammatical 
structures models. But the huge variety of 
linguistical syntax and semantics means 
that accurate real time analysis is very dif-
ficult. We investigate several optimisation 
approaches to reduce the search space for 
finding an accurate parse of a sentence 
where individual words can have multiple 
possible syntactic categories, and catego-
ries and phrases can combine together in 
different ways. The algorithms we con-
sider include mechanisms for ordering 
that reduce the search cost without loss of 
completeness or accuracy as well as 
mechanisms that prune the space and may 
result in eliminating valid parses or re-
turning a suboptimal as the best parse. We 
discuss the development and benchmark-
ing of the existing and proposed algo-
rithms in terms of accuracy, search space 
and parse time. Speed up of an order of 
magnitude was achieved without loss of 
completeness, whilst decrease of over two 
orders of magnitude was achieved in the 
search space. A further order of magni-
tude reduction of both time and search 
space was achieved at the expense of 
some loss of accuracy in finding the most 
probable parse. 

1 Introduction 

The complexity and the sizes of the lexical data-
bases and grammatical rules contribute to most of 
the behaviour of Natural Language parsers. By 
increasing the sizes of the database or including a 
more complex set of grammatical rules, the parser 
is able to handle the parsing of more complex sen-
tences or is able to include more accurate informa-
tion to the parsed sentences, but the introduction of 
these results in a more complex parsing procedure 
and the capability to compute for more cases is 
necessary for the parser. Even without the ex-
tended database or rules, parsing of long sentences 
is often avoided due to the extremely large amount 
of different possibilities in parsing the sentence. 

To counteract the increase in the parse time 
form the application of complex grammatical rules, 
we explore the effects of applying search algo-
rithms to a parser to reduce the search space and 
hence enhance the parsing speed. To measure the 
accuracy of the parse, we use a simple scoring sys-
tem derived from the probability that a particular 
structure would exist. This scoring system does not 
always parse the sentence correctly, but it provides 
a good indication of the likeliness of the structure 
from a statistical point of view. 

The purpose of the project is to provide a faster 
way of parsing sentences without losing the effect 
of grammatical structures, or the semantic and syn-
tactic information that have been applied to or ex-
tracted from the parser. These areas being the key 
focus of most research done in NLP and will con-
tinue to increase in complexity in the future. 
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2 Parsing 

The parser we are using was the probabilistic, lexi-
calised combinatory, categorical grammar 
(PLCCG) parser implemented by the CSIRO1 (Jar-
rad et al., 2003) that incorporates a bottom-up 
search strategy. In the training stage, the parser 
builds up a statistical model of the grammatical 
structure by learning from a manually parsed cor-
pus, which is used to assign the possible categories 
and the probabilities of the particular category for a 
word, and also the probabilities associated with the 
actual combination of two structures. The CCG2 
(Steedman, 1996) incorporated in the parser de-
fines the rules and methods used in the combina-
tion stage of the parser, and implements an 
extended set of the standard CCG combinators 
(Jarrad et al., 2003) that makes the grammar more 
flexible. The nature in which a combination occurs 
is very much like using the link grammar rules to 
combine between the different states. 

Initially, the individual words are given a set of 
potential categories that it has seen for the particu-
lar word in the training corpus. Due to the varieties 
in the training data and the increase in freedom 
gained from the extended grammar, some words 
are given a huge set of potential categories. This 
creates a more robust grammar, which can handle 
the parsing of complex sentences, but also contrib-
utes to an explosion in the search space. If the par-
ticular word was not seen in the training corpus, a 
lexical database called WordNet (Miller et al., 
1993) is used to assign the possible categories for 
the word. This is done by extracting the part of 
speech (POS) tags for the unknown word and as-
signing all the possible categories for that POS to 
the word. Finally, if the word was not found in 
WordNet, the set of all possible categories are as-
signed to the unfamiliar word with the probability 
of the category being the frequency of the category 
form the entire training corpus. The difference in 
the number of initial categories for a word can be 
enormous, ranging from one to over one thousand. 

The probability scores for the states are derived 
from the combination of 3 transition probabilities, 
the word category transition, categorial transition, 
and the lexical transition. The parser uses these 
probabilities to derive the scores of a parse to find 
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the most probable parse, which is derived by 
exhaustively combining all possible states for the 
parsing sentence. The approach in which this is 
done is very similar to the chart parser (Charniak, 
1993). This eventually results in the formation of a 
state combing all words in the sentence, which we 
call the terminal state. The scores of all the termi-
nal states are compared and the parser returns the 
parse tree structure for the most probable state. If 
there are multiple states that are equivalent in how 
it was structured, the parser keeps the state with the 
higher probability. For duplicate scores, the first 
one it encounters is kept. 

The task of finding all of the possible combina-
tions is almost as difficult as the travelling sales-
man problem. The search space expands as the 
third power of the words, but due to the fact that 
states can only combine with adjacent states, some 
reduction in the search space occurs automatically. 
But on top of the possible combinations of the se-
quences of words, there is a squared factor for the 
number of possible categories each combination 
would need to consider, which results in the 
model: 
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Where i, j, and k represents the starting position 

of the left sequence, ending position of the left se-
quence, and the ending position of the right se-
quence, respectively. l represents the number of 
words in the sentence and Ni,j represents the num-
ber of states for the sequence between i and j. 

The above model clearly indicates that the task 
of parsing, especially when the number of catego-
ries for a word can be of the order of several hun-
dreds, is a lengthy task. This value can reach up to 
several millions even on sentences with less than 
10 words. Hence the need for a search algorithm 
that would prune the search space without any loss 
of accuracy. 

3 Optimal-Search Algorithm 

The major goal of this project was to explore alter-
native standard and novel algorithms that were ap-
propriate to the task and could relatively easily be 
slotted into the existing parser framework. The 



kind of algorithms and optimisations that are rea-
sonable is tightly constrained by the nature of the 
CCG model and the PLCCG implementation. An-
other major constraint of the algorithm is one that 
is often ignored, which is the overhead in the exe-
cution of the algorithms. This factor plays an 
equally important role in the search problem, but 
has often been ignored due to the increase in the 
hardware performance rate. The algorithmic design 
was modularised, so that an easy switching of the 
algorithm could be done with a uniform interface 
to the rest of the original parser. This meant that 
the algorithm relied on some of the existing struc-
ture of the parser, which was the cause of some 
limitations in the algorithms and is an area that 
could be modified in the future to further increase 
the efficiency of the parser. 

The first algorithm that was considered was 
Adaptive probing (Wheeler, 2001) and this was 
tested on a subset of the problem by simulation 
using a toy language (Kilby, 2002). This algorithm 
was considered due to the gain in search speed 
seen in the simplified search problem, but was re-
jected due mainly to the random nature of the 
search, which means that an exhaustive search was 
necessary to provide the most probable parse. 

The first enhancement was to apply a different 
ordering of the combinations to allow the fast build 
up of the relevant sections of the parse tree. By 
ranking the states in order of their probabilities, the 
parse tree was built up in such a way that the most 
probable state in the tree was considered first. Due 
to the randomised build up of the parse tree in 
terms of extension of the branches in the search 
tree, the algorithm had to include an indicator to 
allow the extension of branches from nodes, even 
after it had been used to construct its children 
states already. This backtracking mechanism was 
implemented using a list containing all of the 
states, which was divided into two sections. A 
pointer into the list indicated the division point 
between the two sections, one of which contained 
all of the states that had been used to combine with 
other states, and the other section contained all of 
the states that had not been used to combine with 
other states. Whenever a state was used to combine 
with other states, it was placed in the used section 
and the states that resulted from the combination 
were placed in the non-explored section. This di-
vided list ensured that no two same combinations 
would ever occur more than once. 

To apply the ranked ordering, the list was main-
tained in a sorted manner by their probability 
scores and the pointer simply moved along the list, 
as more states were used to combine with other 
states. The state being pointed to by the pointer, 
which was the state being used to combine with 
other states of higher scores, was called the pivot 
state. By combining the pivot state with states of 
higher scores, the algorithm guaranteed that result-
ing state of the combination would be equal or 
lower scored than the pivot state. This allowed for 
a simple algorithm for maintaining the ordered list. 
The ranking algorithm is essentially embodied by 
the following pseudo-code: 

 
1. Populate the list with every state for every 

word. 
2. Sort the list by their probability scores. 
3. Set pointer at the first state in the list. 
4. While the list contains un-combined states: 
5. Set pivot as the next most probable state. 
6. Return if pivot state is a terminal state. 
7. Combine pivot with all adjacent states 

with higher probability. 
8. Insertion sort all newly created states in 

to the list. 
9. Return failure 

 
With the application of this ordering, the algo-

rithm allowed for early termination of the search, 
since the newly created states (being of equal or 
lesser probability) must be inserted below the pivot 
state due to the cascading effect of the product of 
the probability. Any terminal state found later 
would have a lower probability than the first one 
that was found, so the algorithm guarantees the 
retrieval of the most probable state without having 
to exhaustively search all possible combinations. 

By only using a single list to maintain all possi-
ble derivation of the states, traversals and mainte-
nance of the ordering of the list used up a lot of 
valuable time. To counteract this, we re-introduce 
a charting behaviour as the second improvement to 
the algorithm. We implemented a table, called the 
indexed table, in which all the states that were in 
the used section were placed, rather than keeping 
them in the same list. The table also grouped to-
gether the states that occupied the same starting 
and ending positions, to simplify the decision 
process in determining which states were adjacent 
to the pivot state. The ranked list was replaced by a 



table, which we called the sorted table that handled 
the push and pop manipulations to simplify and to 
modularise the algorithm for future use. 

The third major step involved the use of a criti-
cal score, which is the score of the currently most 
probable terminal state in the sorted table. By not 
operating on states that are going to produce a 
lower probability than the critical score, it allowed 
for a large pruning of the search tree, weeding out 
states with very low probability that would not 
contribute to the most probable terminal state. The 
algorithm also provides a pre-processing stage be-
fore a combination between states took place, 
which contributed to a little overhead, but managed 
to cut down the amount of unnecessary combina-
tions and avoided the lengthy combination stage of 
two states. 

The scoring system, as it stood, meant that 
combined states of large length would have a very 
low score, even if they consisted of very probable 
sub-structures. There was a necessity to allow lar-
ger sized states a better score to indicate their 
higher desirability. The next major step in the evo-
lution of the algorithm was to alter the scoring sys-
tem to allow larger sized states higher ranking than 
by the use of the raw probability scores. This was 
achieved by normalising the scores to the most 
probable scores of the corresponding positions of 
the states and hence altered the ranking system so 
that states that occupied different sections in the 
sentence were compared relative to other states 
that occupied the same sequence of words. The 
scores of a potential perfect combination of the 
most probable states for each word were used to 
derive the normalisation scores for the particular 
sequence. This is not the most accurate way of de-
termining the normalisation scores, but it provided 
an efficient way to change to ordering while not 
causing too much overheads in the pre-processing 
stage. The normalisation scores and the scores used 
for ranking are derived by: 
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In the above model, i and j represents the start-

ing and ending indexes of the state and l represents 

the length of the sentence. Si,j
normal represents the 

normalization score for the sequence in the range 
between i and j, Sk,k

max represents the score of the 
most probable states for word at k. Si,j

rank represents 
the score used for ranking, but it also represents the 
heuristical score of the state. Si,j represents the raw 
probability score of the particular sequence which 
starts and ends at positions i and j. Note that the 
S0,l

normal is a constant for the same sentence and can 
be factored out for the purpose of ranking, which 
gives: 
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The combined algorithm still maintains the re-

trieval of the parse tree with the same probabilistic 
score as the exhaustive algorithm, but has managed 
to prune a very large section of the search tree 
without creating too much overhead in the execu-
tion of the algorithm. The pseudo–code for this 
new algorithm is: 

 
1. Construct the normalisation mapping. 
2. Initialise the critical score to zero. 
3. Populate and sort the sorted table with all 

states for all words using the normalised 
scores. 

4. Remove the most probable state and insert 
into the indexed table. 

5. While the sorted table contains un-
combined states: 

6. Remove the most probable from the 
sorted table as the pivot. 

7. Return if the pivot is a terminal state. 
8. Combine pivot with all adjacent states in 

the indexed table that don’t fall below 
the critical score. 

9. For every state that has been created: 
10. Adjust the critical score if the produced 

state is a terminal state and the score 
is better. 

11. Insert the created states into the sorted 
table with the normalised score. 

12. Insert the pivot into the indexed table. 
13. Return failure. 
 

We also investigated alternative algorithms that 
included more pruning in the search tree, and also 
the effects of prematurely ending the search when 
an approximate result was found. We experi-



mented with ideas like pruning lower scored states 
at the start of the algorithm (beam search), ap-
proximating the correct parse to be the first termi-
nal state it found, and applying a different priority 
system that encouraged the build up of larger sized 
states without first building up the sub-structures. 
The beam search had the same effects to the parser 
as a reduced set of categories and combinators, in 
that, some valid sentences could not be parsed be-
cause of the reduced amount of ways in forming 
the valid parse. This is a very common approach 
taken to optimise a searching task (Goodman, 
1997), but was not the desired approach for this 
project since the task of the algorithm was to find 
the most probable parse for the sentence. 

By terminating the algorithm prematurely, the 
parser sometimes retrieved the non-optimal result 
and also did not contribute much to the reduction 
of the parsing time, due to the improved ordering 
of the search algorithms. 

By re-ordering the search, so that the build up 
of larger sized states were prioritised, the effects of 
the ordering by their scores were lost and hence the 
algorithm had to either exhaustively search all 
combinations to determine the most probable 
parse, or it had to end the algorithm after the pro-
duction of some terminal state was made. This did 
not guarantee the retrieval of the most probable 
parse and it also meant that some unlikely combi-
nations that could have been avoided by the rank-
ing had to be done. 

When implementing most of the experimental 
algorithms, some of the core structure to the algo-
rithm had to be modified, but an interesting algo-
rithm was discovered in the process. This was the 
product of the beam search and the prioritising of 
larger states, which we called the tree-climbing 
algorithm. The beam search stage, which we called 
the seeding stage, involved building of the parse 
with only the most probable state for each of the 
word, and the tree-climb approach, which was ap-
plied in the subsequent stage, resulted in an algo-
rithm that was faster than the combined optimal 
algorithm, but was not as accurate when it came to 
the retrieval of the most probable parse. However, 
the proportionality of the incorrect parse was 
significantly lower than the application of just the 
beam search or the tree-climb algorithm. The tree-
climb approach was not attractive in terms of both 
parsing accuracy and time in the cases where the 
sub-structures had to be built up first when it was 

applied by itself, but the seeding stage constructed 
the majority of the necessary sub-structures in the 
search tree, and hence allowed the tree climb algo-
rithm to connect up the un-combined sections and 
quickly form a parse for a sentence. Although this 
algorithm did not guarantee the retrieval of the 
most probable parse, it provided alternative points 
of view in the relevance of the scoring system 
which was used to determine the ‘correct parse’ of 
the sentence; some parses which were retrieved 
were structured more similarly to the humanly 
evaluated parse than the most probable parse, even 
though they were assigned lower probabilities. 

4 Results 

The algorithms were trained and tested on both the 
Susanne corpus and the Penn Treebank corpus 
(Mitchell et al., 1992), approximately 95% of each 
was included in the training sets (sections 02 to 21 
for the Penn Treebank) and a randomly chosen 
subset from the rest of the corpus was used for the 
testing sets (section 23 for the Penn Treebank cor-
pus). This corresponded to 50 sentences in the Su-
sanne corpus and just over 580 sentences in the 
Penn Treebank corpus. The major difference be-
tween the two corpora is the number of possible 
categories it contains. Where the Susanne corpus 
contains just over 500 categories, the Penn Tree-
bank corpus contains over 1200 categories it can 
assign to each of the words. The two corpora were 
used to test the performance of the developed algo-
rithms; hence the parsing accuracy is not the in-
tended matter being evaluated here. 

 

 
Figure 1: Benchmarked logarithmic plot com-
paring the exhaustive algorithms to the devel-
oped algorithms on the Susanne corpus. 
 



The PLCCG parser and the developed algo-
rithms were implemented on Python, the reason 
being that the parser is still under development in 
the areas of syntactic and semantic accuracy. 

The progressive increments to the proposed 
algorithm all contributed to large areas of the 
search space being pruned, but due to the over-
heads in the execution of the algorithm, some of 
the benefits were not as much as first expected. 

Figure 1 indicates the ratio differences between 
the original exhaustive algorithm and the proposed 
algorithms on the Susanne corpus. The results from 
the Penn Treebank corpus are not shown, since we 
were unable to obtain the results for some algo-
rithms due to memory problems. The left column 
indicates the parsing time and the right column 
indicates the amount of search space it explored, or 
the number of combinations made during the parse. 
The difference between the two indicates a rough 
estimate of the overhead in the execution of the 
algorithm compared to the original algorithm. As 
the plot indicates, the parse time of the ranked al-
gorithm was excessive. The overhead in determin-
ing the adjacent states contributed to most of the 
parse time and resulted in a worse parse time, even 
though it was only exploring a quarter of the 
search space. 

After the charting was implemented, the bene-
fits of the algorithms became more apparent, even 
through it was still exploring the same search 
space. The reduction of the search space by 75% 
from the use of the ranked ordering indicates that 
most of the categories assigned to the initial words 
did not make much contribution, due to the rare-
ness of its own category and the corresponding 
derived states. 

The inclusion of the critical score made another 
dramatic reduction in the search space, indicating 
that a lot of unnecessary searching was occurring 
after the terminal state was produced, which could 
be carefully pruned out without affecting the final 
result. The proportionality between the search time 
and the search space increased with the inclusion 
of the critical value, which was contributed by the 
overheads in the pre-processing stage before the 
combination between the states occurred. 

The use of the normalised scores contributed to 
yet another reduction in the parse time and search 
space. This algorithm did not make as much use of 
the critical value compared to the raw critical algo-
rithm due to better ordering of the states, but since 

the normalisation scores are not the perfect repre-
sentation of the relative scores to each position, 
which is impossible to predict, the critical value 
still plays an important role in the algorithm. This 
algorithm introduces extra processing to calculate 
the normalised scores and to re-order the states 
with the same scores, but the overheads is still a lot 
less than the raw critical scored algorithm, due to 
the repeated pre-processing overheads. 

The experimental tree-climb algorithm result 
seen on the far right shows an impressive parse 
time and huge reduction in the search space, but 
has slight inaccuracies parse compared to the other 
algorithms, which can be seen in Table 1. 
 
 Exhaustive Optimal Suboptimal 

Susanne (%) 
Parse time 100.0 15.2 1.7 
Search space 100.0 6.9 0.3 
Most probable 100.0 100.0 84.0 
Penn Treebank (%) 
Parse time 100.0 10.4 0.7 
Search space 100.0 4.7 0.1 
Most probable 100.0 100.0 66.7 

Table 1: Statistics of parsing of the optimal and 
suboptimal algorithms for both the Susanne and 
Penn Treebank corpora. 
 
The parse time and the search space are repre-

sented as the proportionality compared to the ex-
haustive algorithm and the percentage that the 
algorithm retrieved the most probable parse is in-
dicated in the last row. The optimal algorithm is 
the combined algorithm of all the algorithms that 
provided benefits to the parsing speed without the 
loss of accuracy and the suboptimal algorithm is 
the tree-climb algorithm, which provided a fastest 
and also a reasonably accurate result from all 
tested suboptimal algorithms. 

The results from the 2 corpora indicate similar 
trends in the characteristics of the algorithms, 
which indicate a consistent improvement from the 
application of the algorithms. The parse time and 
the search space showed a bigger improvement 
from the larger Penn Treebank corpus, even though 
there is over twice the number of categories to 
choose from. This is suspected to be the fact that 
more trivial sentences exists within the Penn Tree-
bank testing set. Another contributing factor to this 
is the fact that the training set is a lot larger in the 



Penn Treebank test. This means that the algorithm 
does not need to look up unknown words from 
WordNet or spend time assigning all possible cate-
gories for the word. 

The optimal search algorithm returns the most 
probable parse tree, but sometimes varied in the 
tagging and bracketing of the parse due to the 
cases when multiple parses have the same prob-
ability. The tree-climb algorithm’s performance in 
the accuracy domain is relatively poor, but some of 
the loss in the accuracy can be recovered by alter-
ing the amount of states used in the seeding stage.  
However, because the algorithm loses track of the 
ranking of the states, the algorithm must exhaus-
tively combine all states to determine the most 
probable parse. 

 

 
Figure 2: Number of words in the sentence ver-
sus parsing time on the Penn Treebank corpus 
for the exhaustive, optimal and the suboptimal 
algorithm. 
 
On a corpus based comparison, it is fairly easy 

to see the improvements of the developed algo-
rithms, but for the task of NLP, it is probably more 
important to look at a per sentence comparison, 
especially if it is in an environment where human 
interaction is required. Figure 2 indicates the rela-
tionship between the parsing time and the number 
of words in the sentence for the exhaustive, opti-
mal and the suboptimal search algorithms. There is 
a huge reduction in the parse time from the algo-
rithm with the optimal algorithm, and an even 
greater reduction from the suboptimal algorithm. 
Both these algorithms possesses another great fea-
ture in that the exponential coefficient factor for 
the parse time is a lot less than the exhaustive algo-
rithm. This means that the algorithm works more 
efficiently with longer sentences, but the plot still 
indicates that the new algorithms are still better 

than the exhaustive algorithm for short sentences, 
even with the extra overheads from various forms 
of initialisation. 

The long parsing times are the consequences of 
using a scripting language for the development and 
testing of the parser. The results should reduce by a 
factor of several tens or even hundreds if the parser 
was implemented on a natively compilable lan-
guage. 

Figure 3 describes the overall efficiency of the 
algorithms, which displays 4 different dimensions 
about the algorithms. The first is the linear slope 
seen in all the algorithms. This indicates that the 
non-searching processes in the individual algo-
rithms (overheads), like the initialisation stage do 
not contribute greatly to the parse time, with the 
exception of the set of plots around the 10 second 
range, which has deviated from the other results. 
This is due to the extra time taken for the algo-
rithms to fetch the relevant categories form Word-
Net and also the assignment of all possible 
categories. This is not apparent in the exhaustive 
algorithm, because they perform a lot more combi-
nations if the number of categories assigned to 
each of the words is large, where as the optimal 
and the suboptimal algorithms does not take most 
of them into account. The actual slope of the plots 
indicates the sizes of the coefficient of the relation-
ship, shown more clearly in Figure 2. 

 

 
Figure 3: Efficiency of the algorithms measured 
on the Penn Treebank corpus. 
 
The second dimension is the y-intercepts of the 

plots, which describes the efficiency of the execu-
tion of the algorithm. The smaller the y-intercept, 
the more efficient it is in executing each combina-
tion. The exhaustive algorithm clearly out-
performing the others, due to the simple way it 
needs to be implemented. Due to the large over-



head in applying the suboptimal algorithm, there is 
a large overhead in the algorithm, meaning that if 
the states of a very low probability had to be used 
to produce a terminal state, this algorithm would 
run the slowest. 

The third dimension is the spanning distance 
between the plots, which indicates the size of the 
exponential coefficient. The longer the distance 
between the quicker parses and the longer parses, 
the larger the exponential coefficient it has. The 
effect of which can be seen more clearly on Figure 
2. The fourth and the final dimension is the aver-
age speed of the parse time, which is indicated by 
the average height of the points. 

5 Conclusion and Future Work 

Unlike most modern search algorithms that take 
advantage of the continuously increasing process-
ing power of the modern day computers and hence 
lose elegance in the search technique, the devel-
oped search algorithm allows for the retrieval of 
the best possible solution in a very efficient man-
ner while also taking into account of the overheads 
involved in execution of the algorithm. The im-
plementation of the algorithm as the searching 
mechanism to find the most probable parse for the 
target parser has dramatically reduced the parsing 
time required to retrieve the same result as an ex-
haustive search mechanism. 

The characteristics of the algorithm has the po-
tential to be converted into a simple chunk parser, 
which is sometimes enough to extract the relevant 
information from the sentences. The proposed al-
gorithm encourages the quick build up of sub-
parses, rather than the linear build-up algorithm of 
the exhaustive algorithms, hence the order in 
which the combination occurs allows for the split-
ting of the sentence into sections or chunks by 
early termination of the algorithm. 

The tree-climb algorithm needs further investi-
gation, as the algorithm may possesses characteris-
tics which may end up being more beneficial to the 
accuracy of the parser. This is due to the fact that 
the most probable parse is not always the correct 
parse. Further investigation techniques might in-
clude getting the algorithm to find multiple solu-
tions before it is returned, or to measure the 
accuracy after altering the amount of states used in 
the seeding stage. Primitive experiments done on 
adjusting the seeding amount has decreased the 

error rate, but further tests are required to under-
stand the effects on this. 

By modifying the probability scores to include 
information on things like the syntactic and seman-
tic context to provide a better indication of the 
grammar which will provide a better scoring sys-
tem, the parser should be able to provide better 
results and still rely on the developed optimal algo-
rithm to retrieve the most probable parse. This also 
means that the algorithm is generic enough to be 
applied to other kinds of search problems. The 4 
main implemented techniques; ranking the nodes 
in the search tree to allow for early search termina-
tion, using charting to avoid processing of un-
wanted search space, applying the critical point 
scores and a quick pre-processing stage to avoid 
lengthy computation, and the use normalised 
scores to provide a better heuristical indication of 
the node being searched all provide vital ways to 
reduce the search space of the problem. 
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Abstract 

In Korean, in order to generate a coherent 
text, a redundantly prominent noun should 
be replaced by a non-zero pronoun or zero 
pronoun. Otherwise, the text becomes un-
natural. Specifically, a redundant noun in 
Korean is frequently omitted while a re-
dundant noun in English is replaced by a 
pronoun. This paper proposes a genera-
tion algorithm of the zero pronoun, using 
a Cost-based Centering Model which 
considers the inference cost. For an objec-
tive evaluation of our algorithm, we col-
lected 87 texts from three genres, and 
manually recovered the omitted elements. 
Using the collected texts, we verify that 
our algorithm is well defined to explain 
the phenomenon of the zero pronoun in 
Korean. We also show that the proposed 
approach resolves both the over-
generation of the zero pronoun in Con-
tinue and its under-generation in other 
transitions in terms of Centering. 

1 Introduction 

Text generation is the process of producing com-
prehensible texts in natural languages from non-

linguistic representation of information. To gener-
ate a coherent text, we must pay attention to each 
stage of generation, such as content determination, 
text structuring, aggregation, and generation of 
anaphoric expression (pronominalization). Among 
these stages, we are especially interested in the 
generation of anaphoric expression focusing on 
zero pronouns, because generating the appropriate 
zero pronoun is directly connected with text coher-
ence. Consider the following short text. 
 
(1) Na-nun (I, topic) cinyel-toyn (on display) os (the 

dresses) cwung (one of) maum-ye tu-nun kes-i iss-
ess-ta (attracted me).  
(One of the dresses on display attracted me.)  

(2) [Na-nun (I, topic), ø]1 [os-oul (dress, object), ø] ip-e 
po-ass-ta (putted on).  
(I (ø) putted it (ø) on.) 

(3) Haciman (however), [na-nun (I, topic), ø] [os-i 
(dress, subject), ø] nemu (too) khesu (big) [os-ul (it, 
object), ø] sal-swu (buy) eps-ess-ta.(can not). 
(However, the dress (ø) was too big so that I (ø) 
cannot buy it (ø)) 

 
In the above text, �‘na (I)�’ appears repeatedly as a 

topic2 in sentence (1), (2), and (3), and �‘os (dress)�’ 

                                                      
1 A bracketed noun, which means the unexpressed argument 
of the verb, is a zero pronoun. Generally, this kind of omitted 
element caused by the zero anaphora phenomenon is called 
zero pronoun, zero element, zero anaphor, or null element. In 
this paper, we call the omitted element a zero pronoun. 



appears repeatedly as an object and a subject in 
sentence (2) and (3). Korean is a highly context-
dependent language, and any arguments recover-
able from the context are freely dropped. In the 
above text, ellipsis of redundant nouns, �‘na (I)�’ and 
�‘os (dress)�’, in sentence (2) and (3) is recom-
mended to generate a natural Korean text. Other-
wise, the text is not coherent because of 
redundancy.  

Our goal is to generate natural anaphoric expres-
sions in Korean, particularly the zero pronoun, us-
ing a Cost-based Centering Model which considers 
the inference cost. In this paper, the cost-based 
centering model refers to the revised centering 
model by Strube and Hahn (1999), which extends 
the original 4 transition types to 6 types and de-
fines the cost between transition pairs with respect 
to the cost for inferring. 

This paper is organized as follows. In Section 2, 
we describe the centering model, which is the main 
background knowledge for our algorithm to gener-
ate anaphoric expression. In Section 3, we briefly 
describe related works on the generation of ana-
phoric expressions. In Section 4, we investigate the 
characteristics of the zero pronoun in Korean, and 
in Section 5 we describe a cost-based centering 
model and our proposed algorithm. In Section 6, 
we discuss the experimental validation. Finally, in 
Section 7, we summarize the features of our work 
and future work.  

2 

                                                                                   

The Centering Model 

The centering model (Grosz et al., 1986; 1995) 
provides a framework for the interaction of cohe-
sion and salience in the internal organization of a 
text. The model is formalized in terms of Cb, the 
backward-looking center, Cf, a list of forward-
looking centers for each utterance Un, (i.e., nth ut-
terance or sentence), and Cp, preferred center 
which is the most salient candidate for subsequent 
utterances. Cf(Un), i.e., the entities mentioned in 
Un are ranked by some measures such as a gram-
matical role. Cp(Un) is the highest ranked center of 
Cf(Un) and is predicted to be Cb(Un+1). If two suc-

cessive utterances have no reference in common, 
the second will have no Cb. 

 
3 2  Korean is a topic-prominent language. Topic, an element 

which is attached topic marker �‘un/nun�’, not only marks the 
grammatical function of the head noun, but also adds some 
special meaning to them like "only", "also/too", "even", "in 
contrast to."  

Transition type across pairs of adjacent utter-
ances is defined in terms of two factors: cohesion 
and salience. Cohesion is achieved if the Cb(Un-1) 
and the Cb(Un) are the same, and salience is 
achieved if the Cb(Un) and the Cp(Un) are the same.  

The model consists of three constraints and two 
rules. 
 

 Constraints 
1. There is precisely one Cb in Un. 
2. Every element of Cf(Un) must be realized in Un. 
3. Cb(Un) is the highest-ranked element of Cf(Un-1) that 
is realized in Un. 

 Rules 
1. If some elements of Cf(Un-1) are realized as a pronoun 
in Un then so is Cb(Un). 
2. Transition types are ordered. Continue is preferred 
over Retain, which is preferred over Smooth-Shift, 
which is preferred over Rough-Shift. 
 

 

 Cb(Un)=Cb(Un-1) or 
undefined Cb(Un-1) 

Cb(Un)!=Cb(Un-1)

Cb(Un)=Cp(Un) Continue Smooth-shift 
Cb(Un)!=Cp(Un) Retain Rough-shift 

Table 1. Transition Types  
 
Although the centering model is attractive to 

NLP researchers, several issues remain. Several 
studies have been made on Cf-ranking (e.g., Strube 
and Hahn, 1999; Turan, 1998; Cote, 1998), be-
cause Cf-ranking is language-dependent. Cf-
ranking for Korean is different from Cf-ranking for 
English in that two languages have different fea-
tures in terms of word-order and functional typol-
ogy. In this paper, we followed the Cf-ranking 
proposed by Roh (2003). 
 
topic > subject > directly-associated-entity (DAE) > 
dir-obj > indir-obj > immediately pre-verbal entity 
(IPV)  
 

The topic-first principle is attributed to the topic 
prominence of Korean. 

Related Work 

Several studies focus on the problem of anaphoric 
expression generation. The most primitive method 



used for early anaphoric generation (e.g., McDon-
ald, 1980; McKeown, 1985) is to use a simple rule: 
if the current sentence contains the same word 
mentioned in the previous sentence, use a pronoun 
to refer to the word. However, this simple rule 
tends to over-generate pronouns, which causes se-
rious ambiguity. 

Recently, some studies attempted to use the cen-
tering model for the generation of anaphoric ex-
pression. Kibble (2000) used the model to plan 
coherent texts and to select anaphoric expressions. 
He considered different strategies for choosing 
when to use a pronoun, and found the following to 
be the best: pronominalize the Cb only after a Con-
tinue. However, he did not provide experimental 
results to verify that the method is superior to other 
strategies.  

Mitsuko et al. (2001) adopted the centering 
model to generate the zero pronoun in Japanese. In 
English, all arguments of a verb must be expressed 
in a sentence, and redundant arguments used in 
previous sentence are usually replaced by pronouns. 
However, Japanese allows arguments to be freely 
omitted when they are recoverable from a given 
context. Korean is quite similar to Japanese from 
this perspective. Mitsuko argued that all Cb are 
generated as zero pronouns in either Continue or 
Smooth-Shift transitions. This can be interpreted as 
they prefer the zero pronoun when salience rather 
than cohesion obtains. However, they did not ex-
plain the reason why they regarded salience rather 
than cohesion as an important factor in the zero 
pronoun. 
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Zero Pronoun in Korean 

From the perspective of interpretation of zero pro-
noun, several studies (e.g., Kim, 1994; Kim, 1999; 
Ryu, 2000) about zero pronoun were performed by 
linguists in Korea. Most Korean linguists agree 
that the zero pronoun generally comes from the 
continuity of topic, salience of topic, and redun-
dancy of discourse. 

More concretely, from the perspective of infor-
mation structure 3  proposed by Vallduvi (1990), 

 

                                                                                   

3 In information structure, the sentence is articulated into a 
trinomial hierarchical structure consisting of �‘focus�’ and 
�‘ground�’, with the latter further subdivided into �‘link�’ and 
�‘tail�’. The focus corresponds to new information unknown to 
the hearer within a sentence. The ground is the complement of 
the focus. A link is an address pointer in the sense that it di-

Kim (1999) investigated the conditions of the zero 
pronoun in Korean: redundant focus, redundant 
link, and redundant tail. However, these conditions 
cannot be applied easily, because the focus, link, 
tail, and their redundancy are not automatically 
detected, and are determined pragmatically rather 
than structurally. 

Kim (1999) also proposed certain conditions 
when the zero pronoun would be prohibited, claim-
ing that old information that changes its role is not 
omitted. For example, when old information in the 
current sentence becomes a new topic in the next 
sentence, the role of the old information changes 
from the old focus to link for the new topic. This 
situation frequently occurs in the process of topic 
transition to expand the content of text. From the 
perspective of Centering, this condition can be 
interpreted to mean that the Cp of Retain which 
was one element of the previous sentence cannot 
be omitted in the transition sequence of Continue, 
Retain, and Smooth-Shift. Because this transition 
sequence, called a Topic-Shift-Sequence in this 
paper, is used to smoothly change the current topic 
to a new topic, and the new topic is generally real-
ized as Cp in Retain. This will be examined as one 
of the hypotheses to generate anaphoric expression 
in the next Section. 

Ryu (2000) investigated the zero pronoun in 
terms of Centering. He postulated that the zero 
pronoun is used to continue the center in Korean, 
i.e., zero pronoun usually comes from the Cb of 
Continue. This is supported by many Korean lin-
guists. He also clarified that the zero pronoun 
rarely appears in written texts when compared with 
spoken texts. 

In Ryu�’s experimental results, the zero pronoun 
in Smooth-Shift is worthy of attention. He counted 
the zero pronouns which comes from the Cb of 
each transition in four kinds of texts written, 
quasi-written, quasi-spoken, and spoken, respec-
tively. In written texts, only 6% of Cb in Smooth-
Shift is omitted, and 86% is overtly expressed as a 
topic with topic marker. Similarly, in quasi-written 
texts only 12% of Cb in Smooth-Shift is omitted. 
This phenomenon contrasted with Mitsuko �’s gen-
eration policy of zero pronoun: generate Cb as a 
zero pronoun in Smooth-Shift. Perhaps this differ-

 
rects the hearer�’s knowledge-store, which is the information-
anchoring role of the ground. The tail is the complement of the 
link within the ground.  



ence is caused by the characteristics of the texts 
used in the experiments.  

To summarize previous research related to zero 
pronoun in Korean, we conclude that the zero pro-
noun generally comes from the Cb of Continue. 
However, some problems still remain from the 
generation perspective.  
 

 Which of Cb in Continue is omitted or not, among 
Cb of Continues? 
 Ellipsis of Cb in the other transitions except for 
Continue 
 Pronoun generation except for zero pronoun of Cb 
and Cf 

 
According to Ryu�’s experimental results, only 

26% of Cb in Continues is omitted from written 
texts. This means that only a partial portion of Cb 
in Continues becomes a zero pronoun. Recall that 
all previous research which used the centering 
model to generate pronouns or zero pronouns fol-
low this principle: pronominalize (or omit in Japa-
nese) Cb in all Continues. Considering Ryu�’s 
experimental results and our experimental results 
(see Section 6 for more details), this traditional 
strategy causes a serious over-generation of pro-
nouns, including zero pronouns. 

Concerning the second problem, almost all pre-
vious research considers only pronominalization in 
Continue, except for Mitsuko  (2000) who included 
Smooth-Shift as well as Continue. However, we 
confirm that the zero pronoun of Cb in the other 
transitions also occurs from our corpus test. There-
fore, the previous strategy causes the under-
generation of pronouns including zero pronouns in 
the other transitions except for Continue.  

Concerning the final problem, in Korean the re-
dundant noun is generally realized as the original 
one rather than as a pronoun when the zero pro-
noun is forbidden, unlike English. Consider the 
following English sentence. 
 

I love my mother and I cannot imagine the world  
without her. 

 
(1) Na-nun (I) wuli (my) emeni-lul (mother) salang-

hako (love) kunye (her) eps-nun (without) sesang-un 
(the world) sangsang-hal-su eps-ta (cannot imagine). 

(2) Na-nun (I) wuli (my) emeni-lul (mother) salang-
hako (love) emeni (mother) eps-nun (without) 
sesang-un (the world) sangsang-hal-su eps-ta (cannot 
imagine). 

 
In a English-to-Korean translation, sentence (2) 

which translates �‘her�’ into �‘emeni (mother)�’ is 
more natural than sentence (1) which translates 
�‘her�’ into �‘kunye (her)�’4. In this paper, we consider 
only two types of noun expression, the original 
noun and the zero pronoun because of these kinds 
of Korean-dependent characteristics. 
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Generation of Zero Pronoun 

Cost-based Centering Model 

We propose a generation algorithm for anaphoric 
expression in Korean, particularly a zero pronoun, 
using a cost-based centering model. The model is 
the revised centering model by Strube and Hahn 
(1999), which extends the original 4 transition 
types to 6 types and defines the cost between tran-
sition pairs, with respect to the cost for inferring. 

 

 

 Cb(Un)=Cb(Un-1) 
or undefined Cb(U n-1) 

Cb(Un)!=Cb(Un-1)

Cb(Un)=Cp(Un) 
and 

Cb(Un)=Cp(Un-1)

Cheap- 
Continue5 (CC) 

Cheap- 
Smooth-Shift 

(CSS) 
Cb(Un)=Cp(Un) 

and 
Cb(Un)!=Cp(Un-1)

Expensive-Continue 
(EC) 

Expensive- 
Smooth-Shift 

(ESS) 
Cb(Un)!=Cp(Un) Retain (R) Rough-Shift (RS)

 Table 2. Revised Transition Types (Strube, 1999)

 
Strube and Hahn (1999) argue that a Smooth-

Shift which comes from Cb(Un) Cp(Un-1) is less 
smooth, i.e., the Smooth-Shift requires a high 
processing cost, because it contradicts the intuition 
that a Smooth-Shift fulfills the prediction of the 
Retain. The same applies to a Continue with this 
characteristic. For this reason, they separated Ex-
pensive-Continue and Expensive-Smooth-Shift 
from Continue and Smooth-Shift in accordance 
with the equality of Cb(Un) and Cp(Un-1), as shown 
in Table 2. These postulations coincide with our 
intuition. 

 
4 Kunye (her), corresponding to �‘her�’ in English, is the third 
personal pronoun referring to a woman in Korean.  
5  In this paper, Continue and Smooth-Shift among revised 
transition types in Strube�’s work (1999) are called Cheap-
Continue and Cheap-Smooth-Shift to distinguish from Expen-
sive-Continue and Expensive-Smooth-Shift. 



In this paper, in order to handle the zero pro-
noun, six transition types which are shown Table 2 
and �‘resume�’ proposed by Knott et al. (2001) were 
applied. When an utterance mentions an entity not 
in the immediate previous utterance, but in the 
previous discourse, a resume occurs. 

Many researchers working on the centering 
model agree that considering adjacent transition 
pairs rather than particular transition provides a 
more reliable picture about coherence and anaph-
ora resolution (e.g., Grosz et al., 1995; Strube and 
Hahn, 1999; Kibble and Power, 1999; 2000). More 
concretely, Strube and Hahn (1999) proposed to 
classify all the occurrences of transition pairs with 
respect to the implied inference costs.6 In this pa-
per, the pair whose cost is cheap is called a Pre-
ferred Transition Pair, such as (CC,CC), (CC,R), 
(R,CSS), etc. 
 

Cheap (CC,CC), (CC,R), (R,CSS), (CSS,CC), (RS,CSS)
Expensive Other pairs 

 
 

 
We investigate some transition pairs proposed 

by Strube and Hahn (1999), and partially adopt 
them to generate anaphoric expression, as shown in 
Table 3.  

5.2 

enon.  

                                                     

Generation Algorithm of Zero Pronoun  

As the first step in our proposal, we must examine 
the reason why the revised transition types and 
preferred transition pairs considering inference 
cost are appropriate to the generation of the zero 
pronoun. We argue that the Cb of Cheap-Continue 
is more redundantly prominent than the Cb of 
Expensive-Continue. This assumption is 
reasonable if we consider that Expensive-Continue 
follows Retain which smoothly changes the topic. 
The prominence of Cb in Expensive-Continue 
decreases because of Retain. The following text, 
extracted from our corpus, is a description of an 
exhibition �‘Cakwi (a kind of Korean traditional 
farming tools)�’, and is a good example to illustrate 
this phenom
 

 
6 Strube and Hahn (1999) argue that, given a sequence of ut-
terances, inference cost is needed to understand them. They 
claim that the inference cost is �‘cheap�’ if successive facts real-
ize preferred transition pairs; otherwise, it is �‘expensive�’. 

(1) Cakwi-nun (Cakwi, topic) wuli-nala-uy (Korean) cen-
thong-cekin (traditional) nong-kikwu-i-ta (farming tool is) 
(Cakwi is a Korean traditional farming tool.) 

(2) Cakwi-uy (Cakwi, adnom) nal-un (edge, topic) celsaknal 
(celsaknal) ilako-hanta (is called). (Edge of Cakwi is called 
celsaknal.) 

 CP : nal (edge, topic) CB : Cakwi (adnominal),  R 
(3) Cakwi-nun (Cakwi, topic) hyengtay-ka (shape, subject) 

dokki-wa (axe) pisus-hata (is similar to). (Cakwi is similar 
to that of an axe.) 

 CP : Cakwi (topic) CB : Cakwi (topic),  EC 
(4) Cakwi-nun (Cakwi, topic) khuki-ey ttala (by its size) tay-

cakwi (big-cakwi), socakwi-lo (small-cakwi) nanwin-ta (is 
categorized). (Cakwi is categorized as big-cakwi and small-
cakwi by its size.) 

 CP : Cakwi (topic) CB : Cakwi (topic),  CC  
 

In the above text, the topic smoothly changes 
from �‘Cakwi�’ to �‘nal (edge of Cakwi)�’ in sentence 
(2), and Retain occurs. This implies that the topic 
of the next sentence is �‘nal�’, and it decreases the 
prominence of Cb, �‘Cakwi�’, in sentence (2). How-
ever, in sentence (3), the topic is returned to 
�‘Cakwi�’ from �‘nal�’, and Expensive-Continue oc-
curs. In sentence (4), �‘Cakwi�’ is maintained as 
topic, and Cheap-Continue occurs. In this situation, 
it is natural that the Cb of sentence (3), �‘Cakwi�’, is 
less prominent than Cb of sentence (4), �‘Cakwi�’, 
even though both �‘Cakwi�’ are the same as Cb of 
Continue transitions. If �‘Cakwi�’ in sentence (3) is 
omitted, the topic (or subject) of �‘pisus-hata (is 
similar to)�’ can be misinterpreted as �‘nal�’ not 
�‘Cakwi�’.  

Table 3. Cost of Transition Pairs 

The basic idea of anaphor generation is that the 
more the noun is redundantly prominent, the more 
the noun is pronominalized (or omitted).7 Accord-
ingly, we postulate that the Cb of Expensive-
Continue is less elliptical than that of Cheap-
Continue. For this reason, we adopt revised transi-
tion types considering the inference cost in order to 
generate the zero pronoun. The case of Smooth- 
Shift can also be explained in the same manner. 
For the same reason, it is reasonable that Cb of 
Continue which follows Continue is more promi-
nent than the Cb of Continue which follows 
Rough-Shift. For this reason, we adopt the concept 
of preferred transition pairs. 

With these issues in mind, we first construct the 
following assumptions to generate anaphoric ex-
pressions. 
 

                                                      
7 Generally, redundantly prominent noun corresponds to Cb 
within a sentence. 



(1) Do generate zero pronoun minimally in written texts. 
(2) Do not pronominalize for new information. 
(3) Do not make a zero pronoun when it causes ambigu-
ity. 
(4) Cb(Un) is more elliptical than Cf(Un). 
 

Based on the above assumptions, our algorithm 
to generate zero pronoun is as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Compared with the traditional anaphor genera-

tion strategy related Continue, the rule (1) which 
adopts an inference cost is more restrictive.  

The following example text, which describes an 
exhibition �‘Paymili (a kind of Korean traditional 
timber tool)�’, is a good example to illustrate rule 
(2). In this text, the topic changes from �‘Paymili�’ 
to �‘Namaksin (wooden shoes)�’ using the Topic-
Shift-Sequence. In this process of topic change, Cp 
of sentence (3) occurring Retain, �‘Namaksin�’, 
should not be omitted in order to imply topic 
change, and Cb, �‘Paymili�’, had better not be omit-
ted in order to smoothly change an old topic (Cb in 
sentence (3)) to a new topic (Cp in sentence (3)). 
Similarly, Cb which is equal to Cp in sentence (4) 
occurring Cheap-Smooth-Shift, �‘Namaksin�’, had 
better not be omitted in order to emphasize a new 
topic. Therefore, we argue Cp and Cb of Retain 
and Cb(=Cp) of Cheap-Smooth-Shift as an unad-
visable zero pronoun condition under the Topic-
Shift-Sequence. 
 
(1) Paymili-nun (Paymili) wuli-nala-uy (Korean) centhong-

cekin (traditional) mokcey (timber) yencang-i-ta (tool is). 
(Paymili is a Korean traditional timber tool.) 

(2) [Paymili-nun (topic), ø] namaksin-ul (wooden shoes) 
kkak-ul (cutting) ttay (when) naypu-uy (inside) hyengtay-

lul (shape) cap-nuntey (when forming) ssu-in-ta (is used). 
(Paymili is used for forming the inside shape when cutting 
wooden shoes.) 

 CP : Paymili (topic) CB : Paymili (topic), CC, 
cost(1,2) : cheap 

(3) Namaksin-un (wooden shoes) Paymili-lo (with Paymili) 
sin-uy (shoe�’s) moyang-ul (shape) kolu-ko (raking and), 
Hopikhal-ul (Hopikhal) iyong-hay (using) kkakk-nun-ta 
(cutting). (Wooden shoes are made by raking in the shape of 
a shoe with Paymili and cutting using Hopikhal) 

 CP : Namaksin (wooden shoes, topic) CB : Paymili 
(adverb), R, cost(2,3) : cheap (1)If tr(Un) = CC and cost(Un-1,Un) = cheap then 

realize Cb(Un) as zero pronoun 
(2)Else if tr(Un-1) = CC and tr(Un) = R and tr(Un+1) = 

CSS (i.e., if three sentences belong to Topic-
Shift-Sequence) then 

do not realize Cp(Un), Cb(Un), and Cb(Un+1) 
as zero pronoun 

(3)Else if (tr(Un) = R or tr(Un) = CSS) and cost(Un-

1,Un) = cheap then 
realize Cb(Un) as zero pronoun 

(4)Else 
do not realize Cb(Un) as zero pronoun 

(4) Namaksin-un (wooden shoes) pi o-nun (rainy) nal (days) 
cwulo (usually) sin-ess-nun-tey (are worn and) otong-
namwu-na (paulownia tree or) petunamu-lo (willow from) 
mantul-ess-ta (are made). (Wooden shoes are usually worn 
on rainy days and are made from the paulownia tree or wil-
low).  

 CP : Namaksin (wooden shoes, topic) CB : Namaksin 
(wooden shoes, topic), CSS, cost(3,4) : cheap 

 

According to the experimental results of Ryu 
(2000), the ellipsis ratio of Cb is proportional to 
the order of Continue, Retain, Smooth-Shift, and 
Rough-Shift. However, the ellipsis ratio in Retain 
and Smooth-Shift are low compared with that in 
Continue, and there is only a slight difference be-
tween the ellipsis ratio of Retain and that of 
Smooth-Shift. Obviously, the ellipsis ratio in 
Rough-Shift is too low. Therefore, we exclude 
Rough-shift, and propose rule (3) for Retain and 
Smooth-Shift under the condition that they do not 
belong to the Topic-Shift-Sequence. In this algo-
rithm, we do not consider the ellipsis of other 
Cf(Un) except for Cb(Un). 

tr(Un) : center transition of nth sentence
cost(Un-1,Un) :  cost of transition pairs between tr(Un-1) and tr(Un)

Figure 1. Generation Algorithm of Zero Pronoun

6 Experiments 

                                                     

For an objective evaluation of our proposed algo-
rithm, we investigated the phenomenon of Cb el-
lipsis from real texts. We collected 87 texts with 15 
sentences on average, from three genres, news, 
story, and descriptive texts. The descriptive texts 
were gathered from the on-line museum site, �‘the 
national folk museum of Korea�’. 8  We manually 
recovered the omitted elements of collected texts. 
In this process, we did not recover the generic pro-
noun �‘wuli (we)�’.  

As shown in Table 4, without the inference cost, 
175 out of 374 Cb in Continues are realized as zero 

 
8 Our proposed algorithm will be used to upgrade the XEx-
plainer system (Roh, 2001) which produces a description for 
commodities in Korean. The collected texts are similar to the 
domain of XExplainer in that they describe each exhibition. 
For this reason, we choose descriptive texts. 



pronoun, i.e., 46% of Cb in Continues is omitted. 
With inference cost, the number, 374, is in turn 
divided into two classes: 203 Cheap-Continues and 
171 Expensive-Continues, and 151 Cb out of 203 
Cheap-Continues are omitted. Therefore, 86% 
(151/175) zero pronouns come from Cb of Cheap-
Continues, not of Expensive-Continues. However, 
by considering 25% ((203-151)/203) of Cb in 
Cheap-Continues are not omitted, the issue re-
mains concerning which Cb of Cheap-Continue 
should be omitted or not among the set of Cheap-
Continues. 
 
Transition Without inference cost With inference cost

CC 151(203), 74% 
EC 

175(374)9, 46% 
24(171), 14% 

R 59(218), 27% 
CSS 29(47), 61% 
ESS 

34(86), 39% 
5(39), 12% 

RS 10(104), 9% 
 
 

Cost of transition pairs Transition pairs 
(X : any transition) Cheap Expensive 

CC (X, CC) 144(172), 83% 
 (Rule 1) 7(31), 22% 

(X, R, ¬CSS) 21(44), 47% 
 (Rule 3) R 

(CC, R, CSS) 2(12), 16% 
 (Rule 2) 

36(162), 22%

(¬R, CSS) 27(35), 77% 
 (Rule 3) CSS 

(CC, R, CSS) 2(12), 16% 
 (Rule 2) 

 

 
 

The answer can be found in Table 5. Here, 172 
out of 203 Cheap-Continues belong to cheap pairs, 
and the remaining 31 belong to expensive pairs. 
Moreover, there are 144 ellipses of Cb out of 172 
Cheap-Continues associated with cheap pairs, and 
there are only 7 ellipses of Cb out of 31 Cheap-
Continues associated with expensive pairs. To 
summarize, 82% (144/175) of zero pronouns in 
Continues come from the Cheap-Continues associ-
ated with cheap pairs. Accordingly, we roughly 
estimate that Cb in Cheap-Continue associated 

with cheap pairs is realized as a zero pronoun. Al-
though this conclusion causes a slight under-
generation of zero pronoun from the viewpoint of 
our experimental results, this satisfies our first as-
sumption. If we follow the traditional anaphor gen-
eration strategy, generating Cb as a zero pronoun 
in all Continues, 374 zero pronouns occur from 
Continues. This causes an excessive over-
generation of the zero pronoun. However, our al-
gorithm generates only 172 zero pronouns from 
Continues. Accordingly, we conclude that rule (1) 
in Figure 1 is a good indicator for the ellipsis of Cb 
in Continues, and is more restrictive and elaborate 
than traditional strategies. 

                                                      
9 Parenthesized number means the total number of transitions, 
and the number in front of the parenthesis means the number 
of transitions in which Cb is omitted. The percent means the 
ratio of the two numbers. 

Concerning Retain, 27% Cb of total Retains is 
omitted, and more concretely, 47% Cb of Retains, 
which are associated with cheap pairs and which 
do not belong to the Topic-Shift-Sequence, is omit-
ted. 88% Cb of Retains, which are associated with 
cheap pairs and which belong to the Topic-Shift-
Sequence, is not omitted Table 4. Ellipsis of Cb in each Transition  

Concerning Smooth-Shift, without the inference 
cost, 39% Cb of total Smooth-Shifts is omitted. 
With inference cost, the number, 86, is in turn di-
vided into two classes: 47 Cheap-Smooth-Shifts 
and 39 Expensive-Smooth-Shifts. Considering the 
ellipsis ratio, Cb in Cheap-Smooth-Shift is more 
elliptical than the Cb in Expensive-Smooth-Shift. 
More concretely, 77% Cb of Cheap-Smooth-Shifts, 
which are associated with cheap pairs and which 
do not belong to the Topic-Shift-Sequence, is omit-
ted. 88% Cb of Cheap-Smooth-Shifts, which are 
associated with cheap pairs and which belong to 
the Topic-Shift-Sequence, is not omitted.. Table 5. Ellipsis of Cb in Transition Pairs 

Therefore, we estimate that Cb of Retain and Cb 
of Cheap-Smooth-Shift in the Topic-Shift-
Sequence are not realized as zero pronouns, as in-
dicated rule (2) in Figure 1. Additionally, we found 
that 92% Cp of Retains which belong to Topic-
Shift-Sequence is not omitted. 

However, rule (3) in Figure 1 is open to discus-
sion because compared with our experimental re-
sults, it causes the over-generation of zero pronoun 
from Cb in Retains. However, in the case of 
Smooth-Shift, it is effective. Compared with ap-
proach of Mitsuko (2001), rule (3), generation of 
zero pronoun in Smooth-Shift is more elaborate 
without excessive over-generation. 



7 Conclusion 

ensive pairs. 

In this paper, we propose an algorithm for the 
generation of anaphoric expression, the zero 
pronoun, in Korean. Our algorithm is based on the 
cost-based centering model, which extends 
transition types and defines the cost of transition 
pairs with respect to the inference cost. Using the 
model, we resolve both the over-generation of the 
zero pronoun in Continue and its under-generation 
in other transitions. We also propose a rule in 
which ellipsis of Cb or Cp is inadvisable. Accord-
ing to our experimental results, the Cb of cheap 
transition is more elliptical than that of expensive 
transition. In addition, the Cb of transition associ-
ated with cheap pairs is more elliptical than that of 
a transition associated with exp

This paper did not handle the ellipsis of Cf ele-
ments except for Cb. The Pronoun Rule of the cen-
tering model applies only to the anaphoric 
expression which is the Cb of the current sentence. 
With respect to all other anaphoric expressions 
except for Cb in the current sentence, the centering 
model is under-specified. However, there are many 
omitted elements which are not Cb in our experi-
ment, and they are left as future work. Additionally, 
the practicality of the proposed method will also be 
verified through a more reliable evaluation meth-
odology in a real generation system. 
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Abstract 

In dependency parsing of long sentences with  
fewer subjects than predicates, it is difficult to 
recognize which predicate governs which subject. 
To handle such syntactic ambiguity between 
subjects and predicates, this paper proposes an �“S-
clause�” segmentation method, where an S(ubject)-
clause is defined as a group of words containing 
several predicates and their common subject. We 
propose an automatic S-clause segmentation 
method using decision trees. The S-clause 
information was shown to be very effective in 
analyzing long sentences, with an improved 
performance of 5 percent. 

1 Introduction 

The longer the input sentences, the worse the 
parsing results are, since problems with syntactic 
ambiguity increase drastically. In our parser, 
subject errors form the second largest error 
portion, as 24.15% of syntactic parsing errors (see 
Table 1). Although the dependency errors in NP 
form the largest error portion, these errors are not 
significant since many applications (e.g. MT sys- 
tems) using parsers  deal with the NP structure as 
a one unit and do not analyze the syntactic 
relations within NP. So, this paper proposes a 
method to resolve subject dependency error 
problems. To improve the dependency parsing  

 
performance, we need to determine the correct 
dependency relations of subjects. 

In most cases, a long sentence has fewer 
subjects than predicates. The reason is that several 
predicates can share one subject if they require the 
same word as their subject, or that the subject of a 
predicate is often omitted in a Korean sentence. 
So, in a long sentence, it is difficult to recognize 
the correct subject of some subjectless VPs. This 
paper proposes an S(ubject)-clause segmentation 
method to reduce ambiguity in determining the 
governor of a subject in dependency parsing. An 
S(ubject)-clause is defined as a group of words 
containing several predicates and their common 
subject. An S-clause includes one subject and 
several predicates which share the subject. The S-
clause segmentation algorithm detects the 
boundary of predicates which share a common 
subjective word. We employ the C4.5 decision 
tree learning algorithm for this task. 

The next section presents the background of 
previous work on sentence segmentation and 
clause detection. Next, dependency analysis 
procedure using S-clauses in Korean will be 
described. Afterwards, the features for decision 
tree learning to detect S-clauses will be explained, 
and some experimental results will show that the 
proposed S-clause segmentation method is 
effective in dependency parsing. Finally, a 
conclusion will be given.  
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dependency 
tree errors  

subject-
predicate 
dependency 
errors  

predicate-
predicate 
dependency 
errors 

adjunct-
predicate 
dependency 
errors 

complement-
predicate 
dependency 
errors 

dependency  
errors 
within 
NP 

dependency 
errors  
resulting 
from POS-
tag errors 

error % 24.15% 14.29% 17.35% 8.84% 27.55% 7.48% 

Table 1.  Dependency Tree Errors for 10,000 Test Sentences  (avg 19.27 Words/sentence) 

Previous Work 

A considerable number of studies have been 
conducted on the syntactic analysis of long sen-
tences. First, conjunctive structure identification 
methods have been proposed (Agarwal 1992;Jang 
2002;Kurohashi 1994;Yoon 1997). These methods 
are based on structural parallelism and the lexical 
similarity of coordinate structures. While they 
perform well in detecting the boundary of a coor-
dinate structure, they cannot determine the bound-
ary of predicates that share a common subject. In 
addition, some papers insist that coordinate struc-
ture identification is impossible since Korean co-
ordinate sentences do not maintain structural 
parallelism (Ko 1999). 

 the syntactic analysis of long sen-
tences. First, conjunctive structure identification 
methods have been proposed (Agarwal 1992;Jang 
2002;Kurohashi 1994;Yoon 1997). These methods 
are based on structural parallelism and the lexical 
similarity of coordinate structures. While they 
perform well in detecting the boundary of a coor-
dinate structure, they cannot determine the bound-
ary of predicates that share a common subject. In 
addition, some papers insist that coordinate struc-
ture identification is impossible since Korean co-
ordinate sentences do not maintain structural 
parallelism (Ko 1999). 

Second, several studies have been made on 
clause segmentation (identification, splitting) 
(Sang and Dejean 2001). The clause seems to be a 
natural structure above the chunk (Ejerhed 1998). 
Clause identification splits sentences that center 
around a verb. The major problem with clause 
identification concerns the sharing of the same 
subject by different clauses (Vilson 1998). When 
a subject is omitted in a clause, Vilson(1998) at-
tached the features of the previous subject to the 
conjunctions. However, the subject of a clause is 
not always the nearest subject. Therefore, a new 
method is required to detect the correct subject of 
a clause. 

Second, several studies have been made on 
clause segmentation (identification, splitting) 
(Sang and Dejean 2001). The clause seems to be a 
natural structure above the chunk (Ejerhed 1998). 
Clause identification splits sentences that center 
around a verb. The major problem with clause 
identification concerns the sharing of the same 
subject by different clauses (Vilson 1998). When 
a subject is omitted in a clause, Vilson(1998) at-
tached the features of the previous subject to the 
conjunctions. However, the subject of a clause is 
not always the nearest subject. Therefore, a new 
method is required to detect the correct subject of 
a clause. 

In addition, many studies have focused on seg-
mentation in long sentences. Some try to segment 
a long sentence using patterns and rules and to 
analyze each segment independently (Doi 1993; 
Kim 1995; Kim 2002 ;Li 1990). Similarly, an in-
trasentence segmentation method using machine 
learning is proposed (Kim 2001). Although this 
method reduces the complexity of syntactic analy-
sis by segmenting a long sentence, the ambiguity 
problem with the dependency of subjects remains 
unsolved. Further, Lyon and Dickerson take ad-
vantage of the fact that declarative sentences can 
almost always be segmented into three concatena- 

In addition, many studies have focused on seg-
mentation in long sentences. Some try to segment 
a long sentence using patterns and rules and to 
analyze each segment independently (Doi 1993; 
Kim 1995; Kim 2002 ;Li 1990). Similarly, an in-
trasentence segmentation method using machine 
learning is proposed (Kim 2001). Although this 
method reduces the complexity of syntactic analy-
sis by segmenting a long sentence, the ambiguity 
problem with the dependency of subjects remains 
unsolved. Further, Lyon and Dickerson take ad-
vantage of the fact that declarative sentences can 
almost always be segmented into three concatena- 

  
ted sections (pre-subject, subject, predicate) which 
can reduce the complexity of parsing English sen-
tences (Lyon and Dickerson 1995; Lyon and 
Dickerson 1997). This approach is useful for a 
simple sentence that contains a subject and a 
predicate. A long sentence generally contains 
more than a subject and a predicate. Therefore, the 
segmentation methods proposed by Lyon and 
Dickerson are inefficient for parsing long sen-
tences. In studies on segmenting long sentences, 
little attention has been paid to detecting the 
boundaries of predicates which share a common 
subject. 

ted sections (pre-subject, subject, predicate) which 
can reduce the complexity of parsing English sen-
tences (Lyon and Dickerson 1995; Lyon and 
Dickerson 1997). This approach is useful for a 
simple sentence that contains a subject and a 
predicate. A long sentence generally contains 
more than a subject and a predicate. Therefore, the 
segmentation methods proposed by Lyon and 
Dickerson are inefficient for parsing long sen-
tences. In studies on segmenting long sentences, 
little attention has been paid to detecting the 
boundaries of predicates which share a common 
subject. 

To determine the correct subject of some sub-
jectless VPs, we define the �‘S-clause�’ and propose 
an S-clause segmentation method. In previous 
work, a clause is defined as a group of words con-
taining a verb, and previous researchers split sen-
tences centering around a verb to detect clauses. 
By contrast, we split sentences centering around a 
subject. So we call the proposed segment 
�‘S(ubject)-clause�’ to distinguish it from a clause. 

To determine the correct subject of some sub-
jectless VPs, we define the �‘S-clause�’ and propose 
an S-clause segmentation method. In previous 
work, a clause is defined as a group of words con-
taining a verb, and previous researchers split sen-
tences centering around a verb to detect clauses. 
By contrast, we split sentences centering around a 
subject. So we call the proposed segment 
�‘S(ubject)-clause�’ to distinguish it from a clause. 
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3.1 
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3.1 

Dependency Analysis in Korean Lan-
guage 
Dependency Analysis in Korean Lan-
guage 

Dependency Analysis Procedure Dependency Analysis Procedure 

 This section overviews our dependency analysis 
procedure for the Korean language. 
 This section overviews our dependency analysis 
procedure for the Korean language. 

  
1. Chunking 1. Chunking 
2. Detect clauses 2. Detect clauses 

(Using clauses, determine the heads of ar-
guments(except subjects) 
(Using clauses, determine the heads of ar-
guments(except subjects) 
  

3. Detect S-clauses 3. Detect S-clauses 
(Using S-clauses, determine the heads of 
subjects and the heads of non-
arguments(adjuncts)) 

(Using S-clauses, determine the heads of 
subjects and the heads of non-
arguments(adjuncts)) 

  
First, we determine NP- and VP-chunks follow-

ing the method of Kim (Kim et al, 2000). Next, 
First, we determine NP- and VP-chunks follow-

ing the method of Kim (Kim et al, 2000). Next, 



we bind a predicate and its arguments to deter-
mine the heads of arguments using subcategoriza-
tion and the selectional restriction information of 
predicates. This procedure is similar to the clause 
detection procedure. In this procedure, we also 
determine the grammatical function of unknown 
case words according to Lee�’s method (Lee et al, 
2003).  

It is important to identify the subject grammati-
cal function of unknown case words correctly, 
since one S-clause is constructed per subject.  

In Korean, arguments of predicates, especially 
subjects, are often omitted in a sentence. We leave 
the dependency relations of subjects unconnected, 
since ambiguity occurs when detecting the heads 
of subjects. 

Third, using predicate information and gram-
matical function detection results after clause de-
tection, we detect S-clauses. And then, using S-
clauses, we determine the dependency relations 
between subjects and predicates. It can be also 
helpful in determining the heads of adjuncts, since 
their heads can be found within an S-clause 
boundary. 

3.2 

4 

4.1 

4.2 

Dependency Analysis based on S-clauses 

Before S-clause segmentation, we have deter-
mined the dependency relations between argu-
ments (except subjects) and predicates. Next, we 
determine the heads of subjects after S-clause 
segmentation. Although we assume that all the 
predicates in an S-clause require the subject 
within the S-clause, some S-clause segmentation 
errors may exist. To recover the S-clause segmen-
tation errors, we use selectional restriction 
information to find the relevant head of a subject. 
We regard the head of the subject within an S-
clause as the farthest predicate in the S-clause 
which requires the concept of the subject.  

Still, the dependency relations of adjuncts and 
those of predicates are not determined. The heads 
of adjuncts and those of predicates are dependent 
on the nearest head candidate not giving rise to 
crossing links. Using S-clauses, we can accom-
plish dependency parsing simply and effectively. 

S-clause Segmentation based on Deci-
sion Tree Learning 

 

 

The C4.5 Learning Algorithm 

Decision tree induction algorithms have been 
successfully applied to NLP problems such as 
parsing (Magerman 1995;Haruno et al 1998), dis-
course analysis (Nomoto and Matsumoto 1998), 
sentence boundary disambiguation (Palmer 1997), 
phrase break prediction (Kim 2000) and word 
segmentation (Sornertlamvanich et al 2000). We 
employed a C4.5 (Quinlan 1993) decision tree 
induction program as the learning algorithm for S-
clause segmentation. 

 The induction algorithm proceeds by evaluating 
the information content of a series of attributes 
and iteratively building a tree from the attribute 
values, with the leaves of the decision tree repre-
senting the values of the goal attributes. At each 
step of the learning procedure, the evolving tree 
branches from the attribute that divides the data 
items with the highest gain in information.  

Branches will be added to the tree until the deci-
sion tree can classify all items in the training set. 
To reduce the effects of overfitting, C4.5 prunes 
the entire decision tree after construction. It recur-
sively examines each subtree to determine 
whether replacing it with a leaf or branch will re-
duce the expected error rate. Pruning improves the 
ability of the decision tree to handle data which is 
different from the training data. 

Features 

This section explains the concrete feature set-
ting we used for learning. The S-clause is a 
broader concept than the clause. In order to de-
termine the S-clauses, we must choose the clauses 
that are suitable for addition to the S-clause. Since 
the head word of a clause is the predicate in the 
clause, we merely use predicate information. The 
feature set focuses on the predicates. 

An S-clause can be embedded in another S-
clause. Therefore, we should learn two methods to 
detect the left boundary and right boundary of an 
S-clause independently. 

We should include one subject between the left 
boundary and the right boundary of an S-clause. 
We call the subject to include in an S-clause the 
�‘target subject�’. 

First, when we detect the left boundary of an S-
clause, we consider the predicates between the 



1st Feature Type of a predicate 
2nd Feature Surface form of the last ending of a predicate 
3rd Feature Comma 

Table 2: Linguistic Feature Types Used for Learning 

Feature 
Type 

Values 

1st adnominal, conjunctive, quotative, nominal, final, null 
2nd , , , , , , , , , , , , , , , , 

, , , , , , , , , , , , , , , 
, , , , , , , , , , , null�…. 

3rd 1, 0, null 

Table 3: Values for Each Feature Type 

�‘target subject�’ and the nearest subject which pre-
cedes the �‘target subject�’. 

Each predicate has 3 features, as shown in Ta-
ble 2. The 1st feature concerns the type of a predi-
cate. Next, the 2nd feature takes the value of the 
surface form of the last ending of a predicate. Ko-
rean is an agglutinative language and the ending 
of a predicate indicates the connective function 
with the next VP (e.g. �‘ (because)�’  indi-
cates it functions as a  reason for the next VP). 

The 3rd feature deals with the information 
whether a predicate is followed by a comma or not. 
The use of a comma to insert a pause in a sentence 
is an important key to detect an S-clause boundary. 

We use 12 features for left boundary detection 
�— 4 predicates, and 3 features for each predicate 
as summarized in Table 2. The class set consists 
of 5 values (0~4) to indicate the position of the 
predicate that becomes a left boundary. If the class 
value is 0, it means the S-clause includes no 
predicates preceding the �‘target subject�’. Other 
wise, if the class value is 1, it means that that the  
S-clause includes one nearest predicate which ap-
pears preceding the �‘target subject�’. 
  The window size of predicates for the left 
boundary is 4. If there are less than 4 predicates, 
then we fill the empty features with �‘null�’. 
For right boundary detection, we consider the 
predicates between the �‘target subject�’ and the 
next subject following the �‘target subject�’. 

We use 15 features for right boundary detection 
�— 5 predicates, and the same 3 features for each 
predicate as in Table 2. Among the predicates be-
tween �‘target subject�’ and the next subject follow-
ing the �‘target subject�’, we consider 4 predicates 

which appear near the �‘target subject�’ and 1 predi-
cate which locates last. The reason that 1 predicate 
which locates last is considered is as follows: If all 
the predicates between �‘target subject�’ and the 
next subject following the �‘target subject�’ require 
the �‘target subject�’ as their common subject, the 
right boundary becomes the last predicate among 
them, since Korean is a head-final language. 

Although the feature set is the same as that for 
right boundary detection, the window size for the 
right boundary is 5, which is larger than that for 
the left boundary. The reason is that Korean is a 
head-final language and the predicates of a subject 
appear after the subject. 
  The detailed values of each feature type are 
summarized in Table 3. 
 We first detect the S-clause which includes the 
last subject of an input word set. If an S-clause is 
detected, we exclude the words which are in-
cluded in the S-clause from the input word set. 
Then, we recursively detect the S-clause including 
the last subject in the remaining word set until 
there are no subjects in the modified word set. 
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 Experimental Results 

 We evaluated the proposed S-clause segmenta-
tion method using the Matec99�’ 1  test set. We 
evaluated the following 2 properties of the S-
clause segmentation program. 
 
1. The amount of training data vs. S-clause 

segmentation accuracy vs. parsing accuracy 

 
1 Morphological Analyzer and Tagger Evaluation Contest in 
1999 



Number of training sentences 5000 10000 20000 30000 40000 50000 
S-clause Precision 82.14% 83.68% 83.70% 84.10% 84.06% 84.40%
S-clause Recall 81.98% 83.54% 83.61% 84.02% 83.98% 84.30%
Parsing Accuracy 86.28% 87.53% 87.86% 88.79% 89.09% 89.12%

Table 4: The Amount of Training Sentences vs. S-clause Accuracy vs.  
Parsing Accuracy for the 10000 test sentences 

 Our parser without S-
clause segmentation 
procedure 

Our parser with S-
clause segmentation 
procedure 

KN Parser Korean  
Yon-sei 
parser 

Accuracy in de-
tecting the head of 
a subject 

51.60 % 84.03 % 74.21 % Unknown 

Parsing Accuracy 84.29% 89.12% 89.93 % 87.30% 

Table 5: Parsing Accuracy Comparison                       (avg 19.27word/sentence)  

 
2. Significance of features  

5.1 The Amount of Training Data vs. S-
clause Segmentation Accuracy vs. Pars-
ing Accuracy 

 
The test set is different from the training set and 

the average length of the test sentence is 19.27 
words/sentence while that of the training sentence 
is 14.63 words/sentence. We selected longer sen-
tences as a test set since the S-clause segmentation 
method is proposed to improve the performance of 
syntactic analysis in long sentences.  

The parsing accuracy is calculated as (correct 
dependency links)/(all the dependency links). The 
number of detected dependency links and that of 
the true dependency links are equal, so parsing 
accuracy is the same as parsing recall. For the rea-
son, we do not measure the parsing recall sepa-
rately. However, in the case of S-clauses, the S-
clause precision is different from the S-clause re-
call, since the subject grammatical function detec-
tion results for unknown case words are not 
perfectly correct. We measured the S-clause preci-
sion as (correct S-clauses)/(all the detected S-
clauses), and the S-clause recall as (correct S-
clauses)/(all the true S-clauses).  

To show the effectiveness of S-clauses, we com-
pare the parsing result using S-clauses and without 
S-clauses, and also compare our parser perform-
ance with others which analyze similar languages 
with Korean. 

 In the experiments, we obtained the following 
two results. 

1. The better the S-clause segmentation per-
formance, the better the parsing accuracy that re-
sults. 

2. The maximum S-clause accuracy is 84.40% 
and the maximum parsing accuracy is 89.12% 
with 50000 training sentences. The test set size is 
10,000 sentences.  
 
 We will discuss the maximum accuracy of 
89.12% compared with the Japanese KN parser, 
which shows the highest performance in Japanese 
dependency parsing.  

The characteristics of Japanese are similar to 
the Korean language. So, the mechanism of syn-
tactic analysis in Korean can also be applied to 
Japanese. In Japanese dependency parsers and 
Korean dependency parsers, the KN parser shows 
the highest performance. In addition, we can 
freely obtain the programs. So, we compare the 
performance of our parser with that of the KN 
parser. To do this, we need a bilingual test corpus. 
We obtain 10,000 Japanese test set by translating 
the 10,000 Korean test set using Korean-to-
Japanese machine translation system of our own. 
Then, several researchers specializing in Japanese 
manually corrected the translation results. We ex-
perimented on the performance of the KN parser 
using these 10,000 Japanese sets. 
 To detect the head of a subject, the KN parser 
uses only some heuristics (Kurohashi 1994). As 
shown in Table 5, the performance of our parser 



Feature Accuracy Change Feature Accuracy Change 
1st type  -7.34% 3rd type  -0.04% 
1st surface form -1.15% 3rd surface form -0.02% 
1st comma -2.42% 3rd comma -0.82% 
2nd type  -0.32% 4th type  -0.0% 
2nd surface form -0.23% 4th surface form -0.0% 
2nd comma -5.29% 4th comma -0.01% 

Table 6: S-clause Accuracy Change When Each Attribute for Left Boundary Removed   

Feature Accuracy Change Feature Accuracy Change 
1st type -3 % 3rd comma -3 % 
1st Surface form.  -0.8 % 4th type -0.2 % 
1st comma -2.7 % 4th surface form -0.3 % 
2nd type  -0.3 % 4th comma 0.0 % 
2nd surface form -1.3 % 5th type  -0.8 % 
2nd comma -1.9 % 5th  Surface form. -0.1 % 
3rd type 0.0 % 5th comma 0.0 % 
3rd surface form 0.0 %   

Table 7: S-clause Accuracy Change When Each Attribute for Right Boundary Removed  

S-clause 
errors  

Subject 
detection 
errors 

Pos-tag  
errors 

Double 
subject 
errors 

Left 
boundary 
errors 

Right 
boundary 
errors 

 Predicate 
role of 
adverbials 

 Other-
wise 

Error % 25.15% 20.66% 11.38% 16.47% 20.96% 2.00% 3.38% 

Table 8: The Type of S-clause Errors

without S-clause segmentation is worse than that 
of the KN parser. In our parser without S-clause 
segmentation, a word simply depends on the near-
est head not giving rise to crossing links. However, 
after S-clause segmentation, the performance of 
our parser is similar to that of the KN parser. The 
accuracy of our parser in detecting the head of a 
subject is also better than that of the KN parser. 

We also compare the performance of our parser 
with a Korean Yon-sei dependency parser, as 
shown in Table 5. The parser using S-clauses out-
performs the Yon-sei parser by 1 percent. Since 
the Yon-sei dependency parser is not an open re-
source, we simply compare the performance of 
our parser with that of Yon-sei parser written in 
Kim (2002). Therefore, the comparison of the per-
formance between our parser and the Korean Yon-
sei dependency parser may not be so reasonable.  

 
5. 2  Significance of Features 

  

Next, we will summarize the significance of each 
feature introduced in Section 4.2. Table 6 and Ta-
ble 7 illustrate how the S-clause accuracy is re-
duced when each feature is removed. Table 6 
clearly demonstrates that the most significant fea-
ture for the left boundary is the type of the previ-
ous 1st predicate�— we obtain the information from 
the decision rules that, especially, the �‘adnominal�’ 
type of the previous 1st predicate is a significant 
feature. As shown Table 6, 4th predicate informa-
tion has no effect on the left boundary. 

Table 7 demonstrates that the most significant 
feature for the right boundary is comma informa-
tion, since the S-clause accuracy without 1st, 2nd or 
3rd comma information shows high accuracy de-
crease.  The 5th predicate information is more use-
ful than the 4th predicate. In other words, the last 
predicate can be the head of a subject than the in-
termediate predicate. 

This result may partially support heuristics; the 
left boundary would be an adnominal predicate 
since only adnominal predicates are followed by 



their subjects (other predicates are preceded by 
their subjects). Next, after the comma, a boundary 
mostly occurs. In particular, we need to concen-
trate on the types of predicates to attain a higher 
level of accuracy. To some extent, most features 
contribute to the parsing performance. 

In our experiment, only the surface form of the 
endings of conjunctive predicates, rather than 
other predicates, is effective on performance. The 
reason is that the surface form of the ending of the 
non-conjunctive predicates does not indicate the 
connective function with the next VPs.  
 
5.3  Discussion about S-clause Errors 

 
We classify the S-clause errors, as shown in 

Table 8. Table 8 shows that many S-clause errors 
are due to the Korean characteristics. 

Among the S-clause errors, subject detection 
errors rank first, which occupy 25.15%. So, the S-
clause accuracy result is different from the S-
clause recall result.  

Next, POS tagging errors result in the S-clause 
segmentation errors of 20.66 percent. 

These two errors occur before S-clause seg-
mentation. So, this is another issue that remains 
for future work. 

Also, double subject errors are 11.38%. Some 
Korean predicates can require two subjects. This 
is contrary to our assumption of S-clauses. Since 
11.38% is large portion of all the errors, we 
should consider double subject construction and 
identify the characteristics of the predicates in 
double subject constructions. 

The right boundary errors are more than left 
boundary errors. It means that the right boundary 
detection is more difficult. 

Finally, some adverbials, not predicates, can 
function as predicates of subjects. Since we only 
detect boundaries focusing on predicates, these 
adverbials information cannot be used. We should 
include these adverbials that function as predi-
cates into the S-clause boundary candidates. 

6 Conclusion 

This paper proposes an S-clause segmentation 
method to reduce syntactic ambiguity in long sen-
tences. An S(ubject)-clause is  defined as a group 
of words containing several predicates and their 

common subject. An S-clause includes one subject 
and several predicates that share the subject. 

We have described an S-clause segmentation 
method that uses decision trees. The experimental 
results show that the parser using S-clauses out-
performs the parser without S-clauses by 5% and 
also outperforms conventional Korean depend-
ency parsers by 1 percent.  To improve the S-
clause accuracy, we should detect double subject 
constructions and adverbials which function as 
predicates. We plan to continue our research in 
two directions. First, we will combine our S-
clause segmentation method with a coordinate 
structure detection method and test the parsing 
results. Second, we will apply it to a machine 
translation system and translate each S-clause in-
dependently and test the translation performance. 
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Abstract

If a sentence is ambiguous, it often hap-
pens that the correct reading is the one
which can most easily be incorporated
into the discourse context. In this paper
we present a simple method for imple-
menting this intuition using the mecha-
nism of presupposition resolution. The
basic idea is that we can choose be-
tween the alternative readings of an am-
biguous sentence by picking the read-
ing which has the greatest number of
satistified presuppositions. We present
two uses of the disambiguation algo-
rithm in our bilingual human-machine
dialogue system.

1 Introduction

Syntactic ambiguity is a well-known problem for
natural language interpretation systems, and it is
one which becomes increasingly serious as the
syntactic coverage of a system increases. A great
deal of research in NLP has focussed on how to
avoid or alleviate the problem, and several differ-
ent (and reasonably complementary) approaches
have been devised. Four broad classes of ap-
proach can be distinguished. The oldest approach
involves devising structural heuristics for disam-
biguation; these are often psycholinguistically-
inspired, such as the minimal attachment strat-
egy of Ferreira and Clifton (1986). Another class
of approaches rely on the deployment of world
or situation knowledge to assess alternative inter-
pretations of a sentence. These approaches re-

quire interpretation systems which generate fairly
rich semantic representations for sentences, along
with large knowledge bases of facts about the do-
main of interpretation, along with sophisticated
inference mechanisms to operate on them. Limi-
tations on the size of knowledge bases and on the
speed of theorem-provers mean that this approach
is often hard to scale to real applications. (How-
ever, there are a number of promising approaches
for tackling the scalability problem; see for in-
stance Bos (2001), Hobbs (1993), Stone (1998).)
But by far the dominant approach to syntactical
ambiguity resolution at the moment involves the
use of statistical techniques in one form or an-
other. In particular, using statistical grammars
which take into consideration lexical dependen-
cies (see e.g. Collins (1996), Goodman (1998),
Magerman (1995)) has proved a very sensitive
way of capturing the kind of grammatical contexts
that particular words or word combinations typi-
cally appear in; this information can be effectively
used to decide between alternative parses.
However, there remain some species of ambi-

guity which are hard to resolve using statistical
parsers. It frequently happens that at least two
of the alternative readings of a sentence are rel-
atively frequently attested in the corpus used to
train the parser. Some of the classical illustrations
of syntactic ambiguity can be used to make the
point. For instance, there are two readings of the
following well-known sentence:

(1) The man saw the girl with the telescope.

In one reading, the PP with the telescope attaches
to the NP the girl, while in the other, it attaches
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Figure 1: Architecture of the Te Kaitito system

to the VP saw the girl. The ambiguity in this sen-
tence is clear, because both the alternative read-
ings describe situations which are consistent with
our world knowledge: telescopes can be used for
seeing, and people can possess telescopes. In a
representative corpus of English, we can expect
with [telescope] (or perhaps, backing off, with
[instrument] to occur quite frequently modifying
NPs as well as VPs. For the same reason, we
cannot expect world knowledge to be very use-
ful in distinguishing between the two alternative
parses. A more useful source of information for
disambiguation is the immediate discourse con-
text. Simply put, if the reader knows that the
man has a telescope in the current discourse con-
text, one of the readings is preferred; if the reader
knows that the girl has a telescope in the current
context, the other reading is preferred.

In this paper, we present a simple method for
making use of this kind of contextual information
in syntactic disambiguation. The key idea is to
allow the process of presupposition resolution
to provide information about the contextual ap-
propriateness of each alternative reading of a sen-
tence (or perhaps each of the readings which a
syntactic parser considers reasonably likely). In
Section 2, we introduce the general framework
we will be working in, by describing our human-
machine dialogue system and the semantic rep-
resentations it uses. In Section 3, we outline
the (fairly simple) approach to disambiguation we
have in mind, and give an example. In Section 4,
we describe one particularly useful application of

the approach, for dealing with sentences which
have ambiguous information structure.

2 Presuppositional DRT in the Te
Kaitito system

Our sentence interpretation system is embedded
in a larger human-machine dialogue system called
Te Kaitito1 (see Knott et al (2002) for a general
overview). The architecture of Te Kaitito is given
in Figure 1. When it is the user’s turn to contribute
to the dialogue, (s)he enters a sentence, in writ-
ten form. (Te Kaitito is bilingual between English
and Māori, so either language can be used.) The
sentence is first parsed, using the LKB system
(Copestake, 2000), and a set of syntactic analyses
are computed. Each analysis is associated with
a semantic interpretation in the Minimal Recur-
sion Semantics (MRS) formalism of Copestake
et al. (1999). Each MRS representation is then
converted to a representation in Discourse Repre-
sentation Theory (DRT) (Kamp and Reyle, 1993),
as extended by van der Sandt (1992) to incorpo-
rate a treatment of presuppositions. Each of the
sentence’s DRSs then has its presuppositions re-
solved using information about the current dis-
course context, and one of the DRSs is selected
as the preferred interpretation of the sentence—
this operation is the focus of the current paper.
The preferred interpretation is then passed to the
dialogue engine, and a response is generated.

1Online demos of Te Kaitito can be found at
http://tutoko.otago.ac.nz:8080/teKaitito/
.



Here is a brief introduction to the relevant con-
cepts from DRT. The dialogue context and incom-
ing sentences are modelled with Discourse Repre-
sentation Structures (DRSs). A DRS is a structure
with two fields, one for representing discourse
referents, and one for representing conditions or
predications over these referents. DRSs are typi-
cally drawn as split boxes, where referents appear
at the top, and conditions below. For example,
here is the DRS for the sentence A cat walked:

x
cat(x)
walk(x)

The discourse referent x is created by the indef-
inite NP a cat. This shows that a cat has intro-
duced a new discourse referent. The conditions
cat(x) and walk(x) were placed in the bottom
part by the NP a cat and the VP walked.
A sentence’s presuppositions are elements of

its content which the speaker assumes are already
part of the common ground; they are constraints
on the kinds of context in which the sentence can
be uttered. Here are two examples.

(2) The dog chased a cat.

(3) John’s cat slept.

Sentence 2 presupposes that there is a dog in the
discourse context (or more precisely, that there
is exactly one salient dog in the context). Sen-
tence 3 presupposes that there is someone called
John, and also that this person has a cat. Presup-
positions are triggered by lexical items such as
the definite article, proper names, and possessive
forms. These triggers determine what is asserted
information, and what is presupposed in a given
sentence.
As already mentioned, we use a DRT-based

treatment of presuppositions as proposed by van
der Sandt (1992). A sentence is modelled as
an assertion DRS and a set of presupposition
DRSs. The DRSs for Examples 2 and 3 are shown
in Figures 2 and 3. Notice that the presupposition
DRSs are distinguished by dashed lines.2

2One difference between our model and that of van der
Sandt’s is that there is no hierarchy of presuppositions in

dog(x)
xy

cat(y)
chase(x,y)

Figure 2: The dog chased a cat

John(y)
y

cat(x)
x

has(y,x)
sleep(x)

Figure 3: John’s cat slept

The presuppositions of a sentence need to be
resolved or satisfied in the current discourse con-
text before its assertional content can be pro-
cessed. In van der Sandt’s DRS-based treatment,
this is modelled as a binding operation: the ref-
erents in each of the sentence’s presupposition
DRSs need to be bound to referents in the context
DRS which have the properties identified in the
presupposition DRS. Once this binding has been
done, if the presuppositions of a sentence are not
satisfied, referents with suitable properties can be
(charitably) assumed to exist, and added to the
context DRS, in an operation called accommo-
dation.

3 Presuppositional weight for sentence
disambiguation

Our basic idea for disambiguating between alter-
native readings of an ambiguous sentence is to
choose the reading that can most easily be in-
corporated into the discourse context. To imple-
ment this we use the following general strategy:
first, generate the DRS for each alternative in-
terpretation of an ambiguous sentence; then per-
form presupposition resolution for each interpre-
tation within the current discourse context; fi-
nally, choose the most contextually appropriate
interpretation. We use the following two princi-
ples to determine preference between the alterna-

our model: they all appear at the same level. In van der
Sandt’s model, a presupposition DRS can itself have presup-
positions.



tives:

1. Accommodation principle: the most con-
textually appropriate interpretations of a sen-
tence are those whose presuppositions can
be resolved with the minimum amount of ac-
commodated material.

2. Presuppositional weight principle: if two
interpretations of a sentence can both have
their presuppositions resolved without ac-
commodation, the most contextually appro-
priate interpretation is the one with the great-
est amount of presuppositional material.

One point to clarify in relation to these principles
is how to determine the ‘amount’ of accommo-
dated or presupposed material in the interpreta-
tion of a sentence. We will assume that this re-
lates simply to a count of DRS conditions. For in-
stance, for the accommodation principle, an inter-
pretation which requires only one DRS condition
to be accommodated into the discourse context is
preferable over an interpretation which requires
two conditions to be accommodated. For the pre-
suppositional weight principle, given two inter-
pretations whose presuppositions are both satis-
fied without recourse to accommodation, we sim-
ply count the total number of presupposed DRS
conditions in each interpretation and choose the
one with the highest total. It may be that there are
alternative definitions for this notion of ‘amount
of semantic material’, for instance including a
count of the number of referents introduced, or
the number of separate presupposition DRSs. But
a simple account will suffice for the examples we
deal with in this paper.

An example
Let us return to Example (1), repeated below:

(4) The man saw the girl with the telescope.

There are two possible readings for this sentence.
Both readings presuppose a man, a girl, and a tele-
scope, and both assert that the man saw the girl.
The DRS that represents the reading in which the
man used the telescope to see the girl is given in
Figure 4. The other possible reading, in which
the girl possesses the telescope, is given in Figure

5. Notice that the second reading has more pre-
suppositional content, or greater presuppositional
weight, than the first.

u:
man(x)
x

girl(y)
y

telescope(z)
z

saw(e,x,y)
e

with(e,z)

u

assertion(u)

Figure 4: . . . [saw [the girl] [with the telescope]]

u:
man(x)
x

girl(y)
y

with(y,z)
saw(e,x,y)
e

telescope(z)
z

u

assertion(u)

Figure 5: . . . [saw [the girl [with the telescope]]]

If we know of a girl who has a telescope (see
e.g. Figure 6(a)), then the reading in which the
girl possesses the telescope would be preferred.
In a context like this all the presuppositions of
both readings could be resolved. However, we
can choose the second reading, by the presuppo-
sitional weight principle, since it is ‘heavier’ in
resolvable presuppositions. In a discourse context
where there is a man, a girl, and a telescope, but
the girl does not possess the telescope (see e.g.
Figure 6(b)), only the presuppositions of the first
reading can be satisified. In this case, this reading
is preferred, by the accommodation principle.

A, B, C
man(A)
girl(B)
telescope(C)

A, B, C
man(A)
girl(B)
telescope(C)

with(B, C)

(a) (b)

Figure 6: Two alternative contexts for Sentence 1



4 Application: sentences with
ambiguous information structure

In this section, we describe a use for the two prin-
ciples just outlined in the interpretation of sen-
tences with ambiguous information structure. To
begin with, we will illustrate this kind of ambigu-
ity. Consider the following sentence:

(5) The cat chased the dog.

The most obvious reading of the sentence is that
the speaker is simply asserting a new fact a pro-
pos of nothing, namely that the cat chased the
dog. However, there are alternative possible read-
ings in which the speaker is answering a wide
variety of questions: for instance, ‘What did the
cat chase?’, ‘What chased the dog?’, ‘What did
the cat do to the dog?’ and so on. If the an-
swers were spoken, they would have different
prosodic and intonational structures: THE CAT
chased the dog, The cat chased THE DOG, The
cat CHASED the dog, and so on. In a grammar of
English, it is important to distinguish these alter-
native readings even when there are no prosodic
cues; any declarative sentence can genuinely be
interpreted in these different ways, and the gram-
mar should reflect this. However, computational
grammars typically do not pay much attention to
information structure ambiguity,3 principally be-
cause once the ambiguity is created, it is hard to
resolve. Information structure ambiguity is proto-
typically a kind of ambiguity which cannot be re-
solved using statistical techniques or knowledge
about the domain; it requires an analysis of the
relation between the sentence and its immediate
discourse context.
In this section, we describe how information

structure ambiguity of this kind can be resolved
using a presuppositional framework. We begin by
providing some background about the way ques-
tions and answers are represented using presup-
positions in our system.

4.1 Background: presuppositions in
questions and answers

In the Te Kaitito system we model questions and
answers using presuppositions (for details, see de

3Categorial grammar is a notable exception; see Steed-
man (2000).

Jager et al. (2002)). A question can be thought
of as asserting that something is ‘unknown’,4 and
presupposing the content of the query to exist
within the current discourse context. For exam-
ple, consider the question:

(6) What chased the dog?

This question presupposes that something did
chase the dog. The only information it asserts is
that the something which chased the dog is un-
known to the speaker. This is represented as a
DRS in Figure 7.

unknown(v)
v
chased(v,w) dog(w)

w

u1

u1:

question(u1)

Figure 7: What chased the dog?

An answer to a question also makes use of pre-
suppositions. An answer presupposes a question
containing an unknown element, and asserts that
this unknown element is identical to some refer-
ent within the discourse context. An answer to
the question in Example 6 could be given as It
was the cat or just The cat. This answer is repre-
sented as a DRS in Figure 8. For further details

z = x cat(x)
xz

unknown(z)

u2

u2:

answer(u2)

Figure 8: The cat / It was the cat

about this presuppositional treatment of questions
4Strictly speaking, we are here asserting something about

the speaker’s knowledge about the object, rather than about
the object itself. But in our system, we draw no distinction
between this kind of epistemic predicate and ordinary first-
order predicates.



and answers, and a discussion of some of its addi-
tional benefits in a dialogue management system,
see de Jager et al. (2002).

4.2 Using presuppositional weight for
disambiguation

One could also answer the question in Example 6
using the full sentence The cat chased the dog
(c.f. Example 5), with understood emphasis THE
CAT chased the dog. How do we distinguish this
reading from the other possible readings? The
DRSs in Figures 9-11 show three ways of inter-
preting The cat chased the dog. Using this rep-

u2:
dog(y)
y

cat(x)
x

chased(x,y)

assertion(u2)

u2

Figure 9: The cat chased the dog

u2:
dog(y)
y

z = x unknown(z)
chased(z,y)

z
cat(x)
x

u2

answer(u2)

Figure 10: THE CAT chased the dog

u2:
cat(x)
x

dog(y)
y

z = y
z
unknown(z)
chased(x,z)

u2

answer(u2)

Figure 11: The cat chased THE DOG

resentation, the principles presented in Section 3

can be used directly to derive the right interpre-
tation of the sentence, namely that given in Fig-
ure 10. Firstly, note that both the interpretation
in Figure 9 and that in Figure 10 can have all
their presuppositions resolved without accommo-
dation in the context created by the question (Fig-
ure 7), while the interpretation given in Figure 11
contains a presupposition which needs to be ac-
commodated in this context (an unknown object
which is chased). By the accommodation princi-
ple, we can reject the interpretation in Figure 11.
Now note that the interpretation in Figure 10 has
a larger number of presupposed DRS conditions
than the interpretation in Figure 9 (4 versus 2).
By the presuppositional weight principle, we can
therefore choose the interpretation in Figure 10,
which is the correct interpretation for the sen-
tence.

5 Summary and conclusions

In this paper, we have presented a simple ap-
proach to sentence disambiguation, which makes
use of presupposition resolution, and we have de-
scribed two example contexts where the approach
is useful. We have argued that this approach is
likely to be helpful in cases where other meth-
ods for disambiguation have difficulties, in par-
ticular in cases where statistical methods cannot
deliver a clear verdict because two (or more) in-
terpretations of a sentence contain constructions
which are frequently attested in training corpora,
and where methods based on determining consis-
tency with world or domain knowledge have a
similar problem; information structure ambiguity
is a good case in point.
Naturally, the information about contextual ap-

propriateness delivered by the presupposition re-
olution mechanism should just be considered as
one source of information about the appropriate
reading of a sentence. Other sources of informa-
tion should also be taken into account. A statisti-
cal parser is still likely to be of considerable use in
weeding out very unsuitable readings at the very
start, because presupposition resolution is compu-
tationally quite expensive. And information from
world or domain knowledge about the absolute
likelihood of alternative readings is also bound to
be important. Our main conclusion is simply that
information about presuppositions should have a



useful role to play in a complete framework for
sentence disambiguation.
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Abstract

This paper presents a range of methods
for classifying Dutch noun countability
based on either Dutch or English data.
The classification is founded on transla-
tional equivalences and the corpus anal-
ysis of linguistic features which corre-
late with particular countability classes.
We show that crosslingual classification
on the basis of word-to-word or feature-
to-feature mappings between English
and Dutch performs at least as well
as in-language classification based on
gold-standard Dutch countability data.

1 Introduction
The performance of supervised learning methods
is conditioned on the quality of annotation and
also volume of training data (Hastie et al., 2001).
This effect is felt particularly keenly in tasks of
high feature dimensionality or low feature–class
correlation. In many cases, high-quality data
is not available in large quantities, but a large
volume of lower-quality data can be accessed
(Mitchell, 1999; Banko and Brill, 2001). Al-
ternatively, high-quality data may exist for some
parallel task which can be adapted to the task at
hand through a lossy feature mapping. This strat-
egy has been adopted successfully in NLP appli-
cations such as part-of-speech tagging involving
languages with a relative paucity of language re-
sources or annotated data (Yarowsky et al., 2001;
Cucerzan and Yarowsky, 2002).
This paper takes a supervised learning task and

contrasts the use of a restricted volume of in-
language training data with the use of a larger vol-
ume of out-of-language training data adapted to
the task through a lossy mapping. Our aim in this
is to determine the most effective fast-track solu-
tion when faced with a novel task in a given lan-
guage for which high-quality annotated data ex-
ists in a closely-related language.

We illustrate this issue by way of a type-level
noun countability classification task in Dutch for
which we have moderate amounts of high-quality
annotated data in English and large amounts
of medium-quality annotated data in Dutch (see
§2.4). For English, previous research has shown
that corpus evidence can be applied successfully
to classify unannotated noun types for count-
ability (Baldwin and Bond, 2003a; Baldwin and
Bond, 2003b). We extend this research to Dutch
and address the question of which of high-quality
out-of-language English data and lower-quality
in-language Dutch data produces the best Dutch
countability classification results, realising that
the feature mapping from English-to-Dutch in the
first case will necessarily be lossy.
We treat noun countability as a lexical prop-

erty that determines determiner co-occurrence,
the ability to pluralise, and enumeration effects.
Each Dutch noun type is classified as being count-
able and/or uncountable, noting that different
senses/usages of a given word can occur with
different countabilities, cf. I want a rabbit�� Ik
will een konijn [countable] vs. I would like some
more rabbit, please�� I zou graag nog wat konijn
willen [uncountable]. Knowledge of countabil-
ity is important both for analysis and generation.
In analysis it helps to constrain the set of pos-
sible parses and their interpretation. In genera-
tion, countability information determines whether
a noun can be pluralised and what determiners it
can combine with.
The assumption underlying the crosslingual

countability classification task is that Dutch and
English are sufficiently close linguistically that
there is a strong correlation between noun count-
ability in the two languages. Both languages
distinguish countable, uncountable and plural
only nouns.1 Although mismatches exist—e.g.
brain [countable] vs. hersenen [plural only], thun-

1A fourth class of bipartite nouns (e.g. scissors, trousers)
is generally recognised for English, but has no Dutch corre-
late.



derstorm [countable] vs. onweer [uncountable]—
many Dutch words are in the same countabil-
ity class as their English equivalents (e.g. car��
auto [countable], food�� eten [uncountable] and
goods�� goederen [plural only]). One obvious ap-
proach, therefore, is to simply map the countabil-
ities of English nouns onto their Dutch counter-
parts.
A less direct approach to crosslingual count-

ability transfer is to base classification on cor-
pus occurrence with linguistic predictors of the
different countability classes, in the manner of
Baldwin and Bond (2003a). Linguistic features
that are associated with the countability classes
often have direct translations in the other lan-
guage (e.g. syntactic number, co-occurrence with
denumerators) or can be mapped onto an equiva-
lent feature (e.g. the English N1 of N2 construc-
tion and Dutch measure noun construction—see
§2.2). In some cases however, the mapping is
imperfect (e.g. much occurs only with uncount-
able nouns, but the Dutch translation veel is also
the translation of many, and occurs with both un-
countable singular and countable plural nouns) or
no equivalent exists in one of the languages (e.g.
the occurrence of a plural noun as a modifier is a
weak indicator of plural only in English, but not
in Dutch).
The remainder of this paper is structured as

follows. §2 describes the countability classes,
the nature and extraction of the features used in
the corpus-based method, the feature abstraction
method and the gold-standard data. §3 outlines
the various classifiers tested in this research. §4
presents and discusses the experimental results.
The conclusions of the paper are given in §5.

2 Preliminaries

2.1 Countability classes
Dutch and English nouns are generally consid-
ered to belong to one or more of three possi-
ble countability classes: countable, uncountable
and plural only. Countable nouns can be mod-
ified by denumerators, prototypically numbers,
and have a morphologically marked plural form:
one dog�� een hond, two dogs�� twee honden.
Uncountable nouns cannot be modified by de-
numerators, but can be modified by unspecific
quantifiers such as much�� veel, and do not show
any number distinction (prototypically being sin-
gular): *one rice�� *een rijst, some rice�� een
beetje rijst, *two rices�� *twee rijsten. This class

includes many abstract nouns, material-denoting
nouns, generics and deverbalised nouns. Plu-
ral only nouns only have a plural form, such as
goods�� goederen and cannot be denumerated.
The plural only class is considered to be a closed
class in Dutch, and is thus ignored in the classi-
fication experiments below.2 Note that countabil-
ity distinctions are in fact not categorical (Allan,
1980): prototypical countable nouns can be used
in uncountable contexts, forcing a ‘substance’ in-
terpretation (the universal grinder, e.g. there was
deer all over the road�� over de hele straat lag
hert) and uncountable nouns can in certain con-
texts be denumerated, resulting in a ‘type’ inter-
pretation (the universal packager, e.g. this shop
sells three different wines�� deze winkel verkoopt
drie verschillende wijnen). However, nouns are
generally considered to have a basic classification
as countable and/or uncountable.

2.2 Feature space
The feature space used in this research is made
up of feature clusters, each of which is condi-
tioned on the occurrence of a target noun in a
given construction. Feature clusters are either
one-dimensional (describe a single multivariate
feature) or two-dimensional (describe the interac-
tion between two multivariate features), with each
dimension describing a lexical or syntactic prop-
erty of the construction in question. Below, we
provide a basic description of the 9 feature clus-
ters used in this research and their dimensional-
ity ([x]L=1-dimensional feature cluster with x unit
features for language L, [x×y]L= 2-dimensional
feature cluster with x × y unit features for lan-
guage L). For further details and predicted cor-
relations between feature values and particular
countability classes for English, the reader is re-
ferred to Baldwin and Bond (2003a).

Head noun number:[2]E �� [2]D the number of
the target noun when it heads an NP

Subject–verb agreement:[2×2]E �� [2×2]D the
number of the target noun in a subject posi-
tion vs. number agreement on the governing
verb

Coordinate noun number:[2×2]E �� [2×2]D the
number of the target noun vs. the number of
the head nouns of conjuncts

N1 of N2/measure noun constructions:
[11×2]E �� [11×2]D the type of the N1 vs.

2But see van der Beek and Baldwin (2003) for classifica-
tion results over the plural only class.



the number of the target noun (N2) in an
English N1 of N2 construction or Dutch
measure noun construction. N1 types in-
clude COLLECTIVE (a group of people�� een
groep mensen), UNIT (a kilo of sugar�� een
kilo suiker) and TEMPORAL (a minute of
silence�� een minuut stilte).

Occurrence in PPs:[52×2]E �� [84×2]D the prepo-
sition type and presence or absence of a de-
terminer when the target noun occurs in sin-
gular form in a PP.

Pronoun co-occurrence:[12×2]E �� [7×2]D what
personal, reflexive and possessive pronouns
occur in the same sentence as singular and
plural instances of the target noun.

Singular determiners:[10]E �� [10]D what
singular-selecting determiners (e.g. much)
occur in NPs headed by the target noun in
singular form.

Plural determiners:[12]E �� [13]D what plural-
selecting determiners (e.g. many) occur in
NPs headed by the target noun in plural
form.

Number-neutral determiners:[11×2]E �� [13×2]D

what number-neutral determiners (e.g. less)
occur in NPs headed by the target noun, and
what is the number of the target noun for
each.

The Dutch and English feature clusters repre-
sent the same linguistic structures, even if the
individual features are not direct translations of
each other. The only exception is the N1 of
N2/measure noun construction where markedly
different constructions in the two languages ex-
press the same concept (a quantity of something)
and bring about the same restrictions with respect
to countability.

2.3 Feature extraction
We use a variety of pre-processors to map the
raw data onto the types of constructions targeted
in the feature clusters, namely a POS tagger and
a full-text chunker for both English and Dutch,
and additionally a dependency parser for En-
glish. For Dutch, POS tags, lemmata and chunk
data were extracted from automatically generated,
fully parsed Alpino output (Bouma et al., 2000).
For English, we used a custom-built fnTBL-based
tagger (Ngai and Florian, 2001) with the Penn
tagset, morph (Minnen et al., 2001) as our lem-
matiser, an fnTBL-based chunker which runs over

the output of the tagger, and RASP (Briscoe and
Carroll, 2002) as the dependency parser.
These data sets are then used independently to

test the efficacy of the different systems at captur-
ing features used in the classification process, or
in tandem to consolidate the strengths of the in-
dividual methods and reduce system-specific id-
iosyncrasies in the feature values. When combin-
ing Dutch and English in classification, we invari-
ably combine like systems (e.g. Dutch POS data
with English POS data).
The English data was extracted from the writ-

ten component of the British National Corpus
(90m words: Burnard (2000)), and the Dutch data
from the newspaper component of the Twente
Nieuws Corpus (20m words).3
After generating the different feature vectors

for each noun based on the above configurations,
we filtered out all nouns which did not occur at
least 10 times in NP head position according to
the output of all pre-processors. This resulted in
20,530 English nouns and 12,734 Dutch nouns.

2.4 Gold standard data
Information about English noun countability was
obtained from two sources: COMLEX 3.0 (Gr-
ishman et al., 1998) and the common noun part
of ALT-J/E’s Japanese-to-English semantic trans-
fer dictionary. These two resources were com-
bined in two ways: (1) by taking the intersec-
tion of positive and negative exemplars for each
countability class (the binary datasets); and (2)
by taking the union of all countabilities for a
given word in the two resources and represent-
ing it as a single multiclass (i.e. countable, un-
countable or countable+uncountable: the multiclass
dataset). In each case, the total number of training
instances is around 6,000 words. To determine
the quality of annotation, we hand-annotated 100
unseen nouns and measured the agreement4 with
the gold-standard datasets. The agreement for the
binary dataset was 92.4%, and that for the multi-
class dataset was 89.8%.5
In Dutch, there are two electronic dictionaries

with countability information: CELEX (Baayen
et al., 1993) and the Alpino lexicon (Bouma et

3http://wwwhome.cs.utwente.nl/˜druid/
TwNC/TwNC-main.html

4I.e. the proportion of word-level countability class as-
signments over which the two systems agreed.

5The disparity here is due to the fact that the binary
dataset is constructed more conservatively and does not con-
tain any words where there is disagreement in countability
between COMLEX and ALT-J/E.



al., 2000). The latter includes the former as well
as the Parole lexicon (no countability informa-
tion), and has been manually modified and ex-
tended. We thus used the Alpino data to gener-
ate a total of three sets of training data for the
monolingual Dutch classifiers in the same man-
ner as for English: separate binary datasets for
each of the countable and uncountable classes,
and a combined multiclass-based dataset. The to-
tal number of training instances in each case is
around 14,500, over twice the size of the English
datasets.
In order to both evaluate the various classifiers

and gauge the reliability of the Alpino count-
ability judgements, we manually annotated 196
unseen Dutch nouns, basing judgements on ac-
tual usage in the Twente Nieuws Corpus. The
agreement in countability judgements between
the Alpino lexicon and hand-annotated data is
81.1%. This is markedly lower than the agree-
ment for the English datasets, and supports our
claims about the relatively low quality of the
Dutch Alpino data as compared to the English
data.

3 Classifier design

We propose a variety of both monolingual
(Dutch-to–Dutch = NN and English-to-English =
EE) and crosslingual (English-to-Dutch = EN)
unsupervised and supervised classifier architec-
tures for the task of learning countability. We
employ two basic classifier architectures: (1) a
separate binary classifier for each countability
class (BIN), and (2) a single multiclass classifier
(MULTI). In all cases, our supervised classifiers
are built using TiMBL version 4.2 (Daelemans et
al., 2002), a memory-based classification system
based on the k-nearest neighbour algorithm.

3.1 Monolingual classifiers
Evidence-based classifiers: NNBIN(evidence,∗)
In an attempt to derive a baseline for each

countability class/pre-processor system combi-
nation, we built a (binary) monolingual unsu-
pervised classifier based on diagnostic evidence.
For each target noun, the unsupervised classi-
fier simply checks for the existence of diagnos-
tic data in the output of each of the POS tag-
ger and chunker for the given countability class
(NN(evidence,POS) and NN(evidence,chunk),
respectively). Diagnostic data takes the form of
unit features which are uniquely associated with a

given countability class, e.g. the determiner a��
een co-occurring with a given (singular) noun is
a strong indicator of that noun being countable.
We perform basic system combination by posi-
tively classifying any noun for which either of the
two pre-processors produces diagnostic data for
the given countability class (NN(evidence,all)).

Distribution-based classifiers: NNBIN(featALL)
Despite our reservations about the quality of

countability annotation in the Alpino lexicon, we
implemented a conventional monolingual classi-
fier based on the full feature set given above
(§2.2). In this, we take each target noun in turn
and compare its amalgamated value for each unit
feature with: (a) the values for other target nouns,
and (b) the value of other unit features within that
same feature cluster (Baldwin and Bond, 2003b).
In the case of a one-dimensional feature cluster,

each unit feature fs for target noun w is translated
into 3 separate feature values:

corpfreq(fs, w) =
freq(fs|w)

freq(∗)
(1)

wordfreq(fs, w) =
freq(fs|w)

freq(w)
(2)

featfreq(fs, w) =
freq(fs|w)�

i
freq(fi|w)

� (3)

where freq(∗) is the frequency of all words in the
corpus. That is, for each unit feature we capture
the relative corpus frequency, frequency relative
to the target word frequency, and frequency rel-
ative to other features in the same feature clus-
ter. Thus, for an n-valued one-dimensional fea-
ture cluster, we generate 3n independent feature
values.
In addition to mapping individual unit features

onto triples, we introduce a triple for each feature
cluster representing the sum over all member val-
ues.
In the case of a two-dimensional feature ma-

trix (e.g. subject-position noun number vs. verb
number agreement), each unit feature fs,t for tar-
get noun w is translated into corpfreq(fs,t,w),
wordfreq(fs,t,w) and featfreq(fs,t,w) as above,
and 2 additional feature values:

featdimfreq
1
(fs,t, w) =

freq(fs,t|w)�
i
freq(fi,t|w)

(4)

featdimfreq
2
(fs,t, w) =

freq(fs,t|w)�
j
freq(fs,j |w)

(5)

which represent the featfreq values calculated
along each of the two feature dimensions. As



for one-dimensional feature clusters, we intro-
duce amalgamated features for each row (fi,∗) and
column (f∗,j) of the feature matrix, and describe
each in the form of 3 values. For further details,
see the description of the monolingual English
task in Baldwin and Bond (2003a). This abstrac-
tion generates a total of 1,664 individual feature
values for Dutch.
We learned individual countable and uncount-

able classifiers from the binary Alpino data, av-
eraging the feature values across those from the
tagger and chunker in each case.6

3.2 Crosslingual classifiers
Translation-based classifier: ENBIN(translate)
Translation-based classification applies the ob-

servation that Dutch nouns often take the same
countability as their English translation equiv-
alents. First, we derive English countabilities
from the binary gold-standard datasets supple-
mented with data from the output of a mono-
lingual supervised English countability classi-
fier (EEBIN(featALL)—see below). We then ex-
tract translation pairs from a bilingual dictionary
(English–Dutch freedict version 1.1-1, containing
15,426 Dutch entries) and for each countability
class, check for the existence of an English trans-
lation in the given countability class. If none of
the English translations are classified as belong-
ing to that countability class, we negatively clas-
sify the Dutch noun. In the event that no transla-
tion data exists for the Dutch noun or no count-
ability data exists for the English translation(s),
we classify the Dutch noun countability as un-
known. Note that we map English plural only and
bipartite nouns onto the Dutch uncountable class.

Transliteration-based classifier:
ENBIN(transliterate)
Transliteration-based classification also applies

the observation that countability is frequently pre-
served under translation from English to Dutch,
but does so in a resource-free manner. It
takes a Dutch noun and simply determines if a
countability-annotated word of the same spelling
exists in English, and if so, transfers the count-
ability directly across to Dutch. In all other re-
spects, we implement the method identically to
translation-based classification.

6We additionally built separate classifiers based on the
outputs of the individual pre-processors, and also based
on the multiclass data, but found their performance to be
marginally inferior to that of NNBIN(featALL).

Cluster-to-cluster classifier: ENBIN(cluster)
As observed above (§2.2), there is a strong

correlation between the feature clusters used for
Dutch and English. For example, co-occurrence
with plural determiners is a strong indicator that
the given noun is countable in both English and
Dutch. At the same time, there is generally
low correlation between individual unit features.
For example, the English plural determiner many
has no direct Dutch equivalent, and conversely,
the Dutch plural determiner sommige has no di-
rect English equivalent. The most straightfor-
ward way of aligning feature clusters, therefore,
is through the (three) amalgamated totals for each
one-dimensional feature cluster and some sub-
set of the column and row totals for each two-
dimensional feature cluster (e.g. for the PP fea-
ture, we align the totals for the singular and plu-
ral features but not the totals for each individual
preposition independent of number). All values
for the individual unit features are then ignored.
In this way, it is possible to align 88 feature val-
ues, based on the output of the English and Dutch
POS taggers.7 Note that as part of the feature
alignment, we take the negative log of all corpus
frequency (corpfreq) values in an attempt to re-
duce the effects of differing corpus sizes in En-
glish and Dutch.

Feature-to-feature classifiers: EN∗(feat∗)
While we stated above that there is generally

low correlation between individual unit features
in English and Dutch, some unit features are
highly correlated crosslingually. One example is
the English singular determiner a which corre-
lates highly with the Dutch een. Here, we can thus
simply match the feature values onto one another
directly. In other cases, a many-to-many mapping
exists between proper subsets of a given feature
cluster (e.g. the English determiner pair each and
every correlates highly with the Dutch determiner
pair ieder and elk), and alignment takes the form
of feature value amalgamation in each language
by averaging over the unit values and aligning
the amalgamated values. A total of 466 unit fea-
ture values are amalgamated into 351 feature val-
ues, which are then combined with the 88 aligned
total values from cluster-to-cluster classification

7All crosslingual feature-based methods were tested over
the output of the POS taggers, the chunkers and the com-
bined outputs of the three English and two Dutch pre-
processors. Overall, there was very little separating the re-
sults, and the simple POS tagger generally produced the
most consistent results.



for a total of 439 feature values. As for cluster-
to-cluster classification, we evaluate feature-to-
feature classification over the output of the En-
glish and Dutch POS taggers.
We implemented a total of 5 feature-to-feature

classifiers: (1) ENBIN(featALL) makes use of all
aligned features in the form of separate binary
classifiers; (2) ENMULTI(featALL) similarly uses
all aligned features, but in a multiclass classi-
fier architecture; (3) ENBIN(featDET) is based on
only aligned determiner features, plus the aligned
cluster totals; (4) ENBIN(featPREP) is based on
only aligned preposition features, plus the aligned
cluster totals; and (5) ENBIN(featPRON) is based
on only aligned pronoun features, plus the aligned
cluster totals.8

3.3 System combination
System combination takes the outputs of het-
erogeneous classifiers and makes a consolidated
classification based upon them. It has been
shown to be effective in tasks ranging from word
sense disambiguation to tagging in consolidat-
ing the performance of component systems (Klein
et al., 2002; van Halteren et al., 2001). In
our case, we first take the outputs of all unsu-
pervised (i.e. evidence-based) and crosslingual
classifiers—a total of 12 classifiers—for each
countability class (ENBIN(combined)). We test
the effects of system classification by way of
10-fold cross-validation over the 196 annotated
Dutch nouns. This provides an estimate of the
classification performance we could expect over
unannotated Dutch noun data using the 196 an-
notated nouns as our sole source of annotated
Dutch data. We also test combining the outputs
of the 12 unsupervised and crosslingual classifiers
with that of the Alpino-trained Dutch classifier
(E/NNBIN(combined)).

4 Results and Discussion

Classifier performance is rated according to clas-
sification accuracy (the proportion of instances
classified correctly: Acc), precision (P), recall
(R) and F-scoreβ=1 (F).
The baseline for each countability class is

a majority-class binary classifier which simply
classifies all instances according to the most
commonly-attested class in the given dataset. Ir-
respective of the majority class, we calculate the

8Results for the multiclass classifier over feature subsets
were found to be markedly worse than for binary classifiers.

Method Acc P R F
NNBIN(majority) .847 .847 1.000 .917
NNBIN(evidence,all) .551 .964 .488 .648
NNBIN(evidence,chunk) .510 .973 .434 .600
NNBIN(evidence,POS) .474 .970 .392 .558
ENBIN(translate) .948 .948 .331 .491
ENBIN(transliterate) 1.000 1.000 .151 .262
ENBIN(cluster) .806 .957 .807 .876
ENMULTI(cluster) (.704) .959 .837 .894
ENBIN(featALL) .750 .983 .717 .829
ENMULTI(featALL) (.704) .959 .855 .904
ENBIN(featDET) .719 .966 .693 .807
ENBIN(featPREP) .755 .968 .735 .836
ENBIN(featPRON) .735 .952 .723 .822
ENBIN(combined) .873 .944 .904 .923
NNBIN(featALL) .867 .961 .880 .918
E/NNBIN(combined) .903 .947 .940 .943
EEBIN(featALL) — .948 .972 .960

Table 1: Results for countable nouns

Method Acc P R F
NNBIN(majority) .638 .362 (1.000) (.532)
NNBIN(evidence,all) .515 .423 .930 .581
NNBIN(evidence,chunk) .505 .414 .887 .565
NNBIN(evidence,POS) .628 .490 .718 .583
ENBIN(translate) .583 .583 .099 .169
ENBIN(transliterate) .966 1.000 .056 .107
ENBIN(cluster) .740 .692 .507 .585
ENMULTI(cluster) (.704) .750 .592 .661
ENBIN(featALL) .699 .750 .254 .379
ENMULTI(featALL) (.704) .822 .521 .638
ENBIN(featDET) .801 .758 .662 .707
ENBIN(featPREP) .776 .755 .563 .645
ENBIN(featPRON) .689 .708 .239 .358
ENBIN(combined) .791 .776 .593 .672
NNBIN(featALL) .770 .783 .507 .615
E/NN(combined) .812 .819 .609 .699
EEBIN(featALL) — .884 .907 .895

Table 2: Results for uncountable nouns

recall and F-score based on a positive-class classi-
fier, i.e. a classifier which naively classifies each
instance as belonging to the given class; in the
case that the positive class is not the majority class
(as occurs for uncountable nouns), the recall and
F-score are given in parentheses.
We also provide an upper bound estimate of

precision, recall and F-score based on a monolin-
gual English countability classification task, with
classifiers designed similarly to the monolingual
Dutch classifiers (EEBIN(featALL)). In the case
of English, the total number of feature values is
3,852, based on the concatenation of feature val-
ues from each of a POS tagger, chunker and de-
pendency parser (Baldwin and Bond, 2003a). Our
reason for choosing this as an upper bound is that
it is based on moderate-volume, relatively noise-
free training data and full feature correlation.
The classifier results are presented in Tables 1



and 2, broken down into the countable and un-
countable classes. In each case, the best sin-
gle value for each of evaluation metrics (other
than the baseline and upper bound) is presented
in boldface.
The first thing to notice is how much bet-

ter the classifiers perform for countable than un-
countable nouns. This is due to two factors:
the relative occurrence of members of the two
classes (as reflected in the majority class classifi-
cation accuracies), and the relative volume of fea-
tures correlated with each class. The relatively
high baseline accuracy and F-score for countable
nouns (.847 and .917) surpassed the performance
of all classifiers other than the translation-based,
transliteration-based, combined and monolingual
classifiers. For uncountable nouns, on the other
hand, appreciable gains over the baseline were
observed for many of the systems. Results for
countable nouns were relatively close to the upper
bound results for the English monolingual classi-
fier, whereas results for uncountable nouns were
less competitive.
We have made the claim that, due to the lack of

reliable training data in Dutch, crosslingual clas-
sification using English data is a viable option.
This is borne out by the finding that the com-
bined crosslingual classifier (ENBIN(combined))
consistently outperforms the monolingual Dutch
classifier in F-score, with the discrepancy be-
ing particularly noticeable for uncountable nouns.
This finding is particularly striking given that
the volume of Dutch training data is more than
twice the volume of English data. Additional
support comes from the analysis of the agree-
ment between the system outputs the 196 hand-
annotated nouns, recalling from §2.4 that the
benchmark agreement for the Alpino data is
81.1%. The agreement for NNBIN(featALL) is
82.1%, that for ENBIN(combined) is 83.2%, and
that for E/NNBIN(combined) is a respectable
85.7%. That is, all three methods produce count-
ability judgements that are more parsimonious
with actual corpus occurrence than the Alpino
data, and the combined crosslingual classifier
(ENBIN(combined)) is superior to the monolin-
gual classifier (NNBIN(featALL)). Having said this,
the combined crosslingual/monolingual classifier
(E/NNBIN(combined)) outperforms both the com-
bined crosslingual classifier and the monolingual
classifier, in which sense the Alpino data has
some empirical utility. That is, we have shown
that high-quality out-of-language English count-

ability data is a stronger predictor of Dutch count-
ability than medium-quality in-language Dutch
countability data, but at the same time that the two
are complementary.
There is very little separating the cluster-to-

cluster and feature-to-feature classifiers. Given
the high overhead in hand-aligning features in
feature-to-feature classification, cluster-to-cluster
classification would appear a low-cost, high-
performance solution to the crosslingual count-
ability task. Within the feature-to-feature clas-
sifiers, the results for the feature subsets are in-
triguing. We would expect that the determiner
features should provide greater leverage than ei-
ther the pronoun or preposition features, and this
is indeed the case for uncountable nouns, where
the determiner feature-based classifier returns the
best F-score of all the classifiers. For countable
nouns, however, the determiner features perform
the worst of the three. Further research is required
to determine the cause of this effect.
The results for the translation- and

transliteration-based classifiers require qual-
ification. Unlike the other classifiers, we do
not get 100% coverage, as classification is
possible only in the case that we have an English
translation or transliteration with countability
information. Strictly speaking, this dimin-
ished coverage should not be reflected in any
of our evaluation metrics. In order to bring
out this effect in Tables 1 and 2, we chose to
base recall on the ratio of correctly-classified
test exemplars to the number of positive-class
exemplars, irrespective of whether the method
is able to classify them. The F-score is thus
proportionately low. If we were to base recall on
the number of classified positive-class exemplars,
the recall for the translation-based classifiers
would become a perfect 1.000 (55

55 ) and 1.000
(77 ) for the countable and uncountable classes,
respectively, and the corresponding numbers
for the transliteration-based classifiers would be
1.000 (25

25 ) and 0.800 (
4
5 ). That is, assuming we

have English translation(s) for a Dutch noun or
an English word of the same spelling, we get a
very accurate estimate of the Dutch countability
from the English countability data.
Finally, it is important to realise that these re-

sults are based on a limited test dataset (196
nouns) and that fuller evaluation is required to
validate our findings. Also, our method relies cru-
cially on the assumption that English and Dutch
are closely-related languages, and its scalability



to alternate language pairs remains to be deter-
mined.

5 Conclusion
We have presented several methods for classify-
ing Dutch nouns as countable and/or uncountable
on the basis of Dutch and English data. The clas-
sifiers depend on translation/transliteration data
or linguistic features that were extracted from
unannotated corpora. We compared a range of
crosslingual English-to-Dutch classifiers with a
monolingual Dutch-to-Dutch classifier, and found
that the crosslingual classifiers outperformed the
monolingual classifier to varying degrees. Based
on this, we suggest that the optimal fast-track so-
lution to Dutch countability classification is to use
English data.
In future research, we are interested in the

possibility of co-training via translation- and
transliteration-based classification, as this seems
to provide a means for automatically generating
high-quality Dutch countability data to learn a
monolingual classifier from.
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Abstract

Interlinear text is a common presenta-
tional format for linguistic information,
and its creation and management have
been greatly facilitated by the develop-
ment of specialised software. In earlier
work we developed a four-level model
and corresponding formal specification
for interlinear text. Here we describe
a suitable XML representation for the
model and show how it can be rendered
into a variety of convenient presenta-
tional formats. We conclude by dis-
cussing architectural extensions, an ap-
plication programming interface for in-
terlinear text, and prospects for embed-
ding the interlinear model into existing
applications.

1 Introduction
Interlinear text is a standard presentational form
for displaying a source text aligned with variety
of linguistic annotation phonological, morpholog-
ical and syntactic analyses, glosses and transla-
tions. An example of Yidinj interlinear text is
shown in Figure 1.
Interlinear texts can vary in the number of

rows, the content and level of analysis for each

njundu wanjdjam
you-SA where-ABL

Where have you come from ?

Figure 1: Yidinj Interlinear Text

row, and certain aspects of layout. However, as
we survey a broad range of cases, we can observe
consistent patterns in layout. These patterns have
lead us to propose an abstract model of interlin-
ear text which is sufficiently general that it en-
compasses the majority of cases based on a sur-
vey of print and electronic representations of in-
terlinear text (Bow, Hughes and Bird 2003). As
we will show here, the model has a natural repre-
sentation in XML, which can be used to generate
a variety of useful visualisations. We begin by de-
scribing the model in §2, then propose a suitable
XML representation (§3). In §4 we discuss com-
mon presentation styles, and in §5 we show how
they can be implemented using XSL. Finally, we
report our work on a prototype (§6) and discuss
future research (§7).

2 The EMELD Interlinear Text Model

For the purposes of this discussion we adopt the
following nomenclature. By interlinear text we
mean a written record of an external linguistic
event, consisting of a transcription aligned with
linguistic analysis. A line of interlinear text refers
to a row of transcription plus all the rows of analy-
sis pertaining to it. Within the line, there is a hor-
izontal modality of words and their analysis, plus
there is the vertical modality of row elements to
indicate the structure of the interlinear text. Ad-
ditionally there is the vertical alignment of one
row above the other; typically there is consistency
from one block of rows to the next in the vertical
alignment of these rows.
Within the context of the EMELD project

(EMELD, 2000), Bow, Hughes and Bird (2003)



proposed a four-level, hierarchical model of inter-
linear text consisting of Text, Phrase, Word and
Morpheme levels. A phrase is a collection of
transcription and its interlinear analysis arrayed
across two or more rows, normally represented in
interlinear text as beginning on a new line, and
wrapping only if necessary. A word is a smaller
collection of material (e.g. transcriptions, mor-
phemes and glosses) that must be kept together
on the same line. Amorpheme is the smallest pos-
sible level of alignment between linguistic forms
and their meanings. In contrast, a text is the high-
est level of structure corresponding to the exter-
nal linguistic artefact being investigated. Just as
it is possible for a word to contain a single mor-
pheme, a phrase may contain a single word, and
a text may contain a single phrase. Thus there is
no prior commitment to the total length of this ex-
ternal linguistic artefact. According to this four-
level scheme, the user has flexibility in the assign-
ment of content to levels, and the decision may be
influenced by both linguistic considerations (what
is a ‘word’? Is this one text or two?) and layout
considerations (what should be kept on the same
line in a display?). Additionally, at any particular
level, analysis may be optionally omitted.
In this model, two rows are represented within

a single node of the hierarchy if they are aligned
with each other. For example, morphemes and
their glosses, while being displayed on two differ-
ent rows, are both represented at the Morpheme
level of the hierarchy, given their 1:1 correspon-
dence. The hierarchical model allows for the con-
catenation of morphemes into words, words into
phrases, and phrases into text, as required by the
interlinear text. It also allows for complex infor-
mation structures to be represented in simple tree
diagrams.

3 The XML Representation

We now turn to a discussion of the XML repre-
sentation of the EMELD model. In this represen-
tation, the textual material has a number of levels,
which can be considered nodes in an XML doc-
ument. Each level consists of some content, and
a sequence of children at subsequent levels. The
content is given a user-defined type which docu-
ments its intended semantic interpretation.
<interlinear-text>

<item type="user-defined">
Content at the text level, such
as metadata, or an unaligned
transcription of the entire text,
or a pointer to an unaligned audio file

</item>
<phrases>
Nested XML content to represent the
phrasal constituents of the text

</phrases>
</interlinear-text>

This structure is repeated at each of the four
levels, using the Yidinj example again:

<interlinear-text>
<item type="title">A Yidinj Story</item>
<phrase>
<item type="number">98</item>
<item type="gls">[When Damari eventually

did turn up at the fighting ground, Guyala
asked him:] ’Where have you [come] from?’
</item>

<words>
<word>
<item type="txt">nundu</item>
<morphemes>
<morph>
<item type="gls">you-SA</item>
</morph>
</morphemes>

</word>
<word>
<item type="txt">wandam</item>
<morphemes>
<morph>
<item type="gls">where-ABL</item>
</morph>
</morphemes>

</word>
</words>
</phrase>
</phrases>

</interlinear-text>

4 Interlinear Text Styles

Now that we have a model of the structure of
interlinear text, we demonstrate its adequacy by
showing how it can be used in generating a variety
of layouts. (This logic is largely analogous to that
used in conventional generative grammar: having
analysed surface forms and proposed an under-
lying representation, it is incumbent upon us to
provide the rules and constraints which can be ap-
plied to generate the original surface forms from
the putative underlying representations.) Here
we discuss a variety of presentation issues, be-
fore defining and demonstrating the mapping us-
ing XSL in the following sections.



4.1 Grouping of Content
Generalising from these examples, it should be
possible to view an interlinear text with coarser-
grained alignment, e.g. combining phrase-level
items to form a single text-level item, or combin-
ing morpheme-level items to form a single word-
level item. More generally, when a text is en-
riched by the addition of finer-grained segmen-
tation, it should still be possible to view it with
coarser alignment. In terms of the hierarchical
model, this amounts to taking material from a
lower-level set of nodes, concatenating it together,
and storing it in a higher-level node. Just as we
can ignore the low-level structures, we must also
be able to ignore the high-level structures. For ex-
ample, given an interlinear text it should be pos-
sible to extract its words or morphemes in order
to construct a word-list. Therefore, it is a require-
ment on the rendering process that it can ignore
aspects of the structure for the purpose of display
and alignment.

4.2 Which Rows to Display
Interlinear texts have widely varying levels of de-
tail, ranging from two rows to a dozen. When a
text is enriched by the addition of another row of
information, it should still be possible to view it
in its original form without this extra row. There-
fore, it is a requirement on the rendering process
that it can omit specific rows from the display.

4.3 Row Styles
Font variation in form may reflect the preference
of the author or the requirements of the publisher.
It should be possible to view the rows of a given
text in different styles without having to manually
change the style of every item in the text. There-
fore, it is a requirement of the rendering process
that it can distinguish different types of rows and
display them in user-specified fonts, typefaces,
point sizes and so forth.

4.4 Ordering of Rows
There are some widespread conventions concern-
ing the vertical arrangement of the rows of inter-
linear text. For example, morphemes are usually
written underneath the corresponding words , and
glosses are usually written underneath the corre-
sponding morphemes. However, there are occa-

sional exceptions to such patterns. At the text
level we can observe considerable variation. In
some cases, the notes on the text are placed af-
ter the phrases of the text, in other places the or-
der is reversed. It should be possible to view a
the rows of a given text in different orders with-
out having to manually reorganise the layout of
every item. Therefore, it is a requirement on the
rendering process that it can distinguish different
types of rows and display them in a user-defined
sequence.

5 Rendering Interlinear Text with XSL

Our implementation of rendering is based on the
Extensible Stylesheet Language (XSL) (Bradley,
2000), which can be used to transform XML doc-
uments into other formats. By choosing different
stylesheets, or selecting different parameters for
a given stylesheet, it should be possible to gen-
erate a variety of useful formats, whether for hu-
man consumption using a particular technology
(e.g. conversion to HTML for delivery to a web
browser), or for machine consumption (e.g. con-
version to or serialisation of another XML format
for delivery to another program).
The transformation performed by this model

must accomplish two things: (i) convert the ab-
stract XML representation into a format which
specifies grouping, row ordering and styles, and
(ii) convert the XML markup into the formatting
instructions of some other language like PDF or
HTML. The second of these can be further broken
down into two stages: conversion to XSL Format-
ting Objects, and conversion to the delivery for-
mat. The full model is shown in Figure 2 below.
On the left we see the abstract representation,

which is mapped using one of our stylesheets
XSL1 to a surface representation that fixes the
grouping of items, ordering of rows, and so forth.
A different choice of stylesheet will result in dif-
ferent groupings and orderings in the surface rep-
resentation XMLSR. This format may be further
transformed using third-party XSL stylesheets
(XSLPUB) to meet the requirements of publish-
ers. We supply another transform XSLFO which
converts the surface representation into a low-
level representation using XSL formatting ob-
jects. Third party software can then be used to
generate the format to be delivered to the end-



user.
The key rendering challenge posed by inter-

linear text is line-wrapping. A line of inter-
linear text contains multiple rows, and these
must be wrapped as a group, keeping words
and their morphological analysis together on the
same line. Thus, these multi-row constituents
must be treated as indivisible entities. Format-
ting languages such as HTML (Raggett, Le Hors
and Jacobs, 1999), DocBook (OASIS, 2003) and
DSSSL (ISO/IEC, 1996) model a document as a
collection of blocks (paragraphs, quotes, tables,
lists) each containing lines of text. Critically,
blocks must appear on a line of their own, or
equivalently, lines cannot contain multiple blocks.
In order to handle the line wrapping requirements
of interlinear text, we need a language which per-
mits inline blocks, such as TeX or XSL-FO (XSL
Formatting Objects (Adler et al, 2003)). To facili-
tate flexible integration with web environment we
have chosen to use XSL-FO.
Unfortunately, some XSL-FO engines do not

handle inline blocks correctly at the present time
(e.g. Apache FOP (The Apache Project, 2003)
and XEP (RenderX, 2003)). After experimenta-
tion, we have found that XSL Formatter (Anten-
naHouse, 2003) correctly handles inline blocks,
and so we have used it to generate the examples
included below. For a discussion of XSL-FO en-
gines and their various conformance levels, see
Kimber (2002).
XSL processing of the abstract XML format to

specify grouping, row-ordering and styles is quite
straightforward. We give three examples to illus-
trate. The following template matches a phrase,
and orders its constituent words before any con-
tent at the phrase level (such as a free translation).
<xsl:template match="phrase">
<phrase>
<xsl:apply-templates select="words"/>
<xsl:apply-templates select="item"/>
</phrase>
</xsl:template>

The following template matches an interlinear-
text, ordering any content of type “title” before
the constituent phrases, and ordering any other
content (e.g. notes) afterwards.
<xsl:template match="interlinear-text">
<interlinear-text>
<xsl:for-each
select="item[@type=’title’]">

<title>
<xsl:value-of select = "." />
</title>
</xsl:for-each>
<phrases>
<xsl:apply-templates

select="phrases"/>
</phrases>
<xsl:for-each
select="item[@type!=’title’]">
<item>
<xsl:value-of select = "." />

</item>
</xsl:for-each>

</interlinear-text>
</xsl:template>

The following template matches a document
and constructs a single interlinear text consisting
of just the words (including any morphemes and
glosses), and sorts them.
<xsl:template match="document">
<document>
<interlinear-text>
<phrases>
<xsl:for-each
select="interlinear-text/phrases/

phrase/words/word">
<xsl:sort select="."/>
<phrase>
<words>
<xsl:copy-of select="."/>
</words>
</phrase>
</xsl:for-each>
</phrases>
</interlinear-text>
</document>
</xsl:template>

Using such templates we can generate a va-
riety of document types for external processing
(e.g. use by third-party software) or for delivery
to end-users.
Further work on the XSL mapping is needed:

to support common layout styles and to include
additional rendering parameters; to permit display
parameters to be stored within the abstract XML
representation itself (or in a special XML format
declaration file); and to model affixation in order
that hyphens are introduced appropriately at mor-
pheme boundaries.

6 Prototype

In demonstrating our model we have adopted a
three level architecture which consists of an un-
derlying data representation, a surface display
format, and a variant display format. Essentially



the processes involved in demonstrating the flex-
ibility of this architecture are the conversion of
the underlying data to a surface display, and then
converting the surface display to a variant display.

6.1 Underlying Data

The underlying data is interlinear text structured
according to our model and expressed in XML.
This underlying data can be validated against an
existing DTD or schema.

6.2 Surface Display

The surface display is a basic display format cor-
responding to traditional interlinear text which is
enabled by the application of an XSL stylesheet
to the underlying data. There are two types of
surface display we have identified. The first is a
simple type, namely direct application of a sin-
gle XSL stylesheet to an underlying XML doc-
ument. The second is more complex, including
the parameterisation of user selected display in-
put which in turn affects the XSL stylesheet and
the corresponding display of the underlying XML
document. These distinctions form the basis of
the categorisation of functions.

6.3 Variant Display

The variant display is a customised display format
which demonstrates the flexibility of manipulat-
ing the underlying data for different display pur-
poses. For this demonstration we have identified
a number of desirable variants based on common
linguistic data structures.

6.3.1 Simple Display Types

We have identified two simple display types: (i)
free translation as separate block and (ii) frame
interface based expansion of free translation. In
the first variant, we manipulate the surface dis-
play to format the free translation as a separate
block of text from the interlinear content. In
the second, we manipulate the surface display to
provide the free translation in a separate frame
from the interlinearization, and allow synchro-
nised scrolling and linking between the segments
of the free translation and the relevant interlinear
segments.

6.3.2 Complex Display Types
We have identified a number of complex dis-

play types based on parameterised input. These
are tree view or metastructural view; row re-
ordering; optional row display; wordlist link-
age; and concordance linkage. The tree-view or
metastructural display essentially allows naviga-
tion of the interlinear text using a tree view dis-
play format. Individual branches of the tree can
be expanded or compressed. This may be use-
ful for structural analysis of the text. The row re-
ordering display allows the selection of a prefer-
ence for the order of the lines of interlinear text,
eg display source text first, display source text
last. This may be useful in evaluation contexts for
back-glossing. The optional row display allows a
selection of preference for how many interlinear
lines are displayed. This may be useful for con-
text where features of interest are identified in the
interlinear text (eg syntactic vs morphological vs
phonological annotation). The word list linkage
display allows the selection of a particular word,
and the corresponding display of interlinear con-
tent for that word. This may be useful for con-
texts where particular words are of intermittent
interest and detected whilst browsing the source
or translation text. The concordance linkage dis-
play allows the selection of a particular, and the
corresponding display a list of of all other occur-
rences of the particular word within the text, in-
cluding the surrounding words. Any context can
be selected, and the complete interlinearization
displayed for that context.

6.4 Implementation
We have implemented a prototype which supports
the rendering of user-nominated display types.
Our implementation is web based, with all user
interaction occurring within the browser but re-
liant on embedded XML rendering capabilities
and plugins to handle external application types
such as PDF. Our implementation can be de-
scribed as consisting of three modules, namely
the user interface, the parameterisation logic, and
the rendering engine.
The user interface is very simple, allowing the

user to select the input text from a series of XML
interlinear sources, then to select various display
types, and finally to select an output format. Un-



derlying each of these choices are a series of pa-
rameters, which are processed by a script to deter-
mine the display type and result type. These pa-
rameters then are passed to the rendering engine,
which in combines the interlinear source and the
option parameters to generate the appropriate out-
put type which is then sent back to the browser for
either direct display or display through a browser
plugin.
At a technical level, the user interface itself

is written in HTML, while the parameterisation
logic is coded in PHP.We have experimented with
two server side implementations - one is a wrap-
per based approach to a Java application executed
in the shell; the other is using a Java servlet sup-
ported by Apache and Tomcat. (These alterna-
tive implementations reflect the lack of a fully-
featured rendering engine which services both
browser based rendering and plugin-based render-
ing.
There are a number of extensions to the proto-

type we hope to implement in the future, includ-
ing a remotely instantiable rendering engine, the
ability for users to contribute their own interlinear
texts for rendering, the ability for users to control
aspects of the display types, and a wider variety
of output formats (eg. JPEG, SVG, or tree dia-
grams).

7 Future Research

Although we have developed a specification and
prototype implementation for interlinear text,
there are a number of areas which warrant fur-
ther research. Here we identify and briefly dis-
cuss three of these, namely: architectural exten-
sions; the development of an API for interlinear
text manipulation; and the prospects for embed-
ding of the interlinear text model with existing
(and ultimately, new) tools. The creation of such
tools which are designed for use by the linguist
for creating, editing and publishing of interlinear
texts represents a significant undertaking, but is
based on the foundational work of analysing in-
terlinear text structure, and expressing this in an
open format.

7.1 Architectural Extensions
Having discussed the presentational flexibility
that the XML-based specification provides, we

can now turn to the corresponding architectural
flexibility inherent in XML itself. We will con-
sider linkages of interlinear text to higher level
linguistic ontologies; as the subject for mining
and retrieval in large corpora, such as the Web;
and compatibility with other schemas for the rep-
resentation of materials in an interlinear fashion.

7.1.1 Linguistic Ontologies
Interlinear text typically includes annotations

regarding a wide variety of linguistic phenom-
ena. Each annotator typically uses a different la-
belling inventory for such analysis, and thus au-
tomated cross-linguistic enquiry is made signif-
icantly more difficult through the disparate la-
belling of linguistic features. In order to lever-
age the large amount of annotated interlinear text
which exists, there is a requirement for annotation
to subscribe to a common ontology of linguis-
tic concepts. Such a linguistic ontology (GOLD)
has been defined in Farrar, Lewis and Langen-
doen (2002) and further refined in Farrar and
Langendoen (2003). Our model provides ease
of integration of such ontology-based annotation
structures, and may provide a leverage point for
theory-neutral cross-linguistic enquiry. Further
work is required to fully exploit the power of a
formally structured interlinear text with embed-
ded ontological annotations.

7.1.2 Text Mining and Retrieval
Although we provide a model for encoding in-

terlinear text and its subsequent manipulation, it
is obvious that a vast amount of interlinear mate-
rial already exists, some of which is in electronic
form. In particular, interlinear text is published
online through a variety of document types in-
cluding lexicons, pedagogical materials, language
recordings and transcriptions, language descrip-
tions, grammars and scholarly papers about lan-
guage. For the most part, this interlinear material
is locked up in proprietary formats or is expressed
only in a loosely structured fashion. Re-use of en-
coded interlinear text which exists in this form is
desirable, but obstructed through formats which
do not lend themselves to easy linkage. Some re-
searchers, notably Lewis (2003), have embarked
on efforts to identify interlinear text in these con-
texts, and to retrieve likely examples of interlinear
text for re-use. In this particular context, the ex-



istence of a model into which existing interlinear
forms can be easily translated is a desirable entity.
Providing tools exist to manipulate interlinear text
compliant with this new model may provide an
incentive for linguistic data managers to explore
conversion techniques for common proprietary or
loosely structured formats. Assuming such con-
version is carried out, the standardised body of
interlinear text that results can in turn be queried
directly for a variety of purposes.

7.1.3 Compatibility with Other Schemata
In our earlier work, we clearly delineated in-

terlinear text from other materials which were ex-
pressed in an interlinear format. Models such as
those proposed by Brugman (2003) use interlin-
ear text as a representational medium for non-
textual data, in particular for multimodal sources
such as audio and video. The annotation of such
data sources may require variation in the gran-
ularity of an interlinear model in order to cap-
ture the extra-linguistic dimension of the expres-
sion (eg gesture). Whilst we position our model
as an interchange (and possibly archival format),
we acknowledge that other annotation types re-
quire different structures in which to encode an-
notations. Already we have commenced investi-
gations into the use of XML namespaces to allow
both types of annotation and analysis to coexist
within a single XML document. Software which
is XML namespace-aware can then interpret rows
of analysis according to the appropriate textual or
multimodal models. Further work in this area is
required to ensure tight integration and the devel-
opment of appropriate conversion tools.

7.2 An API for Interlinear Text
Manipulation

We have presented a data model but apart from
our discussion of rendering we have not attempted
to define the legal operations that construct, ac-
cess and otherwise manipulate the structures. In
future work we plan to define the data types and
legal operations formally, independently of their
possible XML and XSL representations. This
will serve as the basis for object-oriented imple-
mentation, for the definition of application pro-
gramming interfaces, and for research on suitable
query languages. More generally, we need to con-

sider interfaces to other data sources such as texts
and lexicons.

7.3 Embedding Interlinear Functionality in
Application Instances

The model presented here is a specialisation of
the interlinear text model presented byMaeda and
Bird (2000), and can be represented using anno-
tation graphs. In future work we will implement
a tool that is part of the Annotation Graph Toolkit
(AGTK, http://agtk.sf.net), building on the exist-
ing InterTrans tool (Bird et al, 2002). This will
require extending the XML format to support the
specification of media file offsets which is likely
to be trivial. In addition, translation tools which
support conversion between native AGTK and our
proposed model format for interchange will facil-
itate the import of existing data into this new tool.

8 Conclusion

Interlinear text is a highly pervasive data type in
the linguistic domain. Although a number of tools
have gained widespread acceptance for creating
and editing interlinear text, the lack of an open
and extensible model has resulted in annotated
textual data in interlinear form being tied to par-
ticular implementations either as structural or pre-
sentation formats. In this paper we have sought to
present open, extensible encoding and presenta-
tion mechanisms which allow the re-use of inter-
linear text in a variety of output formats. A signif-
icant advantage of adopting an XML-based struc-
tural encoding is that interlinear text can poten-
tially be manipulated and queried systematically
by any number of tools which subscribe to open
standards, whether they have a linguistic lineage
or otherwise.
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Abstract

This paper describes a novel model
for term frequency distributions that
is derived from queuing-theory. It is
compared with Poisson distributions, in
terms of how well the models describe
the observed distributions of terms, and
it is demonstrated that a model for term
frequency distributions based on queue
utilisation generally gives a better fit.
It is further demonstrated that the ratio
of the fit/error between the Poisson and
queue utilisation distributions may be
used as a good indication of how inter-
esting a word is in relation to the topic
of the discourse. A number of possible
reasons for this are discussed.

1 Introduction

When a given term occurs in a document, what
is the probability that it will occur again, and
how will this probability change when you have
seen , or instances of this term? While
NLP is a vast field, the majority of research is
devoted to looking for intelligent ways to auto-
mate and speed up processes such as grammati-
cal and/or semantic parsing, which a human could
complete with an equivalent or much higher accu-
racy. Where NLP can exceed human accuracy is
in extraction of patterns from large scale corpora
(Banko and Brill, 2001). Lexical systems, such as
term collocations, co-occurrences and frequency
distributions, are one such area.

Typically, a word’s occurrence across docu-
ments have been assumed to be Poisson in dis-
tribution. When this hasn’t worked, a combina-
tion of two Poisson mixtures has been attempted
with suggestions that when this fails combina-
tions of three or more are appropriate (Bookstein
and Swanson, 1974; Church and Gale, 1995).

1.1 Contribution of this paper

It is demonstrated here that the distribution of a
queue utilisation (QU) is a more accurate repre-
sentation for word frequency distributions than a
Poisson distribution. A Poisson distribution cap-
tures the ‘burstiness’ of the frequency of a given
word, otherwise known as the clustered-ness or
self-collocation of a word. Here, it is shown
that while the underlying assumption of bursti-
ness holds, there are better representations for
capturing this.
While it has previously been observed that

words that best singularly describe the topic (var-
iously labeled the ‘interest words’ or ‘content
words’ of a discourse) are the words that least
obey a Poisson distribution (Church, 2000), this
has typically been used only as an observed trend,
and without the search for what method best fits
modelling this other distribution (if any).
The significance of the relationship between

the fits of a Poisson and QU distribution is ex-
plored, and it is demonstrated that the level of dis-
parity between the fits of Poisson and QU distri-
butions can be used to extract words that best sin-
gularly describe participants in news topics with
a very high level of accuracy.
This paper reports some preliminary results



in using such a method on a large corpus of
newswires, and discusses the results in relation to
this register.

1.2 Outline
Section 2: background and related work.

Section 3: definitions of the equations use here.

Section 4: testing framework.

Section 5: results of testing.

Section 6: discussion & conclusions.

2 Background and Related Work
In terms of an attempt to describe the reasons
for variance in the repetition of certain terms, the
most recent work in this area is (Church, 2000)
who defined the increased probability of a word
occurring once it has already been seen ‘posi-
tive adaptation’. It was the observation of the
distributions described in this paper, along with
the common trend of burstiness in network com-
munications, that provoked the exploration of a
queuing-theory model of word frequency distri-
butions. There, and in (Church and Gale, 1995)
the departure from a Poisson distribution were de-
scribed as the result of ‘hidden variables’ relating
to variation in register and author.
Word frequency distributions have been ex-

ploited in almost all tasks in computational lin-
guistics and NLP, from subject boundary detec-
tion (Richmond et al., 1997), to information ex-
traction/retrieval (Lynam et al., 2001; Pirkola et
al., 2002; Jones et al., 2000).
The author’s not aware of any previous word

frequency distribution research using queuing
theory models. Most previous research has used
models based on information theory, presumably
because it was to be used for information ex-
traction/retrieval. Nonetheless, the corpus used
here are newswires, so in the spirit of McLuhan,
a model is investigated that is derived from the
medium of communication.

3 Equations for probabilistic
distributions

The goal of matching a word frequency distri-
bution to a statistical equation is to find the op-
timal parameter value(s) for that equation, such

that it fits the observed distribution with as little
error as possible. There are different metrics and
methodologies for calculating goodness of fit, in-
cluding entropy measures, least squared regres-
sion and the practical effectiveness of the infor-
mation when applied to some NLP task. Here, the
chi-squared ( ) test is the metric used. This was
appropriate for two reasons. It was the measure
minimised by the optimisation algorithm (see be-
low), and it is insensitive to error on the axis,
which is desirable as this represents an ordinal
distribution and it is chiefly the divergence from
the expected probability that is of interest.

3.1 Equations Used
These are the four equations that were tested here:
The Poisson distribution ( ):

(1)

The Double Poisson distribution ( ):

(2)

The Queue Utilisation ( ):

(3)

The Double Queue Utilisation ( ):

(4)

A weighted combination of a QU and Pois-
son distributions was also considered. It is desir-
able as only a Poisson distribution initially allows

(for values of ). Some
brief testing confirmed it gave accurate fits, but it
is not included in the testing and analysis here as:

1. It is difficult to find a theoretical justification
for combining the two in this manner. If the
only advantage is that a Poisson distribution
allows , then perhaps there
exists some other equation that can model
this in manner that is not so ad-hoc. Fig-
ures 3 and 6, which do possess this prop-
erty, actually had less error in QU distribu-
tions, although it may take a close analysis
of the graphs to see this. What is easier to
see is that a combination of the two would
definitely give a much better fit.



2. For an accurate comparison with the combi-
nations of a single distribution type, it would
be necessary to calculate the extent of over-
fitting that occurs, increasing and complicat-
ing the work described here.

3.2 Poisson
A Poisson distribution is often used to model sys-
tems where the probability of an observation is
very low, but the possibility of an observation is
very high.
In information retrieval, a double Poisson dis-

tribution is often favoured (Robertson andWalker,
1994). It is simply the weighted combination of
two Poisson distributions.
Even with the additional parameters of the sec-

ond and the weighting factor, a double Poisson
distribution still fails to accurately capture word
frequency distributions, but extending the equa-
tions to the combination of three or more Poisson
mixtures will have the additional problem of the
extra parameters to optimise. The most obvious
disadvantage of this, other than the computational
expense, is the potential for the resultant curve to
overfit the data.
Church and Gale addresses this by suggesting

Poisson mixtures (Church and Gale, 1995), which
are an arbitrary number of Poisson distributions,
allowing multiple values for , but varying ac-
cording to a single density function, and therefore
only adding one extra parameter. The assumption
maintained here is that the underlying distribution
is Poisson in nature, which is later noted as prob-
lematic (Church, 2000).

3.3 Utilisation Queue
In queuing-theory, a utilisation queue is an equa-
tion representing the probability of some queue
having a given number of entities ‘waiting’ in it.
A queuing system is often described by the

general M/G/1 model. Where:
= The occupancy
= the average service rate
= the variance of the service time
=

The system is expressed by:

(5)

Any queue may be described in terms of this
equation, such as people waiting in line to buy
tickets at a movie cinema, or the traffic on a com-
puter network. The second of these, and its most
common usage, is interesting in this context as it
also represents a form of communication, albeit
one a little more abstracted.
Within this, the model is often specialised to

the M/M/1 model. It makes two assumptions
about the data: both the queue arrival rate and the
service rate are Poisson. Its relationship to a Pois-
son distribution is actually a little more involved,
but the description of this is outside the scope of
this paper and not directly relevant. This is given
by:

(6)

The equation used here, the Queue Utilisation
( ) model, is an equation describing the
probability that an M/M/1 system has items in
it at a given point in time.
There are several immediate aspects of the

equation that are appealing:

1. Simplicity. By Occam’s Razor, if this were
to model as accurately as a more compli-
cated equation, then it would be the more de-
sirable choice.

2. Extensibility. As there already exist, within
queuing theory, extensions to the given equa-
tions to deal with various phenomena relat-
ing to density and limitations on queue size,
these might be applied to the given situation.

3. Slower tail-off than Poisson. For large val-
ues of , the tail-off is slower than for Poi-
son, explicitly capturing the phenomena de-
scribed both in, and by the title of, (Church,
2000).

A related equation called M/D/1 was tested but
results indicated it was not appropriate for this
task, but other variations of M/G/1 may have de-
sirable properties.
Following a double Poisson distribution, a

weighted combination of a two Queue Utilisation
distributions was also considered.
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Figure 1: Fits for the term ‘Dalai’
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Figure 3: Fits for the term ‘Kabul’
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Figure 6: Fits for the term ‘Kashmir’



4 Testing Framework
4.1 Corpus
The corpus used was a set of 50,000 Reuters
newswires from the year 1996. This constituted
approximately 15 million words. Newswires
make an interesting register for this sort of anal-
ysis as each article typically addresses only one
main topic or event, which is probably a better
delimiter than using the raw number of words or
sentences.
The words were marked up for part-of-speech

by the brill-tagger (Brill, 1992). The terms con-
sidered were the word/POS pairs, so that a rough
division between uses occurred. After some con-
sideration, it was decided that the words should
not be stemmed or lemmatised - either the distri-
butions of all cases/tenses of a word are similar,
or there are differences which may themselves be
interesting to investigate.
To reduce noise, words that occurred with a fre-

quency of less then 100 were omitted. Words that
never occurred in a document with a frequency
of 4 or greater were also omitted, as the differing
curves of the equations used would not be emer-
gent.
This resulted in 4935 word/POS tokens. The

total number and frequencies of the occurrences
of each of these were collated across all docu-
ments.
The recorded distributions were then nor-

malised to be tested in two ways:

1. document frequency. All document frequen-
cies were divided by the total number of doc-
uments containing the given frequency of the
word. This is a ‘true’ normalisation, in the
sense that the exact distributions are main-
tained.

2. term frequency. All document frequencies
were divided by the total number instances
of the term occurring with the given fre-
quency. This will make the tokens with a
relatively high level of self-collocation (pos-
itive adaptation) more emergent, relative to
the document frequency, and is similar to
the measure common to information
extraction/retrieval and document classifica-
tion.

POS doc freq term freq
noun 95.9% 99.9%
prop n. 93.5% 99.8%
verb 90.5% 100.0%
adj 91.8% 100.0%
adverb 90.9% 100.0%
all 94.3% 99.9%

Table 1: Percent of terms for which was a
better fit than

POS doc freq term freq
noun 94.9% 94.6%
prop n. 91.6% 90.9%
verb 90.5% 89.9%
adj 89.6% 89.0%
adverb 89.8% 87.5%
all 93.1% 92.6%

Table 2: Percent of terms for which was
a better fit than

4.2 Best Fits
The optimal models were found using gnuplot
(Williams and Kelley, 1991), which implements
the Marquardt-Levenberg algorithm for parame-
ter optimisation (Press et al., 1992) . The equa-
tions were prevented from allowing or

, as this would give negative probabilities
not appropriate here.
The success of the fits were gauged by the final

sum of squares of residuals or the result on the
same term across the different equations.
Once set up, the entire process, from the single

scan of the corpus, to the fitting of the equations,
took only a couple of minutes to run on a current
PC, the majority of this being the time taken for
the ‘double’ distributions to converge.

5 Results

Results are reported for the relative success of the
different distributions, given by the percentage of
terms for which a given equation has a lower .
These are given as totals and for the divisions
into noun, proper noun, verb adjective and adverb
parts-of-speech.
For unknown reasons, gnuplot was unable to

converge the double Poisson for about 20 terms.



POS doc freq term freq
noun 68.7% 0.8%
prop n. 60.0% 1.5%
verb 60.1% 1.9%
adj 64.0% 0.8%
adverb 61.2% 1.1%
all 64.9% 1.1%

Table 3: Percent of terms for which was a
better fit than

Comparisons were made between the fits of all
Poisson / queue utilisation combinations. There
were no significant results for which the single
Poisson was more accurate than a double QU. The
other results are given in Tables 1, 2 and 3.
The results demonstrate clearly that a queue

utilisation model of word frequency distributions
is a more appropriate representation for modelling
term frequencies. The most impressive results are
in Table 3, showing that even a single QU, with
only one free variable, can provide a more accu-
rate representation of the data than a double Pois-
son, which has two free variables plus the weight-
ing factor.
A cursory glance at the accuracies in Table 3

would seem to indicate that modelling term fre-
quency is less desirable than word frequency, de-
spite the Table 1 accuracies being significantly
better. However, looking at the best represented
words by each, given by the largest ratio of a QU
to a Poisson distribution shows the opposite. The
top 1% of words for which was a better
fit than for term frequency is given in Ta-
ble 4 (my groupings). These distributions are not
emergent for the top 1% of words for document
frequency, given in Table 5.
The trend for the term frequency distribution

continued, with the next 1% of containing terms
such as Ansett, Chechnya, Iraq, Mother Theresa,
Pope, Tibet and Tyson, the one outlier being the
determiner the. By contrast, the bottom 0.5% of
terms, given in Table 6, are relatively mild and not
particularly indicative of what the topics may be.
The ordering of terms for which a single

was a better fit than a single Poisson cor-
responded well to the ordering of terms for the
double Poisson, with the majority of terms in the

Category Terms
civil
war/unrest:

Pol Pot, Ieng Sary, Rouge,
Taleban, Kabul, Jalalabad,
Afghan, Bossi, Kashmir, Al-
bania, Liberia, Dalai, Hutu,
Burundi

financial
terms:

Grade, Prop, Select, asset-
backed, min, m0, Jan-July,
Level

(troubled)
people:

Murtaza Bhutto, Portillo, Sum-
mers, Pen, Dutroux, Espy,

(troubled)
currencies:

tolars, dinars, kroons, dirhams,
bolivars, drachmas,

(troubled)
companies:

Loewen, Michelin, Tractebel,
Olivetti, Erste, Truck, DWT,

other: inning, homer, vs, Manitoba,
canola, Chernobyl

Table 4: Terms for which the gave the best
fit, as compared to for term frequency

top 1% also appearing in Table 4. Those that
aren’t in Table 4 are thematically related and in-
clude Harridine, Holbrooke, Izetbegovic, rupiah,
Srinagar and Zavgayev.
Similarly, the other document frequency ratios

gave orderings of ratios as relatively uninteresting
as the set of words in Table 5.
Although the ’s best described terms were

proper nouns and nouns, and the worst more of
a mix of adverbs and verbs, the various parts-of-
speech were represented about equally as well as
each other. A minor exception can be seen in Ta-
bles 2 and 3 where the double Poisson was a little
less able to improve the representation of some
nouns.
In brief, while a document frequency model

more accurately described the distribution of
terms, a term frequency model would seem to be
much more useful for comparing with Poisson to
extract topics from a very large volumes of infor-
mation.

6 Discussion and Conclusion

There are some proper nouns that serve as more
static exophoric referents than others. The ones
in Table 4 are among the most strict, with the no-
table absence of even the most common colloca-



from, which, with, it, an, then, spokesman,
was, to, in, and, of, a, by, the, seek, not, but,
for, bullish, discounts, before, we, trader,
added, at, day, will, as, casualties, been, up,
because, durum, cruise, futures, its, on, be-
tween, sharply, firmer, be, after, hand, this,
have, wheat, while, nation, now

Table 5: Terms for which the gave the best
fit, as compared to for document frequency

Nigerian, believed, strength, steady, beyond,
treasury, none, midday, critics, relatively, ap-
proved, thought, began, begin, making, de-
layed, expect, getting, accept, finished, pos-
sibly, failed, mainly, once, recently

Table 6: Terms for which the gave the
worst fit, as compared to for term fre-
quency

tions of first name or title. This means that the
terms in Table 4 are also among the least poly-
semous, and therefore the most pure in their dis-
tributions in this regard. The same can be said
for the demonstrative the, also an explicit refer-
ent although typically as an anaphoric reference
in written text.
The ‘financial’ words in Table 4 can be ex-

plained simply in terms of their being generic eco-
nomic terms that are commonly tabulated or used
in lists. They are not discussed further.
It is telling that in the top 1% of best repre-

sented terms, all the named entities are of persons,
places or organisations involved in some sort of
conflict. As a topic extraction task this is quite an
achievement, but to a certain extent it can also be
seen as a product of the register.
Assuming a word is a good indication of topic,

there are two broad reasons that the word may
also exhibit high ‘adaptation’:

1. The nature of the subject matter is complex,
requiring a longer article and the introduc-
tion of more themes/participants.

2. The word represents one of multiple partici-
pants, and the explicit repetition of the word
is chosen instead of the use of anaphora, in
order to maintain cohesion.

A third reason, that is worth speculating about
but is hard to confirm in a study necessarily ab-
stracted from the text itself by scale, is that the
phenomenon is capturing an underlying subjec-
tivity. In news reporting, the use of narratives of
conflict are not limited to articles describing mil-
itary conflicts, often being used in sports report-
ing. Here, only the terms inning and homer evi-
dence this. This may simply be because sports re-
porting is known to favour the continuity of Sub-
ject, and therefore is able to make more use of
anaphora, while maintaining Subject in the re-
porting of a military conflict is more likely to be
viewed as Subjectivity and is therefore avoided,
at least grammatically. But perhaps there is some-
thing about a term like Taleban militia, which, in-
dependent of context, makes a news reporter de-
sire to repeat it more than a term like St Louis
Cardinals, and that this is, in part, a measure of
attitude.
Relating to the first reason above, in the report-

ing of conflict, the explicit attributing of actions
and possessions to entities is common, and so rep-
etition will not just be as group/phrase heads but
as possessives, Burundi’s army, and Classifiers,
Burundi radio.
While these properties will not always hold,

it is the emergence of these patterns over large
scales that gives these words greater positive
adaptation. Even if the results indicated by Ta-
ble 4 are mostly a product of the lack of anaphora
and ellipses, rather than their ‘content’ or news-
worthiness, they are still quite an accurate set of
terms for describing topic for any technique that
doesn’t look at grammatical systems.
As stated, a Poisson distribution is often used

to model systems where the probability of an ob-
servation is very low, but the possibility of an ob-
servation is very high. In reality, if a word relates
closely to the topic, then the probability of ob-
servation is high, but the possibility of (coherent)
uses becomes low (in a report on Afghanistan, the
term Kabul cannot not easily be made a referent
to anything other than a specific city). Assuming
that for a word to be commonly repeated more
than three or four times in a document indicates
that it is likely to relate closely to the topic, then
for all such words it is to be expected that a Pois-
son distribution is inadequate.



A brief manual inspection of the terms that
occur with a total frequency greater than 100,
but never with a document frequency of four or
greater (there were about 1700 additional words
meeting this criteria) showed that, beneath the
noise, these were disproportionately likely to be
Epithets, realised by either an adjective or a
gerund. This is not surprising, as when a term
is functioning as the property or evaluation of an
entity, not part of the entity itself, there is rarely
the need to remind the reader/listener of this prop-
erty/evaluation in a short discourse. An additional
experiment with words occurring with a maxi-
mum document frequency of three was also con-
ducted, giving a further small advantage in overall
fit to the distribution, but no significant addi-
tions to the word lists already given.
The term Noriega (Church, 2000) appeared

with frequency less than 100, and was therefore
omitted from the experiments. This shows the
other known ‘burstiness’ property of term fre-
quencies, that they are also temporal. The ar-
ticles used here were deliberately taken from a
small window of time to negate this, but it would
be interesting to see if the same model could be
used for modeling temporal distributions inde-
pendently of, or in addition to, the frequency dis-
tributions.
As conflict discourses feature multiple partic-

ipants, the investigation of co-occurrence would
be interesting, as too would be the investigation
of collocations/n-grams.
For the most part, the part-of-speech tags alone

would have been enough to cluster the various
words into the groupings given in Table 4, but
with information about the words, such as the er-
ror and discovered optimal , it would be inter-
esting to see what additional tendencies could be
discovered and/or exploited in a variety of NLP
tasks.
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Abstract

It is impossible to perform root-based
searching, concordancing, and gram-
mar checking in Arabic without a
method to match words with roots and
vice versa. A comprehensive word list
is essential for incremental searching,
predictive SMS messaging, and spell
checking, but due to the derivational
and inflectional nature of Arabic, a
comprehensive word list is taxing on
storage space and access speed. This
paper describes a method for com-
pactly storing and efficiently accessing
an extensive dictionary of Arabic words
by their morphological properties and
roots. Compression of the dictionary
is based on T-Code encoding, which
follows the Huffman encoding model.
The special characteristics inherent
in the recursive augmentation method
with which codes are created allow
compact storage on disk and in mem-
ory. They also facilitate the efficient
use of bandwidth, for Arabic text
transmission, over intranets and the
Internet.

1 Introduction

1.1 Challenges of Arabic

Arabic poses a formidable challenge for compu-
tational linguists due to its derivational nature.
Word generation requires moulding three- and oc-
casionally four-consonant roots into a range of

morphosemantic template patterns, where the root
radicals intersperse between a templates’ letters to
produce a new word with a new meaning that still
shares the basic meaning of the root. Often these
templates augment the root by lengthening its me-
dial radical, inserting a long vowel between the
radicals, and/or adding consonantal prefixes. The
generated words are what is termed ‘stems’ in the
English language, but they are not actual words;
they are mere semantic abstractions. To become
actual words, the stems are moulded into mor-
phosyntactic patterns that will indicate whether a
word is a verb or noun, present or past, active or
passive voice, etc.
The process of root extraction from actual

words, on the other hand, is not a simple reversal
of the process of word generation because the
root radicals would have been disguised by the
application of morphological patterns.
Although Arabic morphology is systematic, it

has remained a challenge to produce, for example,
useful spell checkers, grammar checkers, search
engines, and indexers that are not based on exact
matching. The missing ingredient at the base of
this problem is an accurate root-based morpho-
logical analyser. Spell-checkers, normally, do not
contain a large enough word list to accommodate
the inflectional variation words undergo when
affixed because these may run in millions. Few
grammar checkers exist for Arabic, because it
is difficult to parse a sentence if its words are
not correctly interpreted by a morphological
parser. Various types of Arabic search engines
are significantly impaired because of the inability
to find character-to-character correspondence
between search terms and variant match items



such as differing tense, voice, person, number, or
gender.

1.2 T-Code Technique
Finite State Transducers (FSTs) have been estab-
lished as a standard way to encode morphologi-
cal alterations (Karttunen et al., 1997). However,
FSTs are normally compiled from rules written in
a special FST generator language. FST compilers
like PC-KIMMO (Antworth, 1990) and 2lc (Kart-
tunen, 1993; Karttunen and Beesley, 1992) use a
specialised language to generate lexical transduc-
ers. On the other hand, our implementation uses
the standard PERL regular expressions (Friedl,
2002) but in a specialised manner.
Beesley (2001) describes a system that gener-

ates FSTs using 2lc for lexical transformations
of Arabic words. When generating words, the
system uses the compiled FSTs to achieve mor-
phological and phonological letter alterations and
then uses them in reverse to perform derivation.
Our approach uses, like Beesley, the compiled
FSTs for word generation, but it does not use it for
root derivation.
Our approach produces a list of Arabic stems,

inflected affixed forms along with their roots and
complete morphological classifications; this list
facilitates the direct regeneration of words. Our
root derivation technique requires this extensive
list or dictionary of stems to be stored in a search-
friendly manner.
The dictionary of stems would ordinarily oc-

cupy a large amount of disk storage space, but we
propose here a technique that finds an acceptable
balance between compression and lookup speed,
T-Code (Titchener, 1984). T-Code compression is
similar in style to Huffman encoding, as T-Codes
are a subset of all possible Huffman code sets
(Gunther, 1998). T-Code has the advantage
of statistical synchronisation, or the ability to
self-synchronise (Titchener, 1997), making it
ideal for transmission over networks, especially
where information loss is inevitable (eg., wireless
networks).
Webegin with basic roots andmorphosemantic,

morphosyntactic, and inflectional affixation rules
to generate all possible stems. After some simple
affix removal rules are applied, any valid lookup
word should be found in the comprehensive list

of stems. Internally, Arabic words are encoded
with their roots and morphological classification
so that the original word may be regenerated when
needed.
In this paper, we discuss the system we have

built for verb generation which can be used either
in whole or in part for root-to-word and word-to-
root lookups. We begin with a description of how
the word list was generated, followed by a discus-
sion of the dictionary format and how it was com-
pressed, we then describe how the compressed
dictionary was searched and decoded, and finally
conclude with some suggestions for simple appli-
cations.

2 Word Generation

2.1 Word Data Creator Environment

The Word Data Creator Environment (WCE) was
built to assist in creating and debugging the gen-
eration database. This software provides a graphi-
cal user interface facilitating data entry and exper-
imentation.
WCE allowed us to edit the MainDictionary

Table. For each entry, we were able to supply
a root radical, a root classification identification
number, and two numbers identifying the mor-
phosemantic pattern and a morphosyntactic vari-
ant that a derived word would follow. Unlike tra-
ditional root-type classifications in Arabic mor-
phology, our root classifications identify a root by
the type and location of alterable letters it con-
tains, for example, ! (w), " (y), and # (’)1. Al-
terable letters are those that usually undergo rule-
based transformation if followed or preceded by
certain other letters.
In addition to entry editing,WCE allowed us to

edit related template entries from the Templates
Table. A Templates Table entry is indexed by
a pattern and variant identifier and a tense and
voice combination. Every entry specifies a
general template string which, for the given voice
and tense, causes derived words to have a certain
meaning. Entries also identify a set of inflection
and spelling transformation rules and an affix
list number. Transformation rules are dependent

1For readability, this paper uses Buckwal-
ter’s Arabic orthographical transliteration scheme
(http://www.cis.upenn.edu/~cis639/arabic/info/translit-
chart.html).



on a combination of the template string letters
and the root radicals. The template strings of
each entry are, in fact, the combined result of a
morphosemantic and a morphosyntactic pattern,
transformed for the tense and voice of the entry.
The possible tenses are past and present, the
voices are passive and active, and the modes are
indicative and imperative.
Affix lists, which were also editable from

within WCE, contain patterns for generating
17 different morphosyntactic forms specifying
combinations of gender, number, and person for
each voice and tense. Both affixation and trans-
formation rules are specified using the language
of PERL regular expressions.

2.2 Word Generation Engine

Within WCE is an implementation of the Word
Generation Engine (WGE), which allowed us to
debug our classifications and transformation rules,
and to ensure the correct spelling of generated
words. While making modifications to root rad-
icals, word classifications, template strings, and
transformation and affixation rules, we were able
to preview the result of any of the 17word types on
the main screen for the selected MainDictionary
Table entry.
The three components, Stem Transformer,

Affixer, and Slotter, activated in sequence, make
up WGE. Stem Transformer applies the appro-
priate transformation rules to the stem template,
Affixer adds an affix to the transformed template,
and finally Slotter applies the transformed radi-
cals to the affixed template to produce the final
affixed word.
WGE begins with a stem ID from theMainDic-

tionary Table as input. The root and entry associ-
ated with the stem ID are used to identify the radi-
cals of the root, the stem template string, the set of
transformation rules that apply, and an affix list.
Stem Transformer is applied incrementally us-

ing radicals, a template string, and one transfor-
mation rule per pass, as in Figure 1. The output
of each pass is fed back into Stem Transformer as
a modified template string and modified radicals,
along with the next transformation rule. When all
rules associated with the template are exhausted,
the resultant template string and radicals are out-
put to the next phase.

i    transform_ruletemplate_string

F M L R

Stem Transformer

Transformed
Intermediate StemDecompose

Intermediate Stem Transform

Compose

th

template_string F M L R

i=0...n

final when i=n

when i<n

final when i=n

search_patternreplace_string

Figure 1: Stem Transformation Phase

A template string marks the positions at which
radicals belong in the template by using the Ro-
man letters F,M, L, and R. These may be viewed
as the variables in the template; all other char-
acters are Arabic constants. Stem Transformer
begins by inserting the root radicals directly after
their position markers. For example, a template,
$ F % &' M ' L ' (<iFotaMaLa)2, with a radical set
{ (،*،+ } ({*,k,r}), becomes $ F(% &' M*' L+'
(<iF*otaMkaLra). The result is then decomposed
back into the template form, and the root radicals
are updated if altered. For the same example,
the stem template is transformed by an ordered
sequence of rules {1,12}. The text of rule 1
is: F(.)([ ' , - . % ]*)(&) F$1$2$1. The first
part specifies the match pattern and the second
specifies the replace string. Rule 1 removes the
infix letter & (t) and replaces it with a copy of
the first radical which should directly follow
the radical’s diacritic. The result is the string,
$ F(% (' M*' L+' (<iF*o*aMkaLra).
Stem Transformer concludes by decomposing

the updated template into template text and
radicals. The altered template and radical set
are then passed back into Stem Transformer,
where another rule from the rule sequence
may be applied. For the example above, the
decomposed template becomes $ F % (' M ' L '
(<iFo*aMaLa), while the root radical set remains
unchanged. During this second pass, Stem Trans-
former uses the altered template and radical set

2The letters F, M, L, and R in bold are radical position
markers, not transliterations.



as input together with rule 12, whose text is,
([FMLR]?)([^ ' , - . % ]*)([ ' , - . % ]*)([FMLR]?)
(\2) $1$2. . Rule 12 is a gemination rule,
and uses a backreference in the search pattern,
in order to match any repeated letter. With
its replace string, the second of the duplicate
letters is replaced by the gemination diacritic, /
. / (~). The decomposed result is the template,
$ F '. M ' L ' , and the untransformed radical set,
{ (،*،+ } ({*,k,r}), which can produce the word
$('./'0' (<i*~akara).

replace_string (affix)

F M L R

Affixer

Transformed
Intermediate StemDecompose

Intermediate Word Transform

Compose Generic Intermediate
Stem Match

template_string F M L R

final final

from Stem Transformer

template_string

Figure 2: The Affixer Phase

In brief, the final output of Stem Transformer
is a root-transformed template and a template-
transformed radical set. These outputs are used as
input to the affixation phase which succeeds stem
transformation. Affixer, which is applied itera-
tively on the result of Stem Transformer, outputs
17 different affixed morphosyntactic forms for
every stem. Affixer is run with different replace
strings specific to the type of affix being produced.
It modifies copies of the transformed stem from
the previous phase, as in Figure 2. For example,
$ F '. M ' L ' is passed to Affixer, with radical set,
{ (،*،+ } ({*,k,r}), and the past active feminine
singular affix replace string, $1$6M$7' L$11&% .
Figure 3 shows the generic transformed-template
match string and indicates the back-reference
groupings, which are used in the replace string
for the affix. The result of applying the affix
transformation above is the affixed template
string, $ F '. M ' L ' &% (<iF~aMaLato).

!!"#$%&'()*+$+!"#+++++++++++++++()*+!"++++++++++++++()**

,

- . /

!!"#$%&'()*+%+!"#+++++++++++++++()*+!"++++++++++++++()**

0

1 2 3

!!"#$%&'()*+&+!"#+++++++++++++++()*+!"++++++++++++++()**

4

,5 ,, ,-

!!"#$%&'()*+'+!"#+++++++++++++++()*+!"++++++++++++++()**

,.

,/ ,0 ,1

! "

# $

Figure 3: The generic transformed-template
match string

Transform

F M L R
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from Affixer

template_string

Transform

Transform

template_string

replace R literal with R value

replace L literal with L value

template_string

replace M literal with M value

Transform

template_string

replace F literal with F value

Affixed Word

final

Figure 4: The Slotter Phase

In Slotter, the last stage of word generation,
transformed radicals replace the Roman position
markers in the transformed template, to produce
the final form of the word. For the example above,
the result is $('./'0'&% (<i*~akarato) which is the past
active feminine singular form of the word.

3 T-Code Encoding

Using a format that allows searching the database,
we output an alphabetically sorted list of each
of the 2 million words that WGE generated.
Since diacritics are optional in written Arabic,
we wanted to facilitate the matching process by
having the possibility of ignoring diacritics or



only matching those diacritics that a search item
specifies. In order to achieve this, we indexed our
list for lookup using bare words, words without
diacritics. For each entry, we included the root,
template, and affix type identifiers as numbers.
This gave the capability of generating the actual
word after lookup in order to pinpoint an exact
diacritic match if necessary.
Indexing the complete word list fromWGE and

storing it in a disk-based B-Tree data structure
yields files larger than 100 MB3 Since our dictio-
nary only represents the verbs of Arabic, adding
the nouns would at least double its size; therefore,
it would be advantageous to keep the dictionary’s
disk size minimal.
T-Code encoding, like Huffman encoding, is a

variable length coding scheme. The basis of T-
Code text compression is that shorter codes are
assigned to frequently repeated items. Since un-
compressed text is normally represented by fixed
length codes in software, T-Code is capable of
achieving a large compression factor for text be-
cause it has low entropy. For the word database
produced by WGE, a great amount of redundancy
exists since the 2 million words are based on only
5,500 verb roots. T-Code has the advantage of
self-synchronisation; that is, a series of bits from a
code will only be recognised as being members of
the T-Code set if they constitute a valid code word.
If a series of bits does not belong to the T-Code
set, it will not be valid until all the bits of the code
arrive. This is useful because no additional code
length information needs to be stored in the data.
The T-Codes used to encode the database are

obtained by first calculating a target distribution
of code bit-lengths, then creating an adjusted T-
Code distribution based on the target, and finally
assigning the shortest codes to the most frequent
data items.

3.1 Calculating a Target Distribution

A target distribution for the dictionary database
was calculated using the frequencies of its unique
items. The equation below was used to calculate
the code’s target bit-length ! for each data item i

3The file size being so large is explainable by the fact that
Unicode UTF-16 uses 16-bits per Arabic character (Consor-
tium, 2003), which causes output to be twice as large as it
may have been for Roman characters.

in the database using the item’s average frequency
f̄i.

!i = −
⌈
log2 f̄i

⌉
, i = 0...n

We grouped the frequencies of unique root,
template, and affix type identifier numbers for
each word entry. Additionally, a slightly different
frequency count for the letters of the lookup
words was performed in order to take into ac-
count their compressed form. Special attention
was given to the compression of the low entropy
lookup words whose efficient access is essential.

Original Letters Counted

Entry Transliteration Entry Transliteration

!" Ab !" Ab

!#$ AbA ..! ..A

!#$#$ AbAbA ...#$ ...bA

!#$%& AbAtt ...%& ...tt

!#$%'() AbAtmtm ....*() ....mtm

!#$%+!"# AbAtntn ....,!"# ....ntn

!#$- AbAv ...- ...v

!#$./ AbAvn ....0 ....n

!#$1 AbAj ...1 ...j

!#$2$ AbAjA ....! ....A

!#$2/ AbAjn ....0 ....n

#$23! bAjwA #$23! bAjwA

Table 1: Eliminating redundancy by not counting
repeated letters.

The bare words forming the lookup entries
have a one-to-many relationship with actual
words. That is, many different generated words
with diacritics may become the same lookup
entry when diacritics are removed. Therefore,
if it is possible to distinguish between one bare
word and the next, repetition of lookup entries
is unnecessary. A bit-skip field is used in the
encoded database to mark the end of an entry;
details of this and the encoded database format
are discussed in Section 3.2. During this phase,
we were only concerned with the frequency of the
letters of the lookup items in the final database,
so unique entries had their letters counted only
once.
Another source of redundancy in lookup items

appears in their alphabetically sorted form. Of-
ten, an entry shares initial letters with following



entries. While the dictionary format handles this,
calculation of a target distribution only counts let-
ters not sequentially shared between consecutive
entries, as may be seen in Table 1.

Code Target Modified T-Code

Length Frequency Target Distribution

5 9 5 5

6 5 9 9

7 - - 0

8 2 2 2

9 - - 0

10 4 4 4

11 3 3 3

12 9 9 9

13 10 10 10

14 2 2 2

15 - - 0

16 16378 3836 3836

17 2750 7232 7233

18 - 8059 14159

19 - - 27308

20 3 3 52009

Table 2: AT-Code distribution from the target dis-
tribution for the dictionary.

3.2 Encoding the Dictionary

AT-Code distribution was calculated based on the
target distribution, as in Table 2. Its codes were
created and sorted from shortest to longest then as-
signed to the unique data items of the database in
order of most frequent to least frequent. The un-
compressed dictionary’s data items were then T-
Code encoded.
Figure 5 depicts the encoded dictionary struc-

ture. A header is used to identify the positions
of the start and end of the encoded data. The T-
Code encoded data is represented as a continuous
bit stream written in byte-sized units.

3.2.1 Indexing and Accessing the Dictionary
Access to the dictionary is required to be

sequential. Without a proper indexing system
lookups would be inefficient, having potential
complexity of order O(N). To facilitate efficient
lookups, a simple first letter lookup was used to
give direct access to the byte position of the first
entry using the first letter of the lookup word.

Header

Alphabetic Index
letter    start_position

Encoded Data

data_start_pos
data_end_pos

bit-stream

Figure 5: The encoded dictionary structure.

While the first-letter-lookup gives a reasonable
efficiency advantage, the rest of the lookup pro-
cess is required to sequentially read the entries
starting with the first letter. In order to address
this, we added a two-byte fixed width field at the
start of every entry, and distributed their bits as in
Figure 6. An example in Table 3 illustrates how
the fixed width fields are used.

Pos. Entry Transliteration Next Pos. Shared

0 !" Ab 11 0

1 !#$ AbA 11 2

2 !#$#$ AbAbA 3 3

3 !#$%& AbAtt 4 3

4 !#$%'() AbAtmtm 5 4

5 !#$%+!"# AbAtntn 6 4

6 !#$- AbAv 8 3

7 !#$./ AbAvn 8 4

8 !#$1 AbAj 11 3

9 !#$2$ AbAjA 10 4

10 !#$2/ AbAjn 11 4

11 #$23! bAjwA 12 4

Table 3: An example illustrating how the next en-
try bit-skip and shared letter fields are used.

The first 12 bits store the distance in bits to the
next test entry. If the word being searched for in
the dictionary does not have a partial match with
the test word at the current entry, the bit-skip field
points to the next entry that does not begin with all
the same letters. If a partial match is found, then
only words between the current position and the
bit-skip position may match the lookup word.
The remaining 4 bits store information on the



next entry bit skip shared letter count entry info

2-byte fixed width field variable length t-code sequence

Figure 6: An entry using 12 bits for number of bits to skip to next entry and 4 bits for the number of
shared letters.

number of letters shared between the current word
and the next word. This allows the decoder to
compare only the codes of the letters that have not
been tested earlier, reducing the number of com-
parisons needed to make a match.

3.2.2 Results

Using T-Codes and the indexing system de-
scribed in this section, the dictionary disk-size
was reduced to a mere 8 megabytes. The cur-
rent dictionary size includes search and lookup
information, which is over 90% smaller than the
uncompressed B-Tree version with a comprable
lookup speed.

Two devices may use a copy of the dictionary in
order to communicate using T-Code transmission.
A device may encode and transmit every Arabic
word in a message into three codes containing the
root, template, and affix identifiers for the word.
The bandwidth used to transmit an Arabic word
becomes a fraction of the equivalent T-Code en-
coded word.

For example, consider a word such as 1'23,456'
(yaktubwna), which consists of the root, template,
and affix identifier set {12884,460,30}. The T-
Code lengths will depend only on the statistical
frequency of each of these identifiers for all the
words in an Arabic corpus so as to provide maxi-
mum efficiency; in this case the word may be rep-
resented as {0010101, 001001, 10100} and trans-
mitted as 18 bits. Compare this size with the same
word transmitted in Unicode. This 9 letter word
would normally require 2,592 bits to be transmit-
ted in raw Unicode(16-bit per character x 9 char-
acters). If, instead, the raw identifier set was trans-
mitted, it would require 48 bits (16-bit per inte-
ger x 3 integers), which is still significantly higher
than the T-Code encoded form.

4 A Simple Application: A Root
Extractor and Word Parser

To demonstrate the efficiency of the dictionary,
we created a PERL based implementation of the
decoder, and wrote a web CGI that derives and
parses Arabic words. This particular implemen-
tation, although very simple, also functions as an
accurate root extractor.

Figure 7: Example output from the word-parser
Web CGI using the T-Code encoded dictionary of
Arabic words.

A UTF-8 Unicode-encoded HTML webpage
accepts Arabic words in a simple form. The CGI
is invoked with the input stripped of diacritics.
Next, the CGI removes combinations of conjunc-
tion, prefix, and suffix letters that it finds in a
pre-supplied list of affixes and it begins with the
longest to the shortest sequences. The original
word and each of its stripped forms are T-Code en-
coded and pushed into a queue. Entry codes that
match any of the items in the queue are retrieved
with their identifier lists from the dictionary and
decoded. Identifiers are used in order to generate



the words with diacritics that the entry identifies.
Also, the identifier information is used to morpho-
logically classify the entered word and the affixes
that are used with it. The various possible mor-
phological parsings are then output to HTML, as
in Figure 7.

5 Further Work

We have described a system that uses T-Code to
compress and access a comprehensive list of Ara-
bic verbs by their morphological properties. Word
generation here is restricted to verbs, but further
research must extend the coverage to verbs and
rootless words such as particles and loan words.
Once data has been obtained for word gen-

eration of nouns, the implementations of many
of the applications discussed in the introduction
become feasible. For example, a spell checker
can be instructed to recognise conjunction,
prefix, and suffix letter combinations, as de-
scribed in Section 4. Since these letters do not
cause alteration to adjacent letters, they may
be removed and the remaining stem looked
up in the dictionary. If a match is not found,
a spelling error may be reported. Suggested
spellings may come from the word-generation
and transformation rules of the closest matching
word or words. The closest match, like in English
spell-checkers, would be the words that have
reasonable character-correspondence.
Using the root-extraction algorithm in Sec-

tion 4, root-based searching becomes possible.
Both the search term and search text will undergo
root extraction before a match is found.
Incremental searches such as that used in pre-

dictive text messaging only need to have a list
of the conjunctions and affixes added to the dic-
tionary list. The implementation can then allow
combinations of conjunctions and affixes to at-
tach to dictionary entries. Since the dictionary list
now includes all forms affixed, transformed, and
disguised, valid Arabic words will always find a
match in the dictionary.
In the near future, we hope to increase the

lookup and decoding speed by creating a T-Code
Finite State Automaton (FSA) for the dictionary
as described in (Nithyaganesh, 1998), which will
be able to read an entire byte or two and output
several code words. Currently, the decoding

process tests if a code belongs to the T-Code
set; if it does not match, another bit is added to
the T-Code before it is tested once more. This
continues until the code matches a code from
the valid T-Code set. With a T-Code FSA, a
significant improvement in the decoding speed
will be witnessed, since bytes are looked up rather
than bits.
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Abstract
This paper presents the area under
the Receiver Operating Characteristics
(ROC) curve as an alternative metric
for evaluating word sense disambigua-
tion performance. The current met-
rics – accuracy, precision and recall –
while suitable for two-way classifica-
tion, are shown to be inadequate when
disambiguating between three or more
senses. Specifically, these measures
do not facilitate comparison with base-
line performance nor are they sensitive
to non-uniform misclassification costs.
Both of these issues can be addressed
using ROC analysis.

1 Introduction
Word sense disambiguation (WSD) is one of the
large open problems in the field of natural lan-
guage processing, and in recent years has at-
tracted considerable research interest (Ide and
Veronis, 1998). The increasing availability of
large corpora along with electronic sense invento-
ries (such as WordNet; Fellbaum (1998)) has per-
mitted the application of a raft of machine learn-
ing techniques to the task and provided an em-
pirical means of performance evaluation. Until
recently, most performance evaluation was con-
ducted on disparate data sets, with only the line
and interest corpora being used in a significant
number of studies (Leacock et al., 1993; Bruce
and Wiebe, 1994). SENSEVAL, a global eval-
uation performed in 1998 (Kilgarriff, 1998) and
again in 2001 (Edmonds and Cotton, 2001), pro-
vided a common set of disambiguation tasks and
performance evaluation criteria, allowing an ob-
jective comparison between competing methods.

These workshops included the tasks of disam-
biguating all words in a given text (the all-words
task), and disambiguating each occurrence of a
given word when it appears with a short context of
a few surrounding sentences (the lexical sample
task). Performance in the two tasks was measured
in terms of precision and recall. Precision was de-
fined as the proportion of classified instances that
were correctly classified, and recall as the propor-
tion of instances classified correctly – these allow
for the possibility of an algorithm choosing not to
classify a given instance. This evaluation criterion
is insensitive to both the type of misclassification
(is the predicted sense more closely related to the
correct sense than other possible senses?) and the
confidence with which the classifier has made the
prediction (is the correct sense allocated a high
probability despite not being given the highest
value by the classifier?).
These problems led Resnik and Yarowsky

(1999) to suggest an evaluation metric to provide
partial credit for incorrectly classified instances.
They penalise probability mass assigned to incor-
rect senses weighted by what they term the com-
municative/semantic distance between the that
predicted sense and the correct sense. Using
such measures, systems that confuse homographs
would be penalised most heavily, while those that
confuse fine-grained senses would only attract a
minor penalty. The score assigned to a particu-
lar algorithm is highly reliant on the distances be-
tween senses; altering the relative penalties may
well promote a previously non-optimal classifier
to be the best performing classifier.
In order to highlight the problems in the exist-

ing evaluation methods, it is worth clarifying the
qualities such a method should possess. Ideally,
the evaluation metric should provide the follow-
ing features:



(1) allow comparison of the performance of two
or more classifiers on the same problem,
ranking them in order of quality of prediction.

(2) penalise incorrectly classified instances based
on the distance, or confusability between the
predicted and correct sense, when disam-
biguating between three or more sentences.
These penalties are henceforth referred to as
(non-uniform) misclassification costs.

(3) allow comparison to baseline performance –
that of the classifier which always predicts
only the a priori majority sense.

(4) provide a readily interpretable measure of
performance.
This paper analyses the metrics that have been

used in assessing WSD performance in light of
the above criteria. An alternative metric, Receiver
Operating Characteristics (ROC), is proposed and
shown to have favourable properties with respect
to the criteria. Section 2 describes the shortcom-
ings of the current metrics. Section 3 shows how
ROC analysis can be applied to WSD evaluation.
Section 4 provides a discussion in the context of
empirical studies and I conclude in section 5 with
thoughts for future study.

2 Problem Statement
Many comparisons of WSD performance use pre-
dictive accuracy as the sole means of compari-
son. Accuracy is defined as the proportion of in-
stances that were disambiguated correctly, and is
often compared to a baseline – the performance
of the classifier that predicts the majority sense
for every instance. Baseline performance varies
greatly between words: from lower than 10% to
greater than 90%. Without some form of normali-
sation, comparison of the results of different clas-
sifiers on different problems is impossible. The
kappa statistic (Carletta, 1996) may be used to
normalise accuracy, adjusting the result for the
expected agreement with the perfect classifier by
chance, thus satisfying criterion (3).
Implicit in the use of accuracy is the assump-

tion that misclassification costs are equal (or
equivalently, the set of senses are all equally simi-
lar to one another). Dictionary definitions and in-
deed, linguistic intuitions, tell us that some sense
pairs are more closely related than others. A

number of dictionaries present sense hierarchies
for words based on their similarities. The guide-
lines used by lexicographers to determine what
constitutes a homograph or sense vary consider-
ably between dictionaries. Even individual lexi-
cographers differ in their systematic preferences
as to whether they conflate similar senses into
one (‘lumpers’) or present them as a disparate set
(‘splitters’) (Kilgarriff, 1997; Landau, 2001). De-
pending on the dictionary’s purpose, factors such
as frequency of occurrence, semantic and syntac-
tic similarity, pronunciation and etymology of a
given word are considered (with differing prior-
ity) when identifying word’s senses. Accordingly,
sense definitions are rarely compatible between
different dictionaries (or thesauri), presenting is-
sues for WSD tasks using only a single source as
the sense inventory.
For a binary disambiguation task, misclassifi-

cation costs should be uniform – we would not
expect the cost of misclassifying an instance of
sensea as senseb to be any different to the cost of
misclassifying an instance of senseb as sensea.1
However, most words have many more than two
senses; Zipf (1945) found the most commonly
used words tend to have a much greater degree
of polysemy than infrequently used words. While
accuracy provides a good measure for compari-
son (satisfying criterion 1) and is simple to com-
prehend (4), it does not account for non-uniform
classification costs (2), meaning that the ranking
given will often not reflect the real costs of errors.

2.1 Precision and recall
These problems with accuracy led to the adoption
of precision and recall instead of (or in addition
to) accuracy for performance measurement. The
combination of precision and recall have been
used as the primary means of performance eval-
uation in the SENSEVAL exercises.
Precision and recall are commonly used met-

rics in information retrieval (IR) (Baeza-Yates
and Ribeiro-Neto, 1999). The retrieval task often
involves finding a small number of relevant doc-
uments from a large data repository. Algorithms
are ranked based on their precision/recall trade-
off; an algorithm can be said to be better than
another if it has higher precision (recall) for the

1This may not be true for all WSD tasks.



same or higher recall (precision). This provides
only a loose ranking capacity (criterion 1).
Precision by itself is not a highly relevant mea-

sure in WSD as it focuses solely on the positive
classifications, treating the negative instances as
junk. Unlike IR classification, when disambiguat-
ing two senses of an ambiguous word, the set of
positives is equally important as the set of nega-
tives, since each corresponds to a distinct sense.
The classification question could just as easily be
phrased in the negative – this should not affect
the performance measure. While high recall on its
own would constitute a passable WSDmethod (in
that the set of positive instances are largely cor-
rectly classified), high precision alone does not
say much about the performance of the method.
Simply selecting a single correct positive instance
will yield the best possible precision, however,
this method will perform woefully.2 Similarly,
classifying all instances as positive will achieve
a recall of 1.0 and a precision of Pr(P ) – the pro-
portion of positive instances. As with predictive
accuracy, the precision would need to be inter-
preted with respect to the baseline performance to
allow comparisons between different tasks (hence
having issues with criterion 3).
When extended to classification of three or

more senses, these measures falter. In the case of
SENSEVAL, the precision is redefined as the pro-
portion of correctly predicted senses within the
set of instances for which the algorithm hazarded
a prediction, and recall as the proportion of cor-
rectly predicted senses over all instances. This
implicitly allows classifiers to opt not to classify
every instance. However non-exhaustive classi-
fiers are of limited use, given that they must be
combined with other classifiers in order to fully
disambiguate a given text. Many tasks in which
WSD forms a sub-task, such as machine trans-
lation (MT), require the word to be fully disam-
biguated – an unknown value is unacceptable.
Plotting the precision-recall curves (Manning

and Schutze, 2000) allows for better performance
ranking by optimising precision for a given level
of recall. This goes some way in addressing the
issues when assessing precision and recall with
respect to criterion (1), however the problem ex-

2Note also that selecting nothing will not yield a preci-
sion value at all, due to a division by zero.

ists as to what recall limit is acceptable – there is
no theoretical justification for choosing a specific
value, and modifying the value may well alter the
rankings of the classifiers. The F-measure (a har-
monic mean between precision and recall), may
be used for simpler ranking providing a single
number for comparison (4). However the weight-
ing assigned to precision and recall in the calcu-
lation of the mean needs to be chosen and again,
theory does not suggest what values to use.
Criterion (2) is not satisfied by this evaluation

metric. The precision and recall values for dis-
ambiguation tasks involving three or more senses
are based on the number of correct responses, ig-
noring the types of misclassification. Hence this
method suffers for the same problems of predic-
tive accuracy in this regard. Combining precision
and recall measured for a number of binary dis-
ambiguation tasks for a single word (either be-
tween every pairing of senses or between each
sense and all other senses) may go some way
to satisfying (2) while remaining sensitive to the
misclassification costs.

2.2 Semantic/communicative distance
Due to the insensitivity of accuracy and precision
and recall to non-uniform misclassification costs,
Resnik and Yarowsky (1999) proposed a metric
incorporating the costs by weighting misclassifi-
cation penalties by the distances between the pre-
dicted and correct senses. In such a manner mis-
classifications between fine-grained senses (eg.,
polysemy) will be penalised less harshly than
those between coarser sense distinctions (eg.,
homonymy). They describe a sense hierarchy for
the word bank derived from a single or multiple
dictionaries, from which they derive a matrix of
semantic distance between the senses.
The definition of a sense is a contentious issue

within the field. The required granularity of sense
distinctions varies with the task in which WSD
is used. IR and speech synthesis require only
coarse sense distinctions, however for MT and
full text understanding much finer distinctions are
required – often finer than offered by monolin-
gual dictionaries. This would mean that the set
of senses and the misclassification costs between
senses, as approximated by the semantic distance,
will be task dependent.
In most sense-tagged corpora, sense definitions



have been taken from dictionary meanings or the-
saurus categories. Granularity aside, these defini-
tions have been criticised for the level of disagree-
ment between lexicographers themselves (Kilgar-
riff, 1997). These result in markedly different de-
scriptions of senses in different dictionaries, with
no one dictionary offering a definitive set of sense
description or more formal representation than all
others. There is no reliable method of combining
dictionary senses to reflect the level of granularity
required by the task.
Resnik and Yarowsky went on to analyse the

translation of different senses of a sample of am-
biguous English words into 12 target languages.
From this they estimated the probability of the
senses being lexicalised differently in the trans-
lation into the target language. They found that
between 52% (fine-grained polysemy) and 95%
(homonymy) of senses were lexicalised differ-
ently on average in the target languages. They
used these statistics to generate semantic dis-
tances between senses, reflecting the likelihood
that the sense will have a different translation.
In such a scoring model the ranking of classi-

fiers is highly sensitive to the sense hierarchy def-
inition and its use in creating the distance matrix.
If either of these were to change – and given the
widespread disagreement between lexicographers
with regard to sense definitions, this is highly pos-
sible – the set of classifiers would need to be re-
ranked. Even when using the translation based
measure of semantic distance, the use of a dif-
ferent set of target languages would be likely to
affect the scoring. This has the potential to cause
previously non-optimal classifiers to be re-ranked
as optimal.
The semantic/communicative distance measure

improves on the accuracy measure in that it ac-
counts for non-uniform misclassification costs
(2), while still providing a ranking measure (1).
Translation based semantic distance measures
sidestep a number of the issues involved with the
use of dictionary sense inventories but are not
without problems. The method still requires nor-
malisation with the baseline performance (3), al-
though the kappa statistic could also be used here.
What is lost is simplicity (4) – the score assigned
is not readily interpretable, as it is based on the
distance matrix, an artificial construct based on
unfounded assumptions.

3 ROC, an alternative metric

Receiver Operation Characteristic (ROC) graphs
are an evaluation technique born in the field of
signal detection which have become de rigueur
in machine learning in recent years (Provost and
Fawcett, 1997; Provost and Fawcett, 2001). A
ROC graph plots the tradeoff between true pos-
itive rate and false negative rate in a binary clas-
sifier as a threshold value is modified. The true
positive rate (TPR, or recall) is defined as the pro-
portion of positive instances predicted as positive.
The false positive rate (FPR, or fallout) is defined
as the proportion of negative instances predicted
as positive. The rationale behind graphing the re-
lationship between these two factors for a given
classifier is that various uses of the classifier may
demand different optimisation criteria – such as
maximising the TPR given a highest acceptable
FPR, or finding the optimal classifier given the
costs of errors and class distribution.
Provost and Fawcett described an algorithm

for creating a ROC curve for a binary classifier
and introduce the ROC convex hull (ROCCH), a
method for determining the set of potentially opti-
mal classifiers regardless of the misclassification
costs and class distributions. Srinivasan (1999)
extended ROC analysis to deal with non-binary
classifiers, representing the rate by which each
class is traded off for another class as each axis
of ROC space. This leads to c2

− c dimensional
ROC space, where c is the number of classes. The
ROCCH can be calculated in O(nc) time, where
n is the number of points in ROC space.
The sheer difficultly of visualising such high

dimensional space prompted Fawcett to develop
an alternative process. The area under the ROC
curve (AUC) represents the probability that a bi-
nary classifier will rank a randomly chosen posi-
tive instance higher than a randomly chosen neg-
ative instance. This assigns a high score to
those classifiers which form the majority of the
ROCCH, or are consistently close to the hull.
Fawcett (2001) extended AUC to cater for mul-
tiple classes by treating a c-dimensional classifier
as c binary classifiers (each performing a one-vs-
all classification), giving:

AUCtotal =
∑

i

AUC(ci) · Pr(ci)



where Pr(ci) is the prior probability of the i-th
sense.
WSD performance can be measured by the

AUC metric, or by comparing a number of classi-
fiers’ performance curves in ROC space. Where
the misclassification costs are known, the opti-
mal classifier can be found simply by finding the
point on the ROCCH with the lowest cost. The
cost is simply the sum of the penalties assigned
to incorrect classifications, which may be calcu-
lated from the semantic/communicative distances
between senses as:

∑

i

Pr(ci)
∑

j

rijdij

where rij is the proportion of instances of sense
i classified as sense j, and dij is the distance be-
tween senses i and j, which is zero when i = j.
Where the misclassification costs are unknown

or are not known precisely (as would be the case
if Resnik and Yarowsky’s was supplemented with
confidence ranges for each cost), the ROCCH al-
lows performance comparison between the dif-
ferent classifiers. The optimal sub-surface of the
ROCCH can be found using the misclassification
cost ranges meaning that only classifiers forming
part of this sub-surface can be optimal. When
the sub-surface is sufficiently small (i.e. the mis-
classification costs are known to a high degree of
confidence) this should provide a good ranking
of classifiers, as only a small number will form
part of the optimal surface. This allows optimisa-
tion of learning methods that cannot incorporate
non-uniform misclassification costs, as well as al-
lowing optimisation where these costs are only
known approximately and thus cannot be easily
incorporated into classifier training. Storing the
ROCCH allows this approach to be repeated if
misclassification costs were to change.
When the sub-surface is quite large (i.e. when

misclassification costs are not known precisely),
it is likely that a number of classifiers will lie on
the optimal surface. The AUC could then be used
to discriminate between these classifiers, rank-
ing those classifiers which are consistently closer
to the ROCCH higher than those which are not.
While the AUC doesn’t strictly indicate optimal-
ity, it does provide a reasonable approximation.
This method allows comparison and loose

ranking of classifiers (criterion 1), in that a num-
ber of classifiers can be discarded. Given pre-
cise misclassification costs (2), the classifiers (and
indeed combinations of classifiers) can be read-
ily ranked. The baseline performance is implic-
itly used in the analysis: only those classifiers
which achieve better results than (weighted) ran-
dom combinations of the trivial classifiers will be
considered (3). This method has the added bene-
fit of being robust in the face of changing or im-
precise misclassification costs. While it does not
provide a readily interpretable measure (4), espe-
cially when considering the convex hull in high
dimensional space, the AUC can provide such a
measure.

4 Empirical results and discussion

I have implemented three supervised WSD meth-
ods and analysed their performance using the
three measures described above. All development
was performed in the Natural Language Toolkit
(Loper and Bird, 2002) and the source code is
available as part of the toolkit. I implemented
Yarowsky’s (1994) decision list method, which he
used for accent restoration in French and Spanish
text (roughly similar to homograph disambigua-
tion). This method uses the single most reliable
piece of evidence in predicting the sense. I also
implemented Brown et al.’s (1991) method, which
was used for MT between French and English us-
ing decision trees to resolve the correct translation
of each ambiguous word. Training uses the flip-
flop algorithm (Nadas et al., 1991) to determine
which feature will maximise the mutual informa-
tion between a binary division of the values for
that feature and the set of most probable senses
given the feature takes one of those values. Both
of these methods used collocates in a small win-
dow around the word as features. Lastly, I created
a naive Bayes classifier (Manning and Schutze,
2000), using the unordered bag of words around
the ambiguous word as the feature space. Words
occurring fewer than five times in the corpora
were ignored.
The three algorithms were compared on the in-

terest corpus (Bruce and Wiebe, 1994). The word
interest has six senses in the corpus with differing
degrees of similarity to each other. Four experi-
ments were performed; the first involved disam-



sense of interest f test1 test2 test3 test4
give attention 15% ! ! !

worthy of attention 1% ! !

receiving attention 3% !

advantage 8% ! !

share of company 21% ! !

money 53% ! !

baseline 97% 85% 72% 52%

Table 1: Test descriptions and baselines.
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Figure 1: Learning curves

biguating between a pair of fine senses, which re-
ported were difficult for human annotators (Bruce
and Wiebe, 1998), and the second and third in-
volve pairs of more distinct senses. The last test
involved disambiguating between all six senses.
Table 1 shows the gloss for each sense and the
senses used for each test.
The learning curve, show in Figure 1, was con-

structed (in the same vein as Mooney’s (1996)
performance survey), showing the accuracy of
each method on test 4 when trained with increas-
ing amounts of data. It shows all three methods
improving, with only the decision tree method
showing signs of over-fitting. The accuracy, pre-
cision, recall and AUC values were measured and
are shown in Table 2. Each test was performed
using 10-fold cross validation. The precision, re-
call and AUC values were calculated with respect
to the minority sense for tests 1 - 3. In test 4 both
precision and recall are equal to the accuracy, as
all three classifiers predict a sense for every in-
stance. ROC curves were generated by ranking
each instance (and predicted classification) in or-
der of confidence, using the method described by
Provost and Fawcett (2001), from which the AUC
measures were calculated. The ROC curves for

tests 1 - 3 are shown in Figure 2.
The decision list classifier is shown to be sig-

nificantly more accurate than the other classifiers,
exceeding the baselines for all tests, and perform-
ing extremely well for test 3. The results for test
1 are interesting in that the decision list method
manages to outperform the baseline performance
of 97%. With so few instances no solid conclu-
sions may be drawn, however, the high AUC for
the decision tree method suggests that it would
perform better (in terms of predictive accuracy)
by adjusting its threshold. This would allow it to
operate at a more suitable point on its ROC curve,
rather than at the origin.
The increase in performance of all methods

from test 2 to 3 is most likely due to the increase
in data. There are roughly three times as many
instances in test 3, providing more training exam-
ples. Otherwise, the problems are quite similar,
with similar ratios between the two senses. The
AUC values support these conclusions, with the
decision list and decision tree consistently outper-
forming naive Bayes for the first three tests. This
can also be seen in the ROC curves (Figure 2),
where these two classifiers largely dominate naive
Bayes. Naive Bayes has a quite low AUC on all of
the tests, while still being greater than the bench-
mark of 0.5. This is reflected in its lower accuracy
in each test, however, in test 4, it outperforms the
decision tree method despite having a much lower
AUC. This suggests that the naive Bayes classifier
is operating closer to the point which maximises
accuracy on its ROC surface, whereas the deci-
sion tree is not. As earlier, this result suggests
that the decision tree classifier should be operat-
ing with a lower threshold to achieve a higher ac-
curacy. This is also evident in Figure 2, where the
curve for the decision tree method, while largely
dominated by the decision list curve, is still quite
close to the ROCCH.
The highest accuracy classifier would fall on

the ROC convex hull at a very steep gradient,
due to the minority sense being treated as positive
(m = TPR

FPR = Pr(sb)
Pr(sa) where sa and sb are the mi-

nority and majority senses respectively). If mis-
classification costs were biased in favour of the
minority sense, the difference in performance be-
tween the decision list and decision tree methods
would be likely to be reduced, as can be seen from



test1 test2 test3 test4
DL - accuracy 97.8 89.1 96.4 85.7

precision 0.8 31.1 26.5 85.7
recall 27.8 83.5 89.1 85.7
AUC 78.1 91.9 95.1 95.6

DT - accuracy 97.0 85.2 95.1 72.0
precision 0.0 27.9 25.4 72.0
recall 0.0 72.8 84.1 72.0
AUC 89.3 83.7 88.5 91.1

NB - accuracy 65.6 78.1 94.3 76.2
precision 3.3 37.1 26.3 76.2
recall 83.3 89.0 86.8 76.2
AUC 53.1 67.4 67.6 60.0

Table 2: Results expressed as percentages.

the proximity of their ROC curves at low gradi-
ents. The decision list classifier is shown to be
superior to the other two, with higher AUC val-
ues on most tests and can be seen to be largely
dominating the ROCCH for test 2 and test 3. If
the misclassification costs are known at the time
of training, a number of learning methods (i.e.
naive Bayes) can incorporate them into the train-
ing phase, optimising the classifier with respect to
these costs. However, this is not possible for all
classifiers, requiring the use of ROC analysis to
select the optimal classifier.
While the accuracy, precision and recall mea-

sures are relatively useful for analysing tests 1 - 3
(assuming uniform misclassification costs), they
are not very useful in test4. The manner in which
they aggregate the set of incorrect classifications
together loses a great deal of information about
the classifier performance. The additional effort
required in performing ROC analysis is well re-
warded, with much more informative measures of
performance.

5 Conclusion
The nebulous nature of the word sense along
with differing lexicographic practices mean that
the task of WSD is ill-defined. Both dictio-
nary and corpus based definitions of word senses,
while not always agreeing on sets of senses for a
given word, do concur that some sense pairs are
more closely related than others. These relation-
ships have been quantified in deriving the seman-
tic/communicative distance matrix.
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ROC analysis proves to be a viable method for
analysing performance, addressing a number of
shortcomings with the existing measures. It has
been shown to be of particular value in measur-
ing performance when disambiguating between
three or more senses. It satisfies the objectives of
ease of comparison (1), taking misclassification
costs into account (2) and implicitly incorporates
baseline performance (3), while providing a sim-
ple and understandable measure (4) through the
AUC. It has the added benefit of being flexible
in the face of changing or imprecise misclassifi-
cation costs. This is of particular significance in
WSD given the vigour of the debate over what
constitutes a sense, and as to how senses relate to
each other. However, ROC analysis suffers from
complexity in the form of high dimensional ROC
space and computational demands in finding the
convex hull.
SENSEVAL, and indeed the whole WSD field,

stand to benefit from using ROC analysis as a per-
formance metric. Further research into ROC anal-
ysis and its application to WSD and other natural
language processing tasks can only help the field
mature.
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Abstract  

This paper1 presents our approach to the 
problem of single sentence 
summarisation.  We investigate the use 
of Singular Value Decomposition 
(SVD) to guide the generation of a 
summary towards the theme that is the 
focus of the document to be 
summarised.  In doing so, the intuition is 
that the generated summary will more 
accurately reflect the content of the 
source document.  Currently, we operate 
in the news domain and at present, our 
summaries are modelled on headlines.  
This paper presents SVD as an 
alternative method to determine if a 
word is a suitable candidate for 
inclusion in the headline.  The results of 
a recall based evaluation comparing 
three different strategies to word 
selection, indicate that thematic 
information does help improve recall. 

1 Introduction 

In the midst of a plethora of archived electronic 
documents, the successful completion of a 
research task is affected by the ease with which 
users can quickly identify the relevant 
documents that satisfy their information needs.  
To do so, a researcher often relies on generated 
summaries that reflect the contents of the 
original document.    






We explore the problem of generating a 
single sentence summary in the context of single 
document summarisation.  Instead of identifying 
and extracting the most important sentence, we 
generate a new sentence from scratch.   Thus, 
the resulting sentence summary may not occur 
verbatim in the source.  

As a precursor to single sentence 
summarisation, we first explore the particular 
case of headline generation in the news domain, 
specifically English news.  Our system re-uses 
words from the news article to generate a single 
sentence summary that resembles a headline.  
This is done by iteratively selecting a word from 
the source article and then appending it to 
previously selected words. This approach has 
been explored by a number of researchers (eg. 
see Witbrock and Mittal, 1999; Jin and 
Hauptmann, 2002).  In existing approaches, a 
word is selected on the basis of two criteria: how 
well it acts as a summary word, and how 
grammatical it will be given the preceding 
summary words that have already been chosen.  
Our approach uses Singular Value 
Decomposition (SVD) in the first criterion, as a 
means of determining if a word is a good 
candidate for inclusion in the headline. 

In this paper, we present an overview of our 
basic summarisation algorithm in Section 2.  
Section 3 examines limitations of the basic 
algorithm, illustrating how words can be used 
out of context, resulting in factually incorrect 
statements.  This is the motivation of our SVD 
extension which is introduced conceptually in 
Section 4.  Section 5 describes how we generate 
sentence summaries using SVD.  In Section 6, 
we present our experimental design in which we 



evaluated our approach, along with the results 
and corresponding discussion.   Section 7, 
provides an overview of related work.   Finally, 
in Section 8, we present our conclusions and 
future work. 

2 Searching for a Probable Headline 

We re-implemented the work described in 
Witbrock and Mittal (1999) to provide a single 
sentence summarisation mechanism.  For full 
details of their approach, we direct the reader to 
their paper (Witbrock and Mittal, 1999).  For an 
overview of our implementation of their 
algorithm, see Wan et al. (2003).  For 
convenience, a brief description is presented 
here. 

In a search, n words are selected on the basis 
of the two criteria. Conceptually, the task is 
twofold.  Witbrock and Mittal (1999) label these 
two tasks as Content Selection and Realisation.  
Each criterion is scored probabilistically, 
whereby the probability is estimated by prior 
collection of corpus statistics.   

To estimate Content Selection probability for 
each word, we use the Maximum Likelihood 
Estimate (MLE).  In an offline training stage, the 
system counts the number of times a word is 
used in a headline, with the condition that it 
occurs in the corresponding news article.  To 
form the probability, this frequency data is 
normalised by the number of times the word is 
used in articles across the whole corpus.  This 
particular strategy of content selection, we refer 
to this as the Conditional probability.  The 
Realisation criterion is determined simply by the 
use of bigram statistics, which provides an 
approximation of grammatical correctness when 
ordering selected words.   

3 The Veracity of Generated Summaries 

Berger and Mittal (2000) describe limitations of 
headlines generated by recycling words from the 
article.  Differences in word order (for   
example, if the subject and object are reversed) 
can drastically affect sentence meaning.   

However, we believe that the veracity of the 
generated sentence, with respect to the original 
document, is affected by a more basic problem 
than variation in word order.  Because words 

from any part of a source document can be 
combined probabilistically, there is a possibility 
that words can be used together out of context.  
We refer to this as Out-of-Context error.   Figure 
1 presents an example of a generated headline in 
which the verb wrongly reports stock price 
movement.  It also presents the actual context in 
which that verb was used.  

Generated headline 
“singapore stocks shares rebound” 
 
Actual headline: 
“Singapore shares fall, seen higher after holidays.” 
 
Original context of use of ‘rebound’: 
“Singapore shares closed down below the 2,200 level on 
Tuesday but were expected to rebound immediately 
after Chinese Lunar New Year and Muslim Eid Al-Fitr 
holidays, dealers said.” 

Figure 1.  An error in the generated headline 
due to a word being re-used out of context. 

Out-of-Context errors arise due to limitations 
in the two criteria (presented in Section 1) for 
selecting words.  Word selection is based on the 
previous usage of a word in headlines, not on its 
relevance to the current document being 
summarised. In addition, word order is modelled 
probabilistically using ngrams of lexemes.  
However, the semantic relationship implied by 
probabilistically placing two words next to each 
other, for example an adjective and a noun, 
might be suspect.  As the name “Out-of-
Context” suggests, this is especially true if the 
words were originally used in non-contiguous 
and unrelated contexts.  This limitation in the 
word selection criteria can be characterized as 
being due to a lack of long distance relationship 
information. 

4 Our Approach to “Encouraging Truth” 

In response to this limitation, we explore the 
use of a matrix operation, Singular Value 
Decomposition (SVD) to guide the selection of 
words.  Although our approach still does not 
guarantee factual correctness with respect to the 
source document, it has the potential to alleviate 
the Out-of-Context problem by improving the 
selection criteria for including words in the 
generated sentence, by considering the original 
contexts in which words were used.  With this 
improved criteria, we hope to "encourage truth" 
by incorporating long distance relationships 



between words.  Conceptually, SVD provides an 
analysis of the data which describes the 
relationship between the distribution of words 
and sentences.  This analysis includes a 
grouping of sentences based on similar word 
distributions, which correspond to what we will 
refer to here as the main themes of the 
document.2  By incorporating this information 
into the word selection criteria, the generated 
sentence will "gravitate" towards a single theme.  
That is, it will tend to use words from that 
theme, reducing the chance that words are 
placed together out of context.   

Figure 2 presents an example of headlines 
generated with and without using SVD.  The 
headline grammar is still problematic, however, 
in this example, the SVD headline is closer in 
meaning to the original headline.  In contrast, 
the non-SVD headline uses words which are 
contentful but used out of context to form a non-
meaningful string of words. 
Actual Headline: 
“China says conflict with U.S. unlikely.” 
 
First Sentence: 
“Chinese Foreign Minister Qian Qichen said on Friday 
conflict between China and the United States was not 
possible unless Washington infringed on Beijing's 
sovereignty or territorial integrity.” 
 
Generated Headline without SVD:  
“taiwan premier china visit rebel world war” 
 
Generated Headline with SVD: 
“china taiwan foreign minister said improved ties” 

Figure 2.  An example of headlines generated 
with and without SVD Content Selection. 

By reflecting the content of the main theme, 
the summary may be informative (Borko, 1975).  
That is, the primary piece of information within 
the source document might be included within 
the summary. However, it would remiss of us to 
claim that this quality of the summary is 
guaranteed.  In general, the generated summaries 
are at least useful to gauge what the source text 


Theme is a term that is used in many ways by many 
researchers, and generally without any kind of formal 
definition.  Our use of the term here is akin to the 
notion that underlies work on text segmentation, 
where sentences naturally cluster in terms of their 
‘aboutness’.

is about, a characteristic described by Borko as 
being indicative.   
5 Using Singular Value Decomposition for 
Content Selection 

As an alternative to the Conditional probability, 
we examine the use of SVD in determining the 
Content Selection probability.  Before we 
outline the procedure for basing this probability 
on SVD, we will first outline our interpretation 
of the SVD analysis, based on that of Gong and 
Liu (2001).  Our description is not intended to 
be a comprehensive explanation of SVD, and we 
direct the reader to Manning and Schütze (2000) 
for a description of how SVD is used in 
information retrieval. 

Conceptually, when used to analyse 
documents, SVD can discover relationships 
between word co-occurrences in a corpus of 
text.  For example, in the context of information 
retrieval, this provides one way to retrieve 
additional documents that contain synonyms of 
query terms, where synonymy is defined by 
similarity of word co-occurrences.  By 
discovering patterns in word co-occurrences, 
SVD also provides information that can be used 
to cluster documents based on similarity of 
themes.   

In the context of single document 
summarisation, we require SVD to cluster 
sentences based on similarities of themes.   The 
SVD analysis provides information about how 
words and sentences relate to these themes.  One 
such piece of information is a matrix of scores, 
indicating how representative the sentence is of 
each theme.  Thus, for a sentence extraction 
summary, Gong and Liu (2001) would pick the 
top n themes, and for each of these themes, use 
this matrix to choose the sentence that best 
represents it.   

For single sentence summarisation, we 
assume that the theme of the generated headline 
should match the most important theme of the 
article.  The SVD analysis provides an ordering 
of themes, beginning with the one that accounts 
for the largest number of sentences, which we 
take to be the most important.  The SVD 
analysis provides a matrix which scores how 
well each word relates to each theme.  Given a 
theme, scores for each word, contained in a 



column vector of the matrix, can then be 
normalised to form a probability.  The remainder 
of this section provides a more technical 
description of how this is done. 

To begin with, we segment a text into 
sentences.  Our sentence segmentation 
preprocessing is quite simple and based on the 
heuristics found in Manning and Schütze (2000).  
After removing stop words, we then form a 
terms (i.e. words) by sentences matrix, A.  Each 
column of A represents a sentence.  Each row 
represents the usage of a word in various 
sentences. Thus the frequency of word t in 
sentence s is stored in the cell  Ats.  This gives us 
a t ∗ s matrix, where t ≥ s.  That is, we expect the 
lexicon size of a particular news article to 
exceed the number of sentences.   For such a 
matrix, the SVD of A is a process that provides 
the right hand side of the following equation: 

A = U.Σ. Vtranspose  

where U is  a t ∗ r matrix, Σ is an r ∗ r matrix, 
and V is an s ∗ r matrix.  The dimension size r is 
the rank of A, and is less than or equal to the 
number of columns of A, in this case, s.    A 
diagram of this is presented in Figure 3. 
It is important to note that the U matrix of the 
analysis provides information about how well 
words correspond to a particular theme.  We 
examine the first column of the U matrix, sum 
the elements and then normalize each element 
by the sum to form a probability.  This 
probability, which we refer to as the SVD 
probability, is then used as the Content Selection 
probability in the Viterbi search algorithm 
(Forney, 1973).  
As an alternative to using the SVD probability 
and the Conditional Probability in isolation, a 
Combined Probability is calculated using the 
harmonic mean of the two.  The harmonic mean 
was used in case the two component 
probabilities differed consistently in their 
respective orders of magnitude.  Intuitively, 
when calculating a combined probability, this 
evens the importance of each component 
probability. 

 
Figure 3.  A diagram of our interpretation of 

the SVD matrices as it relates to single sentence 
summarisation. 

To summarize, we end up with three 
alternative strategies in estimating the Content 
Selection Probability: the Conditional 
Probability, the SVD Probability and the 
Combined Probability. 

6 Experiments  

6.1 Data 

In our experiments, we attempted to match the 
experimental conditions of Witbrock and Mittal 
(1999).  We used news articles from the first six 
months of the Reuters 1997 corpus (Jan 1997 to 
June 1997).  Specifically, we only examined 
news articles from the general Reuters category 
(GCAT) which covers primarily politics, sport 
and economics.   This category was chosen not 
because of any particular domain coverage but 
because other categories exhibited frequent use 
of tabular presentation.  The GCAT category 
contains in excess of 65,000 articles.  Following 
Witbrock and Mittal (1999), we randomly 
selected 25,000 articles for training and a further 
1000 articles for testing, ensuring that there was 
no overlap between the two data sets.  During 
the training stage, we collected bigrams from the 
headline data, and the frequency of words 
occurring in headlines. 
6.2 Experiment Design 

We conducted an evaluation experiment to 
compare the performance of the three Content 
Selection strategies that we identified in Section 
5: the Conditional probability, the SVD 
probability, and the Combined probability.  We 



measure performance in terms of recall, i.e. how 
many of the words in the actual headline match 
words in the generated headline.3  The recall 
metric is normalised to form a percentage by 
dividing the word overlap by the number of 
words in the actual headline.   

For each test article, we generated headlines 
using each of the three strategies.  For each 
strategy, we generated headlines of varying 
lengths, ranging from length 1 to 13, where the 
latter is the length of the longest headline found 
in the test set.  We then compared the different 
strategies for generated headlines of equal 
length.   

To determine if differences in recall scores 
were significant, we used the Wilcoxon Matched 
Pairs Signed Ranks (WMPSR) test (Seigel and 
Castellan, 1988).  In our case, for a particular 
pair of Content Selection strategies, the alternate 
hypothesis was that the choice of Content 
Selection strategy affects recall performance.  
The null hypothesis held that there was no 
difference between the two content selection 
strategies.  Our use of the non-parametric test 
was motivated by the observation that recall 
scores were not normally distributed.  In fact, 
our results showed a positive skew for recall 
scores.  To begin with, we compared the recall 
scores of the SVD strategy and the Conditional 
strategy in one evaluation.  The strategy that was 
found to perform better was then compared with 
the Combined strategy. 

In addition to the recall tests, we conducted 
an analysis to determine the extent to which the 
SVD strategy and the Conditional probability 
strategy were in agreement about which words 
to select for inclusion in the generated headline.  
For this analysis, we ignored the bigram 
probability of the Realisation component and 
just measured the agreement between the top n 
ranking words selected by each content selection 
strategy.  Over the test set, we counted how 
many words were selected by both strategies, 
just one strategy, and no strategies.  By 

Word overlap, whilst the easiest way to evaluate the 
summaries quantitatively, is an imprecise measure 
and must be interpreted with the knowledge that non-
recall words in the generated headline might still 
indicate clearly what the source document is about.

normalising scores by the number of test cases, 
we determine the average agreement across the 
test set.  We ran this experiment for a range of 
different values of N, ranging from 1 to 13, the 
length of the longest headline in the test set.   
6.3 Results 

6.3.1 Recall Comparison 
The results for the comparison of recall scores 
are presented in Table 1 and Table 2.  Table 1 
shows results of the WMPSR test when 
comparing the SVD strategy with the 
Conditional strategy.4  Since the Conditional 
strategy was found to perform better, we then 
compared this with the Combined strategy, as 
shown in Table 2.  From Table 1, it is clear that, 
for all sentence lengths, there is a significant 
difference between the SVD strategy and the 
Conditional strategy, and so we reject the null 
hypothesis.  Similarly, Table 2 shows that there 
is a significant difference between the 
Conditional strategy and the Combined strategy, 
and again we reject the null hypothesis. We 
conclude that SVD probability alone is 
outperformed by the Conditional probability; 
however, using both probabilities together leads 
to a better performance.  
6.3.2 Agreement between Strategies 
The agreement between strategies is presented in 
Table 3.  Interestingly, of the words recalled, the 
majority have only been selected by one content 
selection strategy.  That is, the set of words 
recalled by one content selection strategy do not 
necessarily subsume the set recalled by the 
other.  This supports the results obtained in the 
recall comparison in which a combined strategy 
leads to higher recall.  Interestingly, the last 
column in the table shows that the potential 
combined recall is greater than the recall 
achieved by the combined strategy; we will 
return to this point in Section 6.4. 
 
 

 

4 The performance of our Conditional strategy is 
roughly comparable to the results obtained by Banko, 
Mittal and Witbrock (2000), in which they report 
recall scores between 20% to 25%, depending on the 
length of the generated headline.   



Sentence 
Length 

Average 
Recall : 

SVD 

Average 
Recall : 
Cond. Probability 

Reject  
H0 

1 03.68% 03.98% p ≤ 0.0 yes 
2 07.02% 06.97% p ≤  0.5 yes 
3 10.05% 11.44% p ≤ 0.0 yes 
4 12.39% 13.90% p ≤ 0.0 yes 
5 14.21% 15.73% p ≤0.0 yes 
6 15.57% 17.84% p ≤1.1e-05 yes 
7 16.59% 19.14% p ≤ 1.8e-07 yes 
8 17.74% 20.30% p ≤ 1.3e-07 yes 
9 18.74% 21.33% p ≤ 1.3e-06 yes 

10 19.73% 22.44% p ≤ 1.0e-06 yes 
11 20.19% 23.50% p ≤ 2.2e-10 yes 
12 20.85% 24.54% p ≤ 4.4e-13 yes 
13 21.13% 25.13% p ≤ 1.4e-12 yes 

Table 1. A comparison of recall scores for the 
SVD strategy and the Conditional strategy. 

Sentence 
Length 

Average 
Recall : 
Cond 

Average 
Recall :  

Combined Probability 
Reject  

H0 

1 03.98% 04.05% p ≤ 0.1305 yes 
2 06.97% 08.60% p ≤ 2.8e-13 yes 
3 11.44% 12.34% p ≤ 0.0007 yes 
4 13.90% 15.44% p ≤ 8.5e-09 yes 
5 15.73% 17.33% p ≤ 1.9e-09 yes 
6 17.84% 18.72% p ≤ 0.0003 yes 
7 19.14% 20.34% p ≤ 1.3e-05 yes 
8 20.30% 21.48% p ≤ 2.9e-06 yes 
9 21.33% 22.60% p ≤ 4.0e-06 yes 

10 22.44% 23.82% p ≤ 1.2e-06 yes 
11 23.50% 24.56% p ≤ 0.0003 yes 
12 24.54% 25.44% p ≤ 0.0008 yes 
13 25.13% 26.37% p ≤ 8.6e-06 yes 

Table 2. A comparison of recall scores for the 
Conditional strategy and the Combined strategy. 
Sentence 
Length 

Selected 
by neither 

method 

Selected by 
only 1 
method 

Selected 
by both 
methods 

Total 
Recall 

1 91.6% 8.0% 0.3% 8.3% 
2 84.7% 14.1% 1.0% 15.1% 
3 79.9% 17.5% 2.5% 20.0% 
4 76.6% 19.3% 3.9% 23.2% 
5 73.8% 21.0% 5.1% 26.1% 
6 71.4% 22.1% 6.4% 28.5% 
7 69.6% 22.4% 7.8% 30.2% 
8 67.9% 22.9% 9.1% 32.0% 
9 66.4% 23.2% 12.3% 35.5% 

10 65.0% 23.5% 11.3% 34.8% 
11 63.9% 23.6% 12.3% 35.9% 
12 63.0% 23.6% 13.2% 36.8% 
13 62.1% 23.5% 14.3% 37.8% 

Table 3.  Agreement of words chosen between 
the SVD strategy and the Conditional 
probability strategy to content selection 
6.4 Discussion 

The SVD strategy ultimately did not perform as 
well as we might have hoped.  There are a 
number of possible reasons for this. 

1. Whilst using the Combined probability did 
lead to a significantly improved result, this 
increase in recall was only small.  Indeed, 
the analysis of the agreement between the 
Conditional strategy and the SVD strategy 
indicates that the current method of 
combining the two probabilities is not 
optimal and that there is still considerable 
margin for improvement. 

2. Even though the recall of the SVD strategy 
was poorer by a only a few percent, the lack 
of improvement in recall is perplexing, 
given that we expected the thematic 
information to ensure words were used in 
correct contexts. There are several possible 
explanations, each warranting further 
investigation.  It may be the case that the 
themes identified by the SVD analysis were 
quite narrow, each encompassing only a 
small number of sentences.  If so, certain 
words occurring in sentences outside the 
theme would be given a lower probability 
even if they were good headline word 
candidates.  Further investigation is 
necessary to determine if this is a 
shortcoming of our SVD strategy or an 
artefact of the domain.  For example, it 
might be the case that the sentences of news 
articles are already thematically quite 
dissimilar.   

3. One might also question our experimental 
design.  Perhaps the kind of improvement 
brought about when using the SVD 
probability cannot be measured by simply 
counting recall.  Instead, it may be the case 
that an evaluation involving a panel of 
judges is required to determine if the 
generated text is qualitatively better in terms 
of how faithful the summary is to the 
information in the source document.  For 
example, a summary that is more accurate 
may not necessarily result in better recall.  
Finally, it is conceivable that the SVD 
strategy might be more sensitive to 
preprocessing stages such as sentence 
delimitation and stopword lists, which are 
not necessary when using the Conditional 
strategy.  



Despite these outstanding questions, there are 
pragmatic benefits when using SVD.  The 
conditional strategy requires a paired training set 
of summaries and source documents.  In our 
case, this was easily obtained by using headlines 
in lieu of single sentence summaries.  However, 
in cases where a paired corpus is not available 
for training, the SVD strategy might be more 
appropriate, given that the performance does not 
differ considerably.  In such a situation, a 
collection of documents is only necessary for 
collecting bigram statistics. 

7 Related Work 

As the focus of this paper is on statistical single-
sentence summarisation we will not focus on 
preceding work which generates summaries 
greater in length than a sentence.  We direct the 
reader to Paice (1990) for an overview of 
summarisation based on sentence extraction.  
Examples of recent systems include Kupiec et 
al. (1995) and Brandow et al. (1995).    For 
examples of work in producing abstract-like 
summaries, see Radev and McKeown (1998), 
which combines work in information extraction 
and natural language processing.  Hybrid 
methods for abstract-like summarisation, which 
combine statistical and symbolic approaches, 
have also been explored; see, for example, 
McKeown et al. (1999), Jing and McKeown 
(1999), and Hovy and Lin (1997). 

Statistical single sentence summarisation has 
been explored by a number of researchers (see 
for example, Witbrock and Mittal, 1999; Zajic et 
al., 2002).  Interestingly, in the work of 
Witbrock and Mittal (1999), the selection of 
words for inclusion in the headline is decided 
solely on the basis of corpus statistics and does 
not use statistical information about the 
distribution of words in the document itself.  Our 
work differs in that we utilise an SVD analysis 
to provide information about the document to be 
summarized, specifically its main theme.    

Discourse segmentation for sentence 
extraction summarisation has been studied in 
work such as Boguraev and Neff (2000) and 
Gong and Liu (2001).  The motivation behind 
discovering segments in a text is that a sentence 
extraction summary should choose the most 
representative sentence for each segment, 

resulting in a comprehensive summary.  In the 
view of Gong and Liu (2001), segments form the 
main themes of a document.  They present a 
theme interpretation of the SVD analysis, as it is 
used for discourse segmentation, upon which our 
use of the technique is based.  However, Gong 
and Liu use SVD for creating sentence 
extraction summaries, not for generating a single 
sentence summary by re-using words. 

In subsequent work to Witbrock and Mittal 
(1999), Banko et al. (2000) describe the use of 
information about the position of words within 
four quarters of the source document.  The 
headline candidacy score of a word is weighted 
by its position in one of the quarters.  We 
interpret this use of position information as a 
means of guiding the generation of a headline 
towards the central theme of the document, 
which for news articles typically occurs in the 
first quarter.  SVD potentially offers a more 
general mechanism for handling the discovery of 
the central themes and their positions within the 
document.   

Jin et al. (2002) have also examined a 
statistical model for headlines in the context of 
an information retrieval application.  Jin and 
Hauptmann (2001) provide a comparison of a 
variety of learning approaches used by 
researchers for modelling the content of 
headlines including the Iterative Expectation-
Maximisation approach, the K-Nearest 
neighbours approach, a term vector approach 
and the approach of Witbrock and Mittal (1999).  
In this comparison, the approach of Witbrock 
and Mittal (1999) fares favourably, ranking 
second after the term vector approach to title 
word retrieval (see Jin and Hauptmann, 2001, 
for details).   However, while it performs well, 
the term vector approach Jin et al. (2002) 
advocate doesn't explicitly try to model the way 
a headline will usually discuss the main theme 
and may thus be subject to the Out-of-Context 
problem. 

8 Conclusion 

Combining both the SVD probability and 
Conditional probability marginally improves 
recall; lending support to the intuition that 
thematic information may help generate better 
single sentence summaries by avoiding out-of-



context errors.  However, there are still many 
unanswered questions.  In future work, we 
intend to investigate these techniques in a 
domain other than news text so that we can draw 
conclusions as to how well these strategies 
generalise to other genres.  We also intend to 
conduct user evaluations to gauge the quality of 
the generated summaries for both the 
Conditional and the SVD strategies.  Finally, we 
are interested in how well this approach works 
with other languages.  Preliminary results with 
Chinese headline generation are promising. 
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Abstract 

From the view point of the linguistic ty-
pology, Korean and Japanese have many 
grammatical similarities which enable it 
to easily construct a sense-tagged Korean 
corpus through an existing high-quality 
Japanese-to-Korean machine translation 
system. The sense-tagged corpus may 
serve as a knowledge source to extract 
useful clues for word sense disambigua-
tion (WSD). This paper addresses a dis-
ambiguation model for Korean nouns, 
whose execution is based on the concept 
codes extracted from the sense-tagged 
corpus and the semantic similarity values 
over a thesaurus hierarchy. By the help of 
the automatically constructed sense-
tagged corpus, we overcome the knowl-
edge acquisition bottleneck. Also, we 
show that the performance of word sense 
disambiguation can be improved by com-
bining several base classifiers. In an ex-
perimental evaluation, the proposed 
model using a majority voting achieved 
an average precision of 77.75% with an 
improvement over the baseline by 15.00%, 
which is very promising for real world 
MT systems. 

1 Introduction 

Generally, a Korean homograph may be translated 
into a different Japanese equivalent depending on 
which sense is used in a given context. Thus, noun 
sense disambiguation is essential to the selection of 
an appropriate Japanese target word in Korean-to-
Japanese translation. 

Much research on word sense disambiguation 
has revealed that several different types of infor-
mation can contribute to the resolution of lexical 
ambiguity. These include surrounding words (an 
unordered set of words surrounding a target word), 
local collocations (a short sequence of words near 
a target word, taking word order into account), 
syntactic relations (selectional restrictions), parts 
of speech, morphological forms, semantic context, 
etc (McRoy, 1992, Yarowsky, 1992, Ng and Zelle, 
1997). 

To extract such information, various types of 
knowledge sources have been utilized such as ma-
chine-readable dictionaries (MRD), thesauri, and 
computational lexicons. Since most MRDs and 
thesauri were created for human use and display 
inconsistencies, these resources have clear limita-
tions. Sense-tagged corpora have been used as the 
most useful knowledge source for WSD. However, 
despite the value of sense-tagged corpora, two ma-
jor obstacles impede the acquisition of lexical 
knowledge from corpora: the difficulties of manu-
ally sense-tagging a training corpus, and data 
sparseness (Ide and Veronis, 1998). Manual sense-
tagging of a corpus is extremely costly, and at pre-
sent, very few sense-tagged corpora are available. 



In our WSD approach, we construct a sense-
tagged corpus automatically by using a method 
based on similarities between Korean and Japanese. 
Our disambiguation model is based on the work of 
Li et al (2000), especially focusing on the practi-
cality of the method for application to real world 
MT systems. We alleviate the data sparseness 
problem by adopting a concept-based processing 
and reduce the number of features to a practical 
size by refinement processing. 

This paper is organized as follows. Section 2 
presents the overall system architecture. Section 3 
explains the automatic construction of a sense-
tagged Korean corpus and the extraction of refined 
features for word sense disambiguation. Section 4 
describes the construction of feature set and the 
learning of disambiguation models. In Section 5, 
the experimental results are given, showing that the 
proposed method may be useful for WSD in a real 
text. In this paper, Yale Romanization is used to 
represent Korean expressions. 

2 

3 

3.1 

System Architecture 

Our disambiguation method consists of two phases. 
The first phase is the extraction of features for 
WSD and the second phase is the construction of 
disambiguation models. (see Figure 1.) 

For practical reasons, a reasonably small num-
ber of features is essential to the design of disam-
biguation models. To construct a feature set of a 
reasonable size, we adopt Li�’s method (2000), 
based on concept co-occurrence information (CCI). 
CCI are concept codes of words which co-occur 

with the target word for a specific syntactic rela-
tion. 

Japanese Corpus

COBALT-J/K
(Japanese-to-Korean

MT system)

Sense Tagged
Korean Corpus

Partial Parsing
& Pattern Scanning

Raw CCI

CCI Refinement
Processing

Refined CCI

Features Extraction Disambiguation Models
Construction

Feature Set

Training Set
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Training Patterns

Disambiguation
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MT Dictionary
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�• �• �•
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�• �• �•
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Figure 1. System Architecture 
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Figure 2. Concept hierarchy of the Kadokawa 
thesaurus 

In accordance with Li�’s method, we automati-
cally extract CCI from a corpus by constructing a 
sense-tagged Korean corpus. To accomplish this, 
we apply a Japanese-to-Korean MT system. Next, 
we extract CCI from the constructed corpus 
through partial parsing and scanning. To eliminate 
noise and to reduce the number of CCI, refinement 
processing is applied to the extracted raw CCI set. 
After completing refinement processing, we use 
the remaining CCI as features for disambiguation. 
The obtained feature set and the trained disam-
biguation models are stored in a dictionary for MT 
system. 

Extraction of Features for WSD 

Automatic Construction of Sense-tagged 
Corpus 

Japanese and Korean are very similar in word or-
der and lexical properties. Also, they have many 
nouns in common derived from Chinese characters. 
Because almost all Japanese common nouns repre-
sented by Chinese characters are monosemous, 
little transfer ambiguity is exhibited in Japanese-to-
Korean translation of nouns, and we can obtain a 
sense-tagged Korean corpus of a good quality by 
using those linguistic similarities between Korean 
and Japanese.  

For automatic construction of the sense-tagged 
corpus, we used a Japanese-to-Korean MT system 



Table 1. Structure of CCI Patterns 

CCI type Structure of pattern 
type0 unordered co-occurrence words 
type1 noun + noun  or  noun + noun 
type2 noun + uy + noun 
type3 noun + other particles + noun 
type4 noun + lo/ulo + verb 
type5 noun + ey + verb 
type6 noun + eygey + verb 
type7 noun + eyse + verb 
type8 noun + ul/lul + verb 
type9 noun + i/ka + verb 
type10 verb + relativizer + noun 

Table 2. Concept codes and frequencies in CFP 
({<Ci,fi>}, type2, nwun(eye)) 

Code Freq. Code Freq. Code Freq. Code Freq.
028 19 107 8 121 7 126 4 
143 8 160 5 179 7 277 4 
320 8 331 6 416 7 429 22
433 4 501 13 503 10 504 11
505 6 507 12 508 27 513 5 
530 6 538 11 552 4 557 7 
573 5 709 5 718 5 719 4 
733 5 819 4 834 4 966 4 
987 9 other* 210     

�‘other�’ in the table means the set of concept codes  
with the frequencies less than 4. 

called COBALT-J/K1. In the transfer dictionary of 
COBALT-J/K, nominal and verbal words are 
annotated with concept codes of the Kadokawa 
thesaurus (Ohno and Hamanishi, 1981), which has 
a 4-level hierarchy of about 1,100 semantic classes, 
as shown in Figure 2. Concept nodes in level L1, L2 
and L3 are further divided into 10 subclasses. 

We made a slight modification of COBALT-
J/K to enable it to produce Korean translations 
from a Japanese text, with all content words tagged 
with specific concept codes at level L4 of the Ka-
dokawa thesaurus. As a result, a sense-tagged Ko-
rean corpus of 1,060,000 sentences can be obtained 
from the Japanese corpus (Asahi Shinbun, Japanese 
Newspaper of Economics, etc.). 

The quality of the constructed sense-tagged 
corpus is a critical issue. To evaluate the quality, 
we collected 1,658 sample sentences (29,420 eo-
jeols2) from the corpus and checked their precision. 
The total number of errors was 789, and included 
such errors as morphological analysis, sense ambi-
guity resolution and unknown words. It corre-
sponds to the accuracy of 97.3% (28,631 / 29,420 
eojeols). The number of ambiguity resolution er-
rors was 202 and it took only 0.69% of the overall 
corpus (202 / 29,420 eojeols). Considering the fact 
that the overall accuracy of the constructed corpus 
exceeds 97% and only a few sense ambiguity reso-
lution errors were found in the Japanese-to-Korean 

translation of nouns, we regard the generated 
sense-tagged corpus as highly reliable. 

                                                           

3.2 

3.3 

1 COBALT-J/K (Collocation-Based Language Translator from 
Japanese to Korean) is a high-quality practical MT system 
developed by POSTECH. 
2 An Eojeol is a Korean syntactic unit consisting of a content 
word and one or more function words. 

Extraction of Raw CCI 

Unlike English, Korean has almost no syntactic 
constraints on word order as long as the verb ap-
pears in the final position. The variable word order 
often results in discontinuous constituents. Instead 
of using local collocations by word order, Li et al. 
(2000) defined 13 patterns of CCI for homographs 
using syntactically related words in a sentence. 
Because we are concerned only with noun homo-
graphs, we adopt 11 patterns from them excluding 
verb patterns, as shown in Table 1. The words in 
bold indicate the target homograph and the words 
in italic indicate Korean particles. 

For a homograph W, concept frequency patterns 
(CFPs), i.e., ({<C1,f1>,<C2,f2>, ... , <Ck,fk>}, typei, 
W(Si)), are extracted from the sense-tagged train-
ing corpus for each CCI type i by partial parsing 
and pattern scanning, where k is the number of 
concept codes in typei, fi is the frequency of con-
cept code Ci appearing in the corpus, typei is an 
CCI type i, and W(Si) is a homograph W with a 
sense Si. All concepts in CFPs are three-digit con-
cept codes at level L4 in the Kadokawa thesaurus. 
Table 2 demonstrates an example of CFP that can 
co-occur with the homograph �‘nwun(eye)�’ in the 
form of the CCI type2 and their frequencies. 

CCI Refinement Processing 

The extracted CCI set is too numerous and too 
noisy to be used in a practical system, and must to 
be further selected. To eliminate noise and to re-
duce the number of CCI to a practical size, we ap-
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ply the refinement processing to the extracted CCI 
set. CCI refinement processing is composed of 2 
processes: concept code discrimination and con-
cept code generalization. 

3.3.1 Concept Code Discrimination 

In the extracted CCI set, the same concept code 
may appear for determining the different meanings 
of a homograph. To select the most probable con-
cept codes, which frequently co-occur with the 
target sense of a homograph, Li defined the dis-
crimination value of a concept code using 
Shannon�’s entropy. A concept code with low 
entropy has a large discrimination value. If the 
discrimination value of the concept code is larger 
than a threshold, the concept code is selected as 
useful information for deciding the word sense. 
Otherwise, the concept code is discarded. 

4 

4.1 

4.2 

                                                          

3.3.2 Concept Code Generalization 

After concept discrimination, co-occurring concept 
codes in each CCI type must be further selected 
and the code generalized. To perform code gener-
alization, Li adopted Smadja�’s work (Smadja, 
1993) and defined the code strength using a code 
frequency and a standard deviation in each level of 
the concept hierarchy. The generalization filter 
selects the concept codes with a strength larger 
than a threshold. We perform this generalization 
processing on the Kadokawa thesaurus level L4 and 
L3. 

After processing, the system stores the refined 
conceptual patterns ({C1, C2, C3, ...}, typei, W(Si)) 
as a knowledge source for WSD of real texts. 
These refined CCI are used as features for disam-

biguation models. The more specific description of 
the CCI extraction is explained in Li (2000). 

Construction of Disambiguation Models 

Feature Set Construction 

The feature set is constructed by integrating the 
extracted CCI into a single vector. Figure 33 dem-
onstrates a construction example of the feature set 
for the homograph �‘nwun�’ with the sense �‘snow�’ 
and �‘eye�’. The left side is the extracted CCI for 
each sense after refinement processing. We con-
struct the feature set for �‘nwun�’ by merely integrat-
ing the concept codes in CCI set of both senses. 
The resulting feature set is partitioned into several 
subgroups depending on their CCI types, i.e., type 
0, type 1, type 2 and type 8. Since the extracted 
CCI set are different according to each word, each 
homograph has a feature set of its own. 

Extraction of Training Patterns 

After constructing the feature set for WSD, we ex-
tract training patterns for each homograph from the 
previously constructed sense-tagged corpus. The 
construction of training pattern is performed in the 
following 2 steps. 

Step 1. Extract CCI from the context of the tar-
get homograph. The window size of the context is 

 
3 The concept codes in Figure 3 are simplified ones for the 
ease of illustration. In reality there are 87 concept codes for 
�‘nwun�’. 



a single sentence. Consider, for example, the sen-
tence in Figure 4 which has the meaning of �“See-
ing her eyes filled with tears, �…�”. The target 
homograph is the word �‘nwun�’. We extract its CCI 
from the sentence by partial parsing and pattern 
scanning. In Figure 4, the words �‘nwun�’ and 
�‘kunye(her)�’ with the concept code 503 have the 
relation of <noun + uy + noun>, which corresponds 
to �‘CCI type 2�’ in Table 1. There is no syntactic 
relation between the words �‘nwun�’ and �‘nwun-
mul(tears)�’ with the concept code 078, so we as-
sign �‘CCI type 0�’ to the concept code 078. 

Similarly, we can obtain all pairs of CCI types 
and their concept codes appearing in the context. 
All the extracted <CCI-type: concept codes> pairs 
are as follows: {<type 0: 078,274>, <type 2: 503>, 
<type 8: 331>}. 

Step 2. Obtain the training pattern by calculat-
ing concept similarities between concept codes in 
the context CCI set and the feature set. Concept 
similarity calculation is performed only between 
the concept codes with the same CCI-type. This 
score represents that how much each node of the 
network relates to clues appearing in the target 
context. The calculated concept similarity score is 
assigned to each feature node as the activation 
strength for it. 

Csim(Ci, Pj) in Equation 1 is used to calculate 
the concept similarity between Ci and Pj, where 
MSCA(Ci, Pj) is the most specific common ances-
tor of concept codes Ci and Pj, and weight is a 
weighting factor reflecting that Ci as a descendant 
of Pj is preferable to other cases. That is, if Ci is a 
descendant of Pj, we set weight to 1. Otherwise, we 
set weight to 0.5. 

weight
PlevelClevel
PCMSCAlevel

PCCsim
ji

ji
ji )()(

)),((2
),(
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The similarity values between the target con-
cept Ci and each Pj on the Kadokawa thesaurus 
hierarchy are shown in Figure 5. These similarity 
values are computed using Equation 1. For exam-
ple, in �‘CCI-type 0�’ part calculation, the relation 
between the concept codes 274 and 26 corresponds 
to the relation between Ci and P4 in Figure 5. So 
we assign the similarity 0.285 to the feature node 
labeled by 26. As another example, the concept 
codes 503 and 50 have a relation between Ci and 
P2 and we obtain the similarity 0.857. If more than 
two concept codes exist in one CCI-type, such as 
<type 0: 078, 274>, the maximum similarity value 
among them is assigned to the input node, as in 
Equation 2. 

(all 0.000)

(0.375)

(0.857)

(0.667)

(0.285)

(0.250) (0.250)

L1

L2

L3

L4

�…

Ci

P1

P2

P3

P4

P5 P5

TOP

Figure 5. Concept Similarity on the Kadokawa 
Thesaurus Hierarchy 

In Equation 2, Ci is the concept code of the fea-
ture set, and Pj is the concept codes in the <CCI-
type: concept codes> pair which has the same CCI-
type as Ci. 

)),((max)( jiPi PCCsimCInputVal
i

      (2) 

The use of concept similarity scheme gives an-
other advantage. By adopting this concept similar-
ity calculation, we can achieve a broad coverage of 
the method. If we use the exact matching scheme 
instead of concept similarity, we may obtain only a 
few concept codes matched with the features. Con-
sequently, sense disambiguation would fail be-
cause of the absence of clues. 

4.3 Learning of Disambiguation Models 

Using the obtained feature set and training patterns, 
we learned 4 types of disambiguation models, such 
as neural network, decision tree, support vector 
machine and majority voting system. Neural net-
work and decision tree have been used in a lot of 
pattern recognition problems because of their 
strong capability in classification. And recently, 
support vector machine have generated a great in-
terest in the community of machine learning due to 
its excellent generalization performance in a wide 
variety of learning problems. 

From a statistical point of view, if the size of 
sample is small, generating different classifiers 
about the sample and combining them may result 
in more accurate prediction of new patterns. On the 
other hand, based on a computational view, if the 
sample is large enough, the nature of learning algo-
rithm could lead to getting stuck in local optima. 
Therefore, a classifier combination is a way to ex-
pand the hypothesis space to represent the true 
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function (Ardeshir, 2002). In our experiment, we 
adopted a majority voting system for combining 
base classifiers. A majority voting selects the sense 
of the test pattern based on receiving more than 
half votes of base classifiers. 

To find the best parameters for decision tree 
and support vector machine, we evaluated per-
formance of each classifier on various parameters. 
For this evaluation, we used 942 test samples ex-
tracted from KIBS (Korean Information Base Sys-
tem) corpus. Table 3 and 4 are the evaluation 
results for decision tree and support vector ma-
chine respectively and we selected parameters 
which showed the best performance. The parame-
ter settings for our system are listed below. 

 
[Decision Tree (DT)] 

- C4.5 Decision Tree Generator 
- Pruning confidence level : 15% 

[Neural Network (NN)] 
- 2-layer network 

[Support Vector Machine (SVM)] 
- SVM light 
- Kernel : RBF (width = 0.5) 

[Majority Voting (MV)] 
- Base classifiers : DT, NN, SVM 

Experimental Evaluation Table 3. Evaluation Results for Decision Tree 
with Different Pruning Levels 

Pruning Confidence Level Precision 
(correct / applied)

Level = 10% 76.26% (546/716)
Level = 15% 77.38% (561/725)
Level = 25% 77.30% (555/718)
Level = 40% 76.72% (547/713)

(  number of test samples : 942)

Our WSD approach is a hybrid method, which 
combines the advantage of knowledge-based and 
corpus-based methods. Figure 6 shows our overall 
WSD algorithm. For a given homograph, sense 
disambiguation is performed as follows. First, we 
search a collocation dictionary. The Korean-to-
Japanese translation system COBALT-K/J has an 
MWTU (Multi-Word Translation Units) dictionary, 
which contains idioms, compound words, colloca-
tions, etc. If a collocation of the target word exists 
in the MWTU dictionary, we simply determine the 
sense of the target word to the sense found in the 
dictionary. This method is based on the idea of 
�‘one sense per collocation�’. Next, we verify the 
selectional restrictions of verbs described in the 
dictionary. If we cannot find any matched patterns 
for selectional restrictions, we apply the machine 
learning classifiers. If we fail in all the previous 
stages, we assign the most frequently appearing 
sense in the training corpus to the target word. 

Table 4. Evaluation Results for Support Vector 
Machine with Different Kernel Functions 

Kernel Function Precision 
(correct / applied)

Linear 79.89% (556/696)
Polynomial (degree=2) 80.60% (565/701)
Polynomial (degree=3) 79.92% (569/712)

RBF (width=0.5) 80.80% (568/703)
RBF (width=1.0) 80.66% (563/698)
RBF (width=2.0) 79.71% (554/695)

(  number of test samples : 942) For an experimental evaluation, 15 Korean 
noun homographs were selected, along with a total 
of 1,200 test sentences in which one homograph 
appears (2 senses : 12 words, 3 senses : 2 words, 4 
senses : 1 word). The test sentences were randomly 
selected from the KIBS corpus. 

The baseline results are shown in Table 5, 
where the result A is the case when the most fre-
quent sense was taken as the answer and the result 
B is the case when COL and SR stages were ap-
plied previously. Symbols COL, SR, ML and MFS 
in Table 5 and 6 indicate 4 stages of our method in 

Machine Learning Classifiers
(DT / NN / SVM / MV)

Select the Most Frequent Sense

Success

Success

Answer
NO

NO

NO

YES

YES

YES

Selectional Restrictions

Collocation Dictionary

Success

Figure 6. The Proposed WSD Algorithm 



Figure 6, respectively. Table 6 is the comparison 
results of 4 machine learning classifiers. To com-
pare models with the same condition, we con-
trolled the number of test samples which each 
model is applied to about 700.  

As shown in the table, the majority voting sys-
tem showed the best performance above all other 
single classifiers and exceeded the baseline A by 
15.00%. Even if we exclude the help of the collo-
cation information and selectional restrictions de-
scribed in the dictionary, we achieved the 
improvement of 7.58% over the baseline B. This 
result is very promising for real world MT systems 
and indicates that word sense disambiguation can 
be improved by classifier combination. Among the 
single classifiers, SVM was better than DT and NN 
(see ML stage in Table 6). Interestingly, however, 
when followed by MFS stage, NN overtook the 
performance of SVM. 

The results of classifiers for each word are 
shown in Table 7. A shadowed cell indicates the 
best classifier on the word. Although the majority 
voting recorded the best  results on only 2 words, it 
showed good results on other words steadily. We 
can recognize that the best classifier is different for 
each word. Some words have a decision tree as the 
best classifier and some have a neural network. 
From this observation, we guess that each word 

may have disambiguation property of its own and 
require a different machine learning method ac-
cording to its property. So if we can identify the 
disambiguation characteristics of words, we will be 
able to improve the system performance by apply-
ing a different classifier for each word. 

6 Conclusion 

To resolve sense ambiguities in Korean-to-
Japanese MT, this paper has proposed a practical 
word sense disambiguation method using concept 
co-occurrence information. We showed that sense-
tagged Korean corpus can be generated easily by 
using Japanese corpus and a machine translation 
system. In an experimental evaluation, the pro-

Table 6. Comparison Results of Classifiers 
 Precision (correct # / applied #)

Stage Model 1 
[DT] 

Model 2 
[NN] 

Model 3 
[SVM] 

Model 4
[MV] 

COL 100% (21/21) 
SR 91.14% (216/237) 

ML 77.38% 
(561/725) 

78.93% 
(558/707) 

80.80% 
(568/703)

81.84%
(568/694)

MFS 53.00% 
(115/217) 

57.87% 
(136/235) 

51.46% 
(123/239)

51.61%
(128/248)

Total 76.08% 
(913/1200) 

77.58% 
(931/1200) 

77.33% 
(928/1200)

77.75%
(933/1200)

Table 5. Baseline Performance 
 Precision (correct # / applied #)

Stage Baseline A Baseline B 
COL N/A (0/0) 100% (21/21) 
SR N/A (0/0) 91.14% (216/237) 

MFS 62.75% (753/1200) 64.23% (605/942) 
Total 62.75% (753/1200) 70.17% (842/1200)

Table 7. Comparison Results of Classifiers for Each 
Word                  Precision (correct # / applied #)

Word DT NN SVM MV 

kasa 93.24%
(69/74)

77.46%  
(55/71) 

77.94% 
(53/68)

89.39% 
(59/66)

kancang 88.93%
(47/56)

85.25%  
(52/61) 

88.89% 
(48/54)

87.72% 
(50/57)

keli 79.17%
(19/24)

57.69%  
(15/26) 

76.92% 
(30/39)

83.33% 
(20/24)

kyengki 69.39%
(34/49)

77.27%  
(34/44) 

70.21% 
(33/47)

70.83% 
(34/48)

kyengpi 84.21%
(32/38)

75.56%  
(34/45) 

76.19% 
(32/42)

77.27% 
(34/44)

kwutu 86.44%
(51/59)

90.57%  
(48/53) 

87.27% 
(48/55)

87.72% 
(50/57)

nwun 91.84%
(45/49)

93.48%  
(43/46) 

93.62% 
(44/47)

91.67% 
(44/48)

tali 52.94%
(27/51)

52.38%  
(22/42) 

54.29% 
(19/35)

52.63% 
(20/38)

pwuca 82.61%
(57/69)

86.67%  
(39/45) 

87.10% 
(54/62)

85.94% 
(55/64)

swumyen 66.67% 
(22/33)

65.38%  
(34/52) 

83.33% 
(30/36)

80.56% 
(29/36)

yongki 62.07% 
(36/58)

83.33%  
(35/42) 

73.33% 
(33/45)

75.56% 
(34/45)

uysa 81.82% 
(9/11)

78.00%  
(39/50) 

78.00% 
(39/50)

83.33% 
(35/42)

yenki 
(3 senses)

52.08% 
(25/48)

68.75%  
(22/32) 

66.67% 
(20/30)

65.52% 
(19/29)

censin 
(3 senses)

93.55% 
(58/62)

93.22%  
(55/59) 

98.08% 
(51/52)

96.49% 
(55/57)

cenlyek 
(4 senses)

68.18% 
(30/44)

79.49%  
(31/39) 

79.49% 
(31/39)

76.92% 
(30/39)

 



posed WSD model using a majority voting 
achieved an average precision of 77.75% with an 
improvement over the baseline by 15.00%. This 
result indicates that word sense disambiguation can 
be improved by combining base classifiers and the 
concept co-occurrence information-based approach 
is very promising for real world MT systems. 

We plan further research on feature selection. 
Compared with the surface form information of 
lexical words, the concept codes are somewhat 
diluted information as clues for WSD. Thus we 
will be able to improve the performance of system 
if we add other features to our disambiguation 
model, such as lexical words and part of speech of 
surrounding words. Also, we have a plan to de-
velop a new similarity measure to find the more 
feasible similarity values for our system.  
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Abstract

In this paper we present an evalua-
tion of overlap-based measures of sim-
ilarity for sentences in the same lan-
guage. The measures include syntactic
and semantic information, and to that
end they incorporate grammatical re-
lations and flat logical forms. A full
parser is required to build the above in-
formation. Separate extrinsic evalua-
tions within the context of question an-
swering have been made with two dif-
ferent parsers to test the impact of the
parser and the overlap measures.

1 Introduction

Text-based Question Answering (QA) is a hot
research topic and the increasing availability of
electronic text will ensure that research in this
area will continue for long. Much of the cur-
rent research on QA focuses on the development
of methodologies for processing relatively large
volumes of text. For example, the competition-
based QA track of the Text REtrieval Conference
(TREC) (Voorhees, 2001) uses more than 3Gb of
source text. Competing systems often exploit the
data redundancy existing in the source text. Some
of them even use the Web to increase the data re-
dundancy (Brill et al., 2001; Clarke et al., 2001,
for example). These systems typically trade ac-
curacy for speed and avoid the use of intensive
natural language processing techniques.
Most of the current QA systems are based on an

architecture like that of Figure 1 (Hirschman and

Gaizauskas, 2001; Voorhees, 2001). In an off-line
or indexing stage, an indexing module analyses
the text documents and creates a set of document
images that will be used by the subsequent QA
modules. In an on-line stage, a question analy-
sis module classifies the question and determines
the type of the expected answer. The question
analysis module would typically return a list of
named-entity types that are compatible with the
question (for example a who question typically
indicates people or organisations). The module
may also produce an image of the question. This
image may be similar in format to the document
images and can range from a simple bag of words
(Cooper and Rüger, 2000, for example) to a fairly
complex logical form (Harabagiu et al., 2001; El-
worthy, 2000, for example). Once the question is
analysed, a document preselection module iden-
tifies the documents that are most likely to contain
the answer. This module typically uses informa-
tion retrieval techniques that rely on bag-of-words
approaches and statistical information (Voorhees,
2001). A filtering module examines the resulting
documents and selects or rewards the named enti-
ties that are compatible with the question type. A
scoring module then performs a more intensive
analysis and ranks the preselected named entities
(an possibly surrounding text) according to their
likelihood to contain the answer. The scoring sys-
tem relies on the output given by the question
analysis module and possibly the images of the
preselected documents that were created during
the off-line stage. There may be feedback loops
between the document preselection, filtering, and
scoring modules to increase the likelihood of find-



Figure 1: Architecture of a generic question-
answering system.

ing difficult answers (Harabagiu et al., 2001, for
example).
The scoring methodology used can be as sim-

ple as a word overlap or word frequency count, or
as complex as an automatic proof system that op-
erates on logical forms of both the questions and
the answers. In some QA systems the scoring sys-
tem relies heavily on the use of sentence patterns
(Soubbotin, 2001, for example).
In the present study we have implemented a

QA framework that uses simplifications of the
modules described above. The emphasis in this
study has been placed on the comparison of core
methodologies for the scoring stage. To avoid
the introduction of unwanted variables, we have
avoided the use of methodologies that rely on
world knowledge or domain knowledge. Thus,
we have refrained from testing the use of exter-
nal resources or inference systems.
With this QA framework we intend to assess

the impact of syntactic and semantic information
in a QA task. For that reason, we include infor-
mation regarding word dependencies, grammati-
cal relations, and logical forms in the procedure to
measure the similarity between a question and an
answer candidate. The results of the evaluations
show both the impact of the scoring measures and
the impact of the parsers used to extract the syn-
tactic and semantic information. Section 2 de-
scribes grammatical relations and their use in an
overlap measure. Section 3 focuses on the overlap
of flat logical forms. Section 4 introduces the QA
system that was used for the evaluations, and Sec-
tion 5 explains the methodology used in the au-
tomatic evaluations. Finally, Section 6 discusses

Figure 2: Hierarchy of grammatical relations.

the results and Section 7 concludes and points to
future lines of research.

2 Grammatical Relations

We use the grammatical relations of
Carroll et al. (1998), who devised them as a
means to provide the canonical representation
of the output of parsers for their evaluation.
Figure 2 shows the hierarchical classification of
the grammatical relations (Briscoe and Carroll,
2000). This hierarchy allows the mapping from
the output of an arbitrary parser and therefore
allow the evaluation of parsers with different
output granularity.
Table 1 lists the grammatical relations used in

this paper and the evaluation – For further detail
about grammatical relations see (Briscoe and Car-
roll, 2000). For example, the grammatical rela-
tions for the sentence The man that came ate ba-
nanas and apples with a fork without asking are:

DETMOD( ,man,the),
CMOD(that,man,come),
SUBJ(come,man, ),
SUBJ(eat,man, ),
DOBJ(eat,banana, ),
DOBJ(eat,apple, )
CONJ(and,banana,apple),
NCMOD(fork,eat,with),
DETMOD( ,fork,a),
XCOMP(without,eat,ask)

Briscoe and Carroll’s grammatical relations are
not to be confused with the dependency arcs used
in the theory of dependency grammar (Mel’čuk,
1988). To illustrate the difference, consider the
sentence The man that came ate bananas and



Relation Description
CONJ(type,head+) Conjunction
MOD(type,head,dependent) Modifier
CMOD(type,head,dependent) Clausal modifier
NCMOD(type,head,dependent) Non-clausal modifier
DETMOD(type,head,dependent) Determiner
SUBJ(head,dependent,initial gr) Subject
OBJ(head,dependent,initial gr) Object
DOBJ(head,dependent,initial gr) Direct object
XCOMP(head,dependent) Clausal complement without an overt subject

Table 1: Grammatical relations used in this paper.

apples with a fork. Figure 3 shows the graph-
ical representation of the structure returned by
Conexor FDG, a dependency-based parsing sys-
tem (Tapanainen and Järvinen, 1997). In depen-
dency grammar a unique head is assigned to each
word, thus the head of man is ate. However
man is the dependent of more than one gram-
matical relation, namely SUBJ(eat,man, )
and SUBJ(come,man, ). Furthermore, in de-
pendency grammar a word can have at most
one dependent of each argument type, and
so ate can have at most one object. But
the same is not true for grammatical relations,
and we get both OBJ(eat,banana, ) and
OBJ(eat,apple, ). Thus, grammatical re-
lations provide a sentence representation that is
closer to the semantic contents of a sentence than
the representation provided by dependency arcs.
Mollá and Hutchinson (2003) used the gram-

matical relations to compare the accuracy of
two broad-coverage dependency-based parsers,
Link Grammar (Sleator and Temperley, 1993)
and Conexor Functional Dependency Grammar
(Tapanainen and Järvinen, 1997) — henceforth
referred to as Conexor FDG. The evaluation used
a subset of the original relations: SUBJ, OBJ,
XCOMP, and MOD. This subset was used because
of limitations of the output of the parsers and the
algorithms for the automatic construction of the
grammatical relations. Thus, the reduced gram-
matical relations for the example The man that
came ate bananas and apples with a fork without
asking is:

MOD(that,man,come),
SUBJ(eat,man, ),

Link Gram-
mar

Conexor
FDG

Precision SUBJ 50.3% 73.6%
OBJ 48.5% 84.8%
XCOMP 62.2% 76.2%
MOD 57.2% 63.7%
Average 54.6% 74.6%

Recall SUBJ 39.1% 64.5%
OBJ 50% 53.4%
XCOMP 32.1% 64.7%
MOD 53.7% 56.2%
Average 43.7% 59.7%

Table 2: Intrinsic evaluations of Link Grammar
and Conexor FDG.

SUBJ(come,man, ),
OBJ(eat,banana, ),
OBJ(eat,apple, ),
MOD(fork,eat,with),
XCOMP(without,eat,ask)

The results of the evaluation on a corpus anno-
tated with the correct grammatical relations (Car-
roll et al., 1998) show significantly higher values
of recall and precision for Conexor FDG with re-
spect to Link Grammar (Table 2).
The grammatical relations can be used by the

scoring module of our QA system. We only
need to compute the overlap of grammatical re-
lations between the question and the answer can-
didate. In theory, we must use the hierarchical
organisation of the grammatical relations to de-
cide if two grammatical relations unify. For ex-
ample, SUBJ(eat,man, ) should unify with



///// the man that came ate bananas and apples with a fork

 main <

>det

> subj 
 mod<

>subj

 ins <

obj< cc<
 cc <  pcomp<

>det

Figure 3: Dependency structure of a sample sentence.

SUB OR DOBJ(eat,man). However, since the
same parser was used for both the question and
the answer, the granularity of grammatical rela-
tions will be practically the same. Thus, each
grammatical relation can be seen as an unstruc-
tured token and the scoring module can simply
count the number of common tokens, very much
like counting the overlap of words. This was the
approach used in our QA prototype.

3 Flat Logical Forms

Flat logical forms have been used in several
NLP systems including question-answering sys-
tems (Harabagiu et al., 2001; Lin, 2001; Mollá
et al., 2000, for example). The flat logical forms
that we use in our QA system are borrowed from
(Mollá et al., 2000), who uses reification to flat-
ten out nested expressions. For example, the flat
logical form of The cp command will quickly copy
files is:1

object(’cp’,o2,[x2]),
object(’command’,o3,[x3]),
compound noun(x2,x3),
prop(’quickly’,p5,[e6]),
evt(’copy’,e6,[x3,x7]),
object(’file’,o7,[x7])

Flat logical forms express the main predicate-
argument dependencies between the entities in-
troduced by the sentence in a form that is suit-
able for computing semantic similarity. In par-
ticular, we only need to find the common predi-
cates between the question and the answer candi-
date. The only additional complexity is the han-
dling of variables in the terms of the question. It
is therefore necessary to instantiate the question
variables with constants found in the answer can-
didate. For example, the logical form of Which

1For illustration purposes, the logical forms used in this
paper are slightly different from the ones shown in the liter-
ature.

command copies files? is (the symbols in upper-
case indicate variables):

object(’command’,O1,[X1]),
evt(’copy’,E2,[X1,X2]),
object(’file’,O2,[X2])

If this logical form is to match that of the sen-
tence The cp command will quickly copy files
above, the scoring module needs to instantiate the
variable O1 in the question with the constant o3
in the answer candidate, X1 with x3, and so on.
In our implementation we have used Prolog unifi-
cation.
Since there are several plausible combinations

of variable instantiations, the scoring module
finds the set of instantiations that provides the
highest overlap of logical forms.
Table 3 shows the flat logical forms of ques-

tions that differ solely in the argument positions,
the flat logical form of an answer candidate, and
the resulting overlaps.

4 The Question Answering Framework
In contrast with (Mollá et al., 2000), the seman-
tic interpreters used in our evaluations to compute
the logical forms do not use any additional lexical,
domain, or world knowledge. Furthermore, there
is no disambiguation step and there is no anaphora
resolution module. The resulting semantic inter-
preters may therefore be less accurate, but the re-
sulting QA systems are in a better position to be
compared with the QA systems based on gram-
matical relations described in Section 2. Once it
is decided which methodology is better, it is con-
ceivable to add the additional modules that further
enhance the expressivity of the sentence image.
For the present evaluation we used the Reme-

dia Publications Reading Comprehension corpus
used by DeepRead (Hirschman et al., 1999). The
corpus is aimed at testing the degree of reading
comprehension by children, and the documents



Answer candidate Flat Logical Form
John saw Mary object(’john’,o1,[x1]), object(’mary’,o3,[x3]), evt(’see’,e2,[x1,x3])
Question Flat Logical Form
Did John see Mary? object(’mary’,O,[X]), evt(’see’,E,[Y,X]), object(’john’,O2,[Y])
Did Mary see John? object(’john’,O,[X]), evt(’see’,E,[Y,X]), object(’mary’,O2,[Y])

Table 3: Question answering using flat logical forms. Overlap shown in bold.

Figure 4: Architecture of the question-answering
system.

in this corpus are classified into several levels of
reading proficiency. There are about 30 docu-
ments for each of the levels 2, 3, 4, and 5, with a
total of 117 documents. Each document includes
a short piece of text and five questions (who-,
what-, when-, where-, and why-) about the text.
The corpus contains annotations of the corefer-

ence chains and the named entities. The answers
are also marked-up in the text and a gold standard
for every answer is available. These annotations
make the corpus suitable for the development and
test of QA systems.
To evaluate the impact of the parsers and the

scoring modules we have developed a simple
question answering system framework (Figure 4).
Given that every document contains the questions
that are to be asked about the document, our QA
system does not need to include a preselection
stage. Instead, every document is processed inde-
pendently. The system has a pre-processing stage
that segments the document into text and ques-
tions. The text is split into sentences and each
sentence is analysed independently.
Every question in the document is analysed

to produce the question image. The question is
also classified into one of the who-, what-, when-,
where-, and why- categories. Depending on the
question category, the question analysis module
determines and returns the likely named entities

Regex Expected Answer Type
ˆWho person, organization
ˆWhat any
ˆWhen date, time
ˆWhere location
ˆWhy any

Table 4: Question types and expected answer
types.

of the expected answers.
Table 4 shows the named entities associated

with each question type. The question classifier
is extremely simple due to the fact that there are
always five questions, and they have a very sim-
ple pattern. Thus, the regular expressions shown
in Table 4 suffice to identify the question types.
The procedure to determine the expected answer
type is therefore very simple but fairly effective
for the corpus and the named-entity types used
in the named-entity annotations. Since the focus
of this work is on the comparison of the scoring
modules we did not feel we needed to produce a
more sophisticated question analysis module.
The named-entity annotations provided with

the evaluation corpus relieves the system from us-
ing a named-entity extraction component. The re-
sulting system performs perfect named-entity ex-
traction, which may artificially enhance the final
quality of the answers returned. The results there-
fore cannot be compared with the results given
by QA systems such as those participating in the
Question Answering track of TREC (Voorhees,
2001), but they are good for the purposes of com-
parison that we pursue here.
The answer extraction module penalises all

sentences that have no entities compatible with
the answer type by giving them an initial score of
-100. The only part of the QA system that varies
across the comparisons is the scoring component.



The scoring methods described above can there-
fore be compared free of interference from other
modules.
Following the specifications of the QA track of

TREC8 to TREC10, the system returns the five
answer candidates with highest scores, ranked by
scores in descending order.

5 Evaluation Methodology

All four combinations of parser (Link Grammar
and Conexor FDG) and scoring module (gram-
matical relations and flat logical forms) were used
in the evaluations. All other modules in the QA
system were left untouched.
The evaluation of the quality of the answers

was done automatically. An answer candidate is
judged correct if more than 80% of its words ap-
pear in one of the correct answers provided by the
corpus annotations. We have not evaluated the ac-
curacy of this evaluation method, but we have no
reasons to believe that the final conclusions of the
comparison are significantly affected by this au-
tomatic evaluation procedure, since all the exper-
iments were evaluated with the same procedure.
The final measure is TREC QA’s Mean Recip-

rocal Rank (MRR). Thus, for a given question, if
the first correct answer returned is in rank ! , the
question is scored as ! , or ! if no correct an-
swer is found. The final score of the system is the
mean of scores for the individual questions.
An initial inspection of the first results revealed

that the overall scores were very low. As a result,
several answer candidates would receive the same
score. Table 5 shows an example of the answers
returned for a question. We can observe that all
five answer candidates were given the same score,
but only the last candidate was correct. There
is no way for the system to know which of the
sentences with same score is best. To determine
the impact of returning several sentences with the
same score, two indices were computed in addi-
tion to the MRR. The two indices correspond
to the MRR that would result if the correct an-
swer was chosen first or last among those of the
same score. These indices represent the “best”
and “worst” case, respectively, and ideally they
would be almost equal.

Figure 5: Evaluation of scoring measures.

6 Results and Discussion

The vertical bars in Figure 5 show the variation
between the best and worst MRR for the text
of levels 3, 4, and 5 together. Five cases are
displayed, corresponding with a baseline scoring
based on stem overlap and all combinations of
parser (either Conexor FDG or Link Grammar)
and scoring measure (either overlap of grammati-
cal relations or overlap of flat logical forms).
Overall, we can see that the flat logical forms

give better results than the grammatical relations.
This is not surprising, since the flat logical forms
were designed for tasks that require the semantic
comparison of sentences. In contrast, the gram-
matical relations were designed for the compari-
son of parsers.
Also, Conexor FDG produces better re-

sults than Link Grammar. These results con-
firm Mollá and Hutchinson (2003)’s findings that
Conexor FDG is slightly better than Link Gram-
mar in a similar QA system that is based on
a different corpus and evaluation methodology.
Furthermore, the increase of performance with
Conexor FDG is only marginal. This is in contrast
with a direct comparison between Link Gram-
mar and Conexor FDG which, as shown in Ta-
ble 2 above, rated Conexor FDGmuch better than
Link Grammar. The current experiment shows
that, regardless of the method used (grammati-
cal relations or flat logical forms), the MRR of
the QA system that uses Conexor FDG is only
slightly higher than the MRR of the QA sys-
tem that uses Link Grammar. Thus, our results
present further evidence that intrinsic evaluations



Rank Sentence Score Overlap Correct
1 1989 Remedia Publications,

Comprehension s-4
1 compound noun(v x2,v x3) no

2 (North Redwood, Minn 1 compound noun(v x2,v x3) no
3 Not long ago, he ran an ad in

some newspapers In small towns
1 object(ad,v o7,[v x7]) no

4 The ad showed a drawing of
lovely furniture

1 object(ad,v o2,[v x2]) no

5 The ad said the furniture was for
sale

1 object(ad,v o2,[v x2]) yes

Table 5: Answers returned for the question What does the Sears ad offer?

Figure 6: Combination of overlap measures.

are of very limited value, as stated already by
Galliers and Sparck Jones (1993). An extrinsic
evaluation that shows the impact of the modules
to evaluate within the context of an application
(QA in this case) may give results that differ sub-
stantially from those of an intrinsic evaluation.
What is surprising is the fact that, as Figure 5

shows, a measure based on simple stem overlap
gives better results. Subsequent experiments in-
dicate that a combination of the above scoring
systems plus overlaps of word dependencies and
word forms produce better results and they have a
narrower difference between best and worst cases.
For example, Figure 6 shows the results of two
possible combinations:

Weight on grammatical relations:

" � ! Ὂ
 

Weight on flat logical forms:

" � Ὂ !
 

In the above formulas, stands for word form
overlap, is the overlap of dependencies,
is the overlap of minimal logical forms, and !
is the overlap of grammatical relations.
The dependencies used were extracted from

the Conexor FDG parser, which is dependency-
based. All the experiments about the combination
of scoring systems were used with Conexor FDG.
Similar results are expected with Link Grammar
or other parsers. We are experimenting with the
impact of other possible scoring combinations.

7 Conclusions and Further Research

This research shows that the combined informa-
tion on word dependencies, grammatical relations
and flat logical forms improves the accuracy of
the system with respect to the individual mea-
sures, though the additional resources required to
extract syntactic and semantic information may
not justify the use of these measures against sim-
ple word overlap.
Further research is necessary to determine the

reason for this. For example, it may be that the
very nature of the Reading Comprehension docu-
ment set makes it unlikely to represent real-world
text. The text is intentionally simple, the docu-
ments are short and there is little text redundancy.
Furthermore, the fact that the texts are of varied
topics and that every document contains the ques-
tions that apply to the document makes it highly
unlikely that the questions associated to a specific
document have eligible answer candidates outside
the document. For all these reasons we are per-
forming similar experiments with the corpus used
in the QA track of TREC 10 and TREC 11. How-



ever, preliminary results support the results pre-
sented in this paper.
It may well be that one needs to compute more

complex overlap measures to leverage the addi-
tional information. Additional further research
includes the evaluation of weighted overlap mea-
sures that consider the relative importance of spe-
cific grammatical relations or logical form terms,
and the determination of the optimal weights to
be given.
Finally, perhaps the simple questions used in

the Reading Comprehension corpus and in TREC
do not require the use of much linguistic informa-
tion. An evaluation framework with more com-
plex questions is necessary to test this possibility.
We also plan to evaluate the impact of other

NLP modules such as anaphora resolvers and dis-
ambiguators, and the use of lexical resources (e.g.
WordNet or localisations of WordNet) and do-
main and world knowledge. The current QA sys-
tem can be easily expanded to allow for all of
these evaluations.
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ple question answering system. In Voorhees and
Harman (Voorhees and Harman, 2000).

David Elworthy. 2000. Question answering using
a large NLP system. In Voorhees and Harman
(Voorhees and Harman, 2000).

Julia R. Galliers and Karen Sparck Jones. 1993. Eval-
uating natural language processing systems. Tech-
nical Report TR-291, Computer Laboratory, Uni-
versity of Cambridge.

Sanda Harabagiu, Dan Moldovan, Marius Paşca, Mi-
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Answering complex, list and context questions with
LCC’s question-answering server. In Voorhees and
Harman (Voorhees and Harman, 2001).

Lynette Hirschman and Rob Gaizauskas. 2001. Nat-
ural language question answering: The view from
here. Natural Language Engineering, 7(4):275–
300.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep Read: A reading com-
prehension system. In Proc. ACL’99. University of
Maryland.

Jimmy J. Lin. 2001. Indexing and retrieving natural
language using ternary expressions. Master’s the-
sis, MIT.
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Abstract

In this paper, we present an application-
oriented evaluation of three Part-of-
Speech (PoS) taggers in a word sense
disambiguation (WSD) system. Follow-
ing the intuition that high quality input is
likely to influence the final results of a
complex system, we test whether the more
accurate taggers also produce better re-
sults when integrated into the WSD sys-
tem. For this purpose, a stand-alone eval-
uation of the PoS taggers is used to assess
which tagger is the most accurate. The re-
sults of the WSD task, computed on the
training section of the Dutch Senseval-2
data, including the PoS information from
all three taggers show that the most ac-
curate PoS tags do indeed lead to the
best results, thereby verifying our hypoth-
esis. A surprising result, however, is the
fact that the performance of the complex
WSD system with the different PoS tags
included does not necessarily reflect the
stand-alone accuracy of the PoS taggers.

1 Introduction

Certain NLP tools are typically used as a sub-
component or a pre-processor in a more complex
system, rather than as a complete application in their
own right. A typical example of such tools are Part-
of-Speech (PoS) taggers. What is usually not taken
into account is the fact that the quality (in terms

of accuracy) of each subpart of a complex system
is likely to influence the final results considerably.
Lately, standardized evaluation of NLP resources
has gained more importance in the field of Compu-
tational Linguistics (e.g. CLEF workshops in infor-
mation retrieval, Parseval, Senseval), but a tendency
towards more application-oriented evaluation is only
beginning.

In this paper, we will proceed to an application-
oriented comparison of three PoS taggers in a word
sense disambiguation (WSD) system. We will eval-
uate to what extent differences in stand-alone PoS
accuracy influence the results obtained in the com-
plex WSD system using the acquired PoS informa-
tion. Since the Dutch data we use is not only am-
biguous with regard to meaning but also with regard
to PoS, accurate PoS information is very important
to achieve high disambiguation accuracy.

The paper is structured as follows: We will start
with a detailed description and comparison of the
three PoS taggers including a stand-alone evalua-
tion in order to compare their performance indepen-
dently of the application to the WSD task. Then fol-
lows a description of the WSD system in which (the
output of) the different PoS taggers will be incorpo-
rated and tested. This includes a presentation of the
machine learning algorithm employed for classifica-
tion (maximum entropy) and its application toWSD,
as well as a note on the data and the settings used
for the reported experiments. Next, the application-
dependent results of the three PoS taggers will be
presented and discussed. We end the paper with con-
clusions and some ideas for future work.



2 Comparison of Part-of-Speech Taggers

The PoS taggers we compare in this article are:

a Hidden Markov Model tagger (section 2.1),
a Memory-Based tagger (section 2.2),
a transformation-based tagger (section 2.3).

We chose these three taggers because they were
readily available, could easily be trained for Dutch
without major changes in the architecture, and repre-
sent distinct, widely used types of existing PoS tag-
gers.
All three taggers were trained on the Dutch Eind-

hoven corpus (uit den Boogaart, 1975) using the
WOTAN tag set (Berghmans, 1994). The original
WOTAN tag set, consisting of 233 tags, was too de-
tailed for our purpose. Instead, we used the lim-
ited WOTAN tag set of 48 PoS tags developed by
(Drenth, 1997) for training and testing in the stand-
alone comparison.
In the context of our WSD application, however,

we are only interested in the main PoS categories.
Therefore, we discarded all additional information
from the assigned PoS tags in the WSD corpus.
This resulted in 12 different tags being kept: Adj
(adjective), Adv (adverb), Art (article), Conj (con-
junction), Int (interjection), Misc (miscellaneous),
N (noun), Num (numeral), Prep (preposition), Pron
(pronoun), Punc (punctuation), and V (verb).1
For the stand-alone results, 80% of the training

data was actually used for training, 10% for tuning
(setting of parameters, etc.) and the accuracy was
computed on the remaining 10%. Note that the re-
sults of the stand-alone comparison solely serve to
illustrate the difference in performance observed in-
dependently of an application in order to be able to
assess the added value of a more accurate PoS tagger
in the WSD application.

2.1 Hidden Markov Model PoS Tagger
The first PoS tagger we used is the trigram Hid-
den Markov Model (HMM) tagger (Prins and van
Noord, 2003) developed in the context of ‘Alpino’,
a natural language understanding system for Dutch
(Bouma et al., 2001; van der Beek et al., 2002).2

1See table 2 for a distribution of the main PoS tag categories
in the WSD data and the Eindhoven corpus.

2See http://www.let.rug.nl/˜vannoord/alp.

In this standard trigram HMM, each state corre-
sponds to the previous two PoS tags and the proba-
bilities are directly estimated from the labeled train-
ing corpus (Manning and Schütze, 1999). There are
two types of probabilities relevant in this model, the
probability of a tag given the preceding two tags

as well as the probability of a word
given its tag .
These probabilities are computed for each tag in-

dividually. Training the HMM with the forward-
backward algorithm, we can calculate for
all potential tags:

where is the total (summed) probability of
all paths through the model that end at tag at posi-
tion , and is the total probability of all paths
starting at tag in position continuing to the end.
Comparing all the values for , unlikely
tags are removed.
Smoothing of the trigram probabilities is achieved

through a variant of linear interpolation (Collins,
1999) where lower order models are also taken into
account and weights are assigned to each of the
models to capture their relative importance.
Since the tagger’s lexicon has been created from

the training data, the test data very likely contains
unknown words which means that no initial set of
possible tags can be assigned to these words. Two
different strategies have been incorporated in the
HMM tagger used here. First, a heuristic rule for
recognizing names has been added which assigns an
N tag to all capitalized words.3 Second, a set of au-
tomata (also created on the basis of the training data)
is used to find possible tags based on the suffixes of
unknown words (Daciuk, 2000).

2.2 Memory-Based PoS Tagger
The second tagger we have used in the experiments
reported here is the Memory-Based Tagger (MBT)
(Daelemans et al., 2002a).4 It is a PoS tagger based
on Memory-Based Learning, an extension of the -
Nearest-Neighbour approach, which has proved to

3Words in sentence initial position are decapitalized before-
hand.

4Freely available for research purposes at http://ilk.
uvt.nl/software.html.



be successful for a number of languages and NLP
applications (Zavrel and Daelemans, 1999; Veenstra
et al., 2000; Hoste et al., 2002).
MBT consists of two components: a memory-

based learning component and a performance com-
ponent for similarity-based classification. During
classification, the similarity between a previously
unseen test example and the examples in memory
is computed using a similarity metric. The category
of the test example is then extrapolated based on the
most similar example(s).
Given an annotated corpus, three data structures

are automatically extracted: a lexicon, a case base
for known words, and a case base for unknown
words. During tagging, each word is looked up in
the lexicon and, if it is found, its lexical represen-
tation is retrieved and its context determined. The
resulting pattern is disambiguated using extrapola-
tion from the nearest neighbours in the known words
case base. If a word is not present in the lexicon, its
lexical representation is computed on the basis of its
form, its context is determined, and the resulting pat-
tern is disambiguated using extrapolation from near-
est neighbours in the unknown words case base. In
both cases, the output is a best guess of the category
for the word in its current context.
For the known words, the preceding two tags and

words as well as the ambiguous tag and word to
the right of the current position have been used to
construct the known words case base. Classification
was achieved using the IGTREE algorithm with one
nearest neighbour. For unknown words, the preced-
ing tag, the ambiguous tag to the right, as well as the
first and the last three letters of the ambiguous word
itself were taken into account to construct the un-
known words case base. For classification, the IB1
algorithm with 9 nearest neighbours was used. In
both cases GainRatio feature weighting was applied.
For details on the different possible algorithms see
(Daelemans et al., 2002b).

2.3 Transformation-Based PoS Tagger
As the third member of the comparison, we used a
Brill-style transformation-based tagger (TBL) (Brill,
1995) for Dutch (Drenth, 1997). The main compo-
nents of a transformation-based tagger are a speci-
fication of admissible transformations and a learn-
ing algorithm. Interdependencies between words

PoS Tagger Accuracy
TBL 94.20
HMM 95.93
MBT 96.21

Table 1: Stand-alone results (in %) for the three PoS
taggers on 10% of the Eindhoven corpus data

and tags are modeled by starting out with an imper-
fect tagging which is gradually transformed into one
with fewer errors. This is achieved by selecting and
sequencing transformation rules using the learning
algorithm.
In an initial step, each word is assigned a tag in-

dependent of context. A known word is assigned
its most likely tag determined by a maximum like-
lihood estimation from the training corpus. An un-
known word, on the other hand, is assigned a tag
based on lexical rules learned during training. All
unknown words are initially tagged N. The applica-
tion of lexical rules adapts the tag (where necessary)
based on the local properties of the unknown word,
such as its suffix.
After each word has received an initial tag, con-

textual rules are applied changing the initial PoS tag
(where necessary) based on the context of the word
to be tagged. The best contextual transformation
rules and their order of application are selected by
the learning algorithm during training.
The present implementation of the TBL PoS tag-

ger for Dutch uses around 250 lexical rules and 300
contextual rules.

2.4 Stand-Alone Results for the PoS Taggers
As we have mentioned earlier, the stand-alone re-
sults for the PoS taggers were computed using 80%
of the Eindhoven Corpus (containing a total of
760,000 words) for training and 10% for tuning. The
accuracy shown in table 1 was computed on the re-
maining 10% of the corpus.
We can clearly see that the MBT tagger is per-

forming best, followed by the HMM tagger, the least
accurate tagger being the TBL tagger.5
If the hypothesis that more accurate input to com-

plex systems will produce more accurate results is
5All results differ significantly applying the paired sign test

with a confidence level of 95%.



correct, then these stand-alone results raise the ex-
pectation that when applying all three taggers in our
WSD system—with all other settings being equal—
accuracy should be highest when the MBT tagger
was used to tag the data. Performance is expected to
decrease with the use of the HMM tagger and to be
lowest for the TBL tagger.
This expectation might be falsified by the (pos-

sible) corpus dependency of the three PoS taggers:
the capacity to generalize from the training corpus
to the corpus to be tagged might be bigger in one
tagger than in another, which means that the results
obtained in the complex system can diverge from the
expectation raised by the stand-alone results.
Let us now turn to the application in which we

will use the three PoS taggers presented and evalu-
ated above.

3 Word Sense Disambiguation for Dutch

Semantic lexical ambiguity remains a major prob-
lem in natural language processing (NLP) for which
to date no satisfactory solution has been found.
Word sense disambiguation (WSD) refers to the res-
olution of lexical semantic ambiguity and its goal is
to attribute the correct sense(s) to words in a certain
context. Accurate disambiguation of word senses is
important for e.g. machine translation, information
retrieval or document extraction.
The WSD system used in these experiments is a

supervised corpus-based algorithm combining sta-
tistical classification with different kinds of linguis-
tic information. This system explores the intuition
that (high quality) linguistic information is benefi-
cial for WSD. PoS is definitely one of the more ac-
cessible sources of linguistic knowledge. The hy-
pothesis behind comparing various PoS taggers in
this application is that the quality of the PoS tags
assigned to the data can significantly influence the
accuracy obtained by our WSD system.
In contrast to the English WSD data, the Dutch

Senseval-2 WSD data is ambiguous with regard to
PoS. This means that accurate PoS information is
even more important since the WSD system is sup-
posed to do morpho-syntactic as well as semantic
disambiguation.
We will now first explain the statistical classifica-

tion algorithm used and then proceed to describe the

WSD system, its settings as well as the corpus used
to generate the comparative results.

3.1 Maximum Entropy Classification
The statistical classifier used in the experiments re-
ported here is a maximum entropy classifier (Berger
et al., 1996). Maximum entropy is a general tech-
nique for estimating probability distributions from
data. If nothing about the data is known, it in-
volves selecting the most uniform distribution where
all events have equal probability. In other words,
it means selecting the distribution which maximises
the entropy.
If data is available, labeled training data is seen

as a number of features which are used to derive a
set of constraints for the model. This set of con-
straints characterises the class-specific expectations
for the distribution. So, while the distribution should
maximise the entropy, the model should also satisfy
the constraints imposed by the labeled training data.
A maximum entropy model is thus the model with
maximum entropy of all models that satisfy the set
of constraints derived from the training data.
The maximum entropy model is built using the

following formula:

where the property function represents
the number of times feature is used to find class
for event , and the weights are chosen to max-
imise the likelihood of the training data and, at the
same time, maximise the entropy of .
This means that during training the weight for

each feature present in the training data is com-
puted and stored. During testing, the sum of the
weights of all features found in the test instances
is computed for each class and the class with the
highest score is chosen.
The main advantage of maximum entropy mod-

eling is that the property functions, including all
the different types of (linguistic) information in the
model, take into account any information which
might be useful for disambiguation. Thus, dissimilar
types of information can be combined into a single
model for WSD and no independence assumptions
(as in e.g. a Naive Bayes algorithm) are necessary.



3.2 Corpus and System Settings

The corpus used in this evaluation is the Dutch
Senseval-2 corpus6 (see (Hendrickx and van den
Bosch, 2001) for a detailed description). In the ex-
periments reported here, we only made use of the
training section of the Dutch Senseval-2 dataset,
containing approximately 120,000 tokens and 9,300
sentences.
In a first step, the corpus is lemmatized and

PoS tagged. Then, for each ambiguous word-
form/lemma7 all instances of its occurrence are ex-
tracted from the corpus. These instances are then
transformed into different feature vectors. So a
feature vector of the ambiguous wordform ‘aarde’
(earth/soil) corresponding to the model which com-
prises all possible information (incl. PoS) and uses
context words would look like this:
aarde N gat in de , zodat het aarde grond

where the first slot represents the lemma, the sec-
ond the PoS, the third to eighth slot are the context
words (left before right) and the last slot represents
the sense or class.8 Only context words within the
same sentence as the ambiguous wordform/lemma
were taken into account. If for instance there was
no left context, it was filled with “empty” features.
Varying the information included, different feature
sets are constructed.
For the basic classifier based on ambiguous word-

forms, the feature set contains the corresponding
lemma as well as a context of three words to the left
and to the right of the ambiguous word. For the ba-
sic classifier based on ambiguous lemmas, the cor-
responding wordform and the context are included.
The context can either be composed of wordforms or
lemmas. For the classifiers including PoS tags, we
in addition include the PoS tags of the ambiguous
wordform/lemma from the various PoS taggers.
On the basis of the different feature sets, separate

classifiers are built for every ambiguous wordform
or lemma. This implies that the basis for group-

6For more information on Senseval and for downloads of the
data see http://www.senseval.org/.

7A wordform/lemma is ‘ambiguous’ if it has two or more
different senses in the training data. The sense ‘=’ is seen as
marking the basic sense of a word/lemma and is therefore also
taken into account.

8‘Sense’ or ‘class’ refers to the different labels which dis-
ambiguate the ambiguous wordforms/lemmas.

ing occurrences of particular ambiguous words to-
gether is that either their wordform or their lemma is
the same. In the experiments presented here, a fre-
quency threshold of 10 was used, which means that
classifiers were only built for the wordforms with an
amount of training instances equal to or above the
threshold. For the remaining wordforms, the base-
line count was used, thus assigning the most fre-
quent sense to every instance.
In total, there were 1,364 ambiguous lemmas in

the corpus of which 622 presented 10 or more occur-
rences, and 952 ambiguous wordforms of which 486
had 10 or more occurrences. So 622 lemma classi-
fiers and 486 wordform classifiers were built.
The context was treated as a ‘bag of words’ which

means that the position of a context word relative
to the ambiguous wordform was not taken into ac-
count. This approach was chosen to help limit the
data sparseness problem: if the context features are
all treated dependent on their position relative to the
ambiguous word in the sentence, the model will have
more features to assign weights to. This means that
the sparse data problem will be worse. If, on the
other hand, context features are “lumped” together
independent of their relative position, there are less
features to be estimated and there is more data for
the particular feature ‘context’.

4 Results and Evaluation of the WSD
Application

Before we turn to the actual results of using the dif-
ferent PoS taggers in our WSD system for Dutch,
let us first compare the differences regarding the as-
signed PoS tags. Table 2 shows the distribution of
the different PoS tags in the WSD data depending
on the PoS tagger used, as well as the distribution of
the PoS tags in the training corpus.
A major difference between the distribution of

PoS tags is that both the HMM and MBT tagger as-
sign more V tags, whereas the TBL tagger assigns
more N tags. The preference for N tags in the TBL
tagger can be explained by the fact that all unknown
words initially get tagged N. Also, in Dutch ver-
bal infinitives have the same morphological suffix
as plural nouns (-en). INT and Misc differ with all
three taggers, but we could not detect any obvious
reason for this. As we can see from table 2, there



PoS TBL HMM MBT Train. Corpus
N 22,830 (19.46%) 20,041 (17.08%) 20,384 (17.37%) 20.35%
Punc 19,792 (16.87%) 20,151 (17.17%) 20,142 (17.17%) 12.69%
V 17,645 (15.04%) 19,505 (16.62%) 19,556 (16.66%) 15.13%
Pron 13,880 (11.83%) 13,938 (11.88%) 13,885 (11.83%) 9.82%
Adv 11,250 (9.58%) 11,289 (9.62%) 11,178 (9.53%) 8.19%
Art 9,477 (8.08%) 9,350 (7.96%) 9,328 (7.95%) 9.39%
Prep 8,190 (6.98%) 8,358 (7.26%) 8,229 (7.01%) 10.54%
Conj 6,713 (5.72%) 6,742 (5.74%) 6,770 (5.77%) 5.18%
Adj 6,313 (5.38%) 6,621 (5.63%) 6,626 (5.65%) 6.53%
Num 869 (0.74%) 713 (0.61%) 744 (0.63%) 1.78%
Int 376 (0.32%) 559 (0.47%) 455 (0.39%) 0.18%
Misc 3 (0.003%) 71 (0.04%) 41 (0.04%) 0.22%

Table 2: Frequencies of PoS tags assigned by each PoS tagger in the WSD data and distribution of PoS in
the training corpus

are bigger differences between the TBL tagger and
the other two, whereas the differences between the
HMM and the MBT tagger are less noticeable.
In order to test the real error of the classifiers built,

we used a leave-one-out approach (Weiss and Ku-
likowski, 1991; Manning and Schütze, 1999). This
means that every data item in turn is selected once as
a test item and the classifier is trained on all remain-
ing items. The accuracy of a single classifier is then
the number of data items correctly predicted. The
overall accuracy is the total of data items correctly
predicted by all classifiers.
The results in table 3 show the average accuracy

on our training data using leave-one-out as a test
method with respectively wordforms and lemmas as
basis.
As the table of results shows, the WSD system

performs well. The basic classifiers containing a
minimum of information already do significantly
better than the frequency baseline.9 Furthermore,
adding PoS as extra linguistic information—next to
the lemma/wordform and the context already in-
cluded in the basic classifiers—does increase results
over the accuracy achieved with a basic classifier.
This supports the underlying hypothesis behind the
WSD system that more linguistic information is ben-
eficial for WSD. Since the WSD data needs to be
disambiguated morpho-syntactically as well as with

9Assigning the most frequent sense to every occurrence of
an ambiguous wordform/lemma.

regard to lexical semantic ambiguity, it is not sur-
prising that adding PoS information achieves bet-
ter results than only using the lemma/wordform and
context.
Comparing the performance among the different

PoS taggers, we can see quite clearly that our ex-
pectations are (partly) confirmed: the MBT tagger,
which did best in the stand-alone evaluation, is also
working best in the WSD system. This is the case
for all setups: using wordforms or lemmas as basis
for the classifiers, as well as for classifiers including
context as wordforms or as lemmas.10
Surprisingly enough, the hypothesis does not hold

for the “ranking” of the HMM and TBL taggers. De-
spite the fact that the HMM tagger performed sec-
ond best in the stand-alone evaluation, it does not
perform better than the TBL tagger when integrated
into the WSD system.
A possible explanation might be that the differ-

ence between the training corpus and the WSD data
is so big that the HMM tagger is no longer more ac-
curate than the TBL tagger in the WSD application,
leading to the conclusion that the HMM tagger is
more corpus dependent than the TBL tagger. A pos-
sible reason might be that the heuristics for unknown

10Applying the paired sign test with a confidence level of
95%, all results using MBT PoS tags were found to be statis-
tically significantly better than results with other PoS tags (and
than the basic classifiers). The classifiers including TBL and
HMM PoS tags do not differ significantly from each other, but
both perform significantly better than the basic classifiers.



Base: Wordforms
Feature set Accuracy
baseline 76.70
lemma, con. words (basic) 80.81
lemma, con. lemmas (basic) 80.52

TBL HMM MBT
lemma, pos, con. words 81.67 81.67 81.89
lemma, pos, con. lemmas 81.42 81.36 81.67

Base: Lemmas
Feature set Accuracy
baseline 73.41
word, con. words (basic) 82.52
word, con. lemmas (basic) 82.25

TBL HMM MBT
word, pos, con. words 83.32 83.34 83.46
word, pos, con. lemmas 83.06 83.05 83.30

Table 3: WSD results (in %) comparing the effect of integrating the output of different POS-taggers into a
complex system

words in the HMM tagger produces worse results on
the WSD data than the heuristics used by the TBL
tagger. Since no gold-standard PoS tagged version
of the WSD data exists, it is difficult to investigate
this puzzle any further.
Nevertheless, our hypothesis that highly accurate

input influences the results of a complex system is at
least partly verified: the most accurate PoS tags also
produce the most accurate results when integrated
into our WSD system.

5 Conclusion and Future Work

In this paper, we tested the hypothesis whether high
quality input improves the final results of a complex
NLP system. We have therefore proceeded to an
application-oriented evaluation of three PoS taggers
in a WSD system. A transformation-based tagger, a
Hidden Markov Model tagger, and a memory-based
tagger were compared for this purpose.
After the MBT tagger has been established as the

most accurate tagger in a stand-alone evaluation, the
PoS information from all three taggers is integrated
into our WSD system for Dutch. This supervised
system uses maximum entropy classifiers which al-
low to integrate various sources of information into
a single model.

The results computed on the training part of the
Dutch Senseval-2 corpus show that the MBT tagger
also produces the best results in the WSD system.
This clearly indicates that highly accurate input into
a WSD system is producing better results than qual-
itatively lesser input.
A surprising result, however, was the fact that the

performance of the complex WSD system with the
different PoS tags included does not necessarily re-
flect the stand-alone accuracy of the PoS taggers.
Even though the HMM tagger performed better than
the TBL tagger in the stand-alone comparison, there
is no significant difference to be observed in the re-
sults of the WSD system. A possible explanation
might be corpus dependency.
For future work, we would like to include the

PoS tags of the context wordforms or lemmas to see
whether our hypothesis still holds then. It would
also be interesting to see whether the overall results
are further improved by this additional information.
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Abstract 

Natural language database interfaces re-
quire translation knowledge to convert 
user questions into formal database que-
ries. Previously, translation knowledge 
acquisition heavily depends on human 
specialties such as NLP, DBMS and do-
main engineering, consequently under-
mining domain portability. This paper 
attempts to semi-automatically construct 
translation knowledge by introducing a 
physically-derived conceptual database 
schema, and by simplifying translation 
knowledge into two structures �– class-
referring documents and class-
constraining selection restrictions. Based 
on these two structures, this paper pro-
poses a noun translation method that em-
ploys an information retrieval framework. 

1 Introduction 

A natural language database interface (NLDBI) 
allows users to access database data in a natural 
language (Androutsopoulos et al., 1995). In a typi-
cal NLDBI system, a natural language question is 
analyzed into an internal representation using lin-
guistic knowledge that normally includes domain 
knowledge to reduce analysis ambiguities. The in-
ternal representation is then translated into a target 
database query by applying mapping information 
(Androutsopoulos et al. 1995) that associates the 

analysis results with target database structures. 
This paper uses translation knowledge to refer to 
both domain knowledge and mapping information, 
because both are required to translate a natural lan-
guage question into a database query. 

Previous approaches can be classified according 
to the extent that translation knowledge is inte-
grated into linguistic knowledge. Tightly-coupled 
approaches hard-wire translation knowledge into 
linguistic knowledge in the form of semantic 
grammars (Hendrix et al., 1978; Waltz 1978; 
Templeton and Burger 1983). This approach shows 
a good performance for a particular domain. How-
ever, in adapting to other domains, new semantic 
grammars should be created with a considerable 
effort (Allen 1995).  

In order to improve domain portability, many re-
searchers have concentrated on isolating transla-
tion knowledge from linguistic knowledge through 
loosely-coupled approaches. These approaches can 
be further classified according to the extent that 
question analysis is performed. Syntax-oriented 
systems (Ballard et al., 1984; Damerau 1985; Lee 
and Park 2002) analyze questions up to a syntactic 
level, after which translation knowledge is applied 
to generate a database query. Logical form systems 
(Warren and Pereira 1982; Grosz et al., 1987; Al-
shawi et al., 1992; Androutsopoulos 1993; Klein et 
al., 1998) interpret a user question into a domain-
independent literal meaning level. 

Thus, in loosely-coupled approaches, transport-
ing to a new database domain does not need to 
change linguistic knowledge at all, only tailoring 
translation knowledge to new domains. Even in 
this case, however, translation knowledge is diffi-



cult to describe. For example, syntax-oriented sys-
tems have to devise conversion rules that transform 
parse trees into database query expressions (An-
droutsopoulos et al. 1995), and logical form sys-
tems should define database relations for logical 
predicates. In addition, creating these translation 
knowledge demands considerable human expertise, 
such as NLP/DBMS/domain specialties. To reduce 
these manual interventions, many systems employ 
domain tools (Grosz et al. 1987) to collect domain 
vocabulary about target database structures, 
through a sequence of interactive procedures. 
However, these acquisition processes are passive, 
and time-consuming. Moreover, such tools cannot 
be easily adapted to other systems because they are 
customized to their own systems. 

In order to automate translation knowledge ac-
quisition for a new database, this paper attempts to 
semi-automatically construct translation knowl-
edge by introducing a physically-derived concep-
tual database schema and by simplifying 
translation knowledge into two structures �– a set of 
class/value documents having linguistic terms cor-
responding to domain classes, and a set of selec-
tion restrictions on domain classes. Based on these 
two structures, this paper proposes a noun transla-
tion method that employs an information retrieval 
framework.  

The remainder of this paper is as follows. The 
next two sections describe terminologies and a 
conceptual schema used in this paper. Section 4 
explains an overview of a conceptual schema ap-
proach. Section 5 defines our translation knowl-
edge. Section 6 details a noun translation strategy 
using translation knowledge, and concluding re-
marks are given in section 7. For representing Ko-
rean expressions, the Yale Romanization is used. 

2 Terminologies 

3 

In this paper, a database object is defined as either 
a domain class or a domain class instance. A do-
main class refers to a table or a column in a data-
base. A domain class instance indicates an 
individual column value. For example, suppose 
that a physical database contains two tables, 
TB_Customer and TB_Employee, and 
TB_Customer has a column C_cName, and 
TB_Employee has a column C_eCountry. All these 
are called domain classes. If the columns 
C_cName and C_eCountry have �‘Abraham Lin-

coln�’ and �‘France�’, respectively, as its values, each 
of these values is called a domain class instance.  

A class term is defined as a lexical term refer-
ring to a domain class. A value term signifies a 
term indicating a domain class instance. For in-
stance, the word �‘customer�’ in a user question is a 
class term corresponding to the above domain class 
�‘TB_Customer�’. The word �‘Lincoln�’ is a value 
term referring to the above domain class instance 
�‘Abraham Lincoln�’. In summary, a class term or a 
value term is used to indicate a word in a user 
question, and a domain class or a domain class in-
stance is used to refer to a database object, such as 
a table, a column, or a column value. 

Physical Entity-Relationship (pER) 
Schema 
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CL_Date CL_Amnt
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Figure 1. Physical ER (pER) Schema 
 
For a database, a conceptual schema like entity-
relationship model structurally resembles a seman-
tic network for the database domain. In addition, 
its components like entities, attributes, and rela-
tionships contain linguistic descriptions, which 
may bridge between natural language constructions 
and physical database structures. This paper tries to 
extract translation knowledge from a conceptual 
schema. However, a conceptual database schema is 
not always available. So, we define a physical En-
tity-Relationship (pER) schema as an approxima-
tion of real conceptual schema. 



A pER schema is composed of a pER graph and 
its linguistic descriptions. A pER graph is structur-
ally equivalent to physical database structures, 
where a node corresponds to a table or a column, 
and an arc defines a relationship between two ta-
bles, or a property between a table and its column. 
So a node in a pER graph is a domain class. Each 
node or arc contains linguistic descriptions that are 
called pER descriptions. As shown in figure 1, 
there are three kinds of pER descriptions - a lin-
guistic name, definition, and relationship descrip-
tion. 

A pER schema is created as follows. First, a 
logical schema is extracted from a target physical 
database. This reverse engineering process is 
automatically performed within a commercially 
available database modeling tool. The logical 
schema has the same structure as a physical data-
base. So the logical schema becomes a pER graph. 
Next, domain experts provide linguistic descrip-
tions for each component of the logical schema 
according to the following guidelines. 

 
A linguistic name �– in a noun phrase 
A definition �– in a definitional sentence 
A relationship description �– in a typical sentence 
including typical domain verbs 

 
The input process is also graphically supported 

by the database modeling tool, and the pER de-
scriptions can be automatically extracted by the 
modeling tool.  

The term physical ER (pER) schema is used be-
cause it is an approximation of the target data-
base�’s original ER (entity-relationship) schema in 
the sense that its structures are directly derived 
from a physical database. A pER graph is later 
used to generate conceptual query graphs. The pER 
descriptions have the potential to bridge between 
linguistic constructions and physical database 
structures. From pER descriptions, two translation 
knowledge structures are automatically generated, 
which will be described in section 5. 

4 

4.1 

Conceptual Schema Approach 

Domain Adaptation 
Figure 2 shows an NLDBI architecture based on a 
conceptual schema. There are two processes; do-
main adaptation and question answering. For a new 

database domain, domain adaptation semi-
automatically constructs translation knowledge. 
Translation knowledge is divided into two struc-
tures: a set of class/value documents corresponding 
to domain classes, and a set of selection restric-
tions on domain classes. A class document con-
tains a set of class terms related to a domain class. 
Class terms are extracted from natural language 
descriptions of a pER schema.  

A value document is created from a set of do-
main class instances associated with a column. Se-
lection restrictions are also derived from linguistic 
descriptions of a pER schema.  
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Figure 2. NLDBI architecture 
 

The domain adaptation process may further 
augment this initial translation knowledge from 
other resources, such as domain materials, diction-
aries, or corpora. 



4.2 5 

5.1 

5.2 

Question Answering 
The question answering proceeds as follows. A 
user writes his or her information need in a natural 
language. A user question is then analyzed to pro-
duce a set of question nouns and a set of predicate-
argument pairs. In Korean, these are obtained after 
morphological analysis, tagging, chunking, and 
partial dependency parsing. Question analysis also 
yields a set of feature-value pairs for each question 
noun. Among others, essential question features 
are a question focus and a value operator. These 
two features determine select-clause items and 
where-clause operators, respectively, in a final 
SQL query. 

In noun translation, each question noun is con-
sidered as an IR query to retrieve lexically or se-
mantically equivalent domain classes in the form 
of class or value documents. Afterwards, to each 
question noun holding two or more relevant do-
main classes, selection restrictions are applied to 
determine one correct domain class. Noun transla-
tion is explained in section 6. 

Conceptual query graph generation creates a 
conceptual query graph (CQG) on the pER graph. 
First, domain classes produced by noun translation 
are marked on the pER graph, and question fea-
ture-value pairs are attached to the nodes of associ-
ated domain classes. On the pER graph, a CQG is 
searched, which is a connected subgraph connect-
ing all the nodes that are attached with certain fea-
ture-value pairs.  

The CQG is assumed to represent a domain-
dependent question meaning, because nodes of the 
graph correspond to domain-dependent objects of 
question nouns, and arcs between nodes represent 
domain-dependent semantic relations between 
question nouns. Unlike the logical form method, 
this approach does not produce an intermediate 
domain-independent question meaning. Instead, a 
domain-dependent question meaning is directly 
represented in the form of a subgraph on a concep-
tual schema. So a final database query is generated 
from the graph. Given a CQG, database query gen-
eration is trivial. Entity nodes of the CQG go to 
SQL-from clause, and arcs between entities consti-
tute SQL join operators. An SQL-select clause is 
obtained from question-focus-attached nodes. All 
value-operator-attached nodes are combined to 
create SQL-where conditions. 

Translation Knowledge 

Translation Knowledge Structures 
Any NLDBI system demands translation knowl-
edge, which consists of domain knowledge and 
mapping information. The former provides an 
analysis module with ambiguity-reducing devices, 
such as domain terminologies, domain-dependent 
selection restrictions, and a domain world model. 
The latter defines mappings between linguistic 
analysis results and target database structures. This 
paper divides translation knowledge into two struc-
tures. One is class-referring information, which is a 
collection of terms that directly refer to each do-
main class or domain class instance. The other is 
class-constraining information: a collection of se-
lection restrictions on domain classes. Compared 
to the previous NLDBI translation knowledge, the 
first encodes both mapping information and do-
main terminologies, and the second corresponds to 
domain-dependent selection restriction. In addition, 
a pER graph plays the role of a domain world 
model. 

Class-Referring Translation Knowledge 

Formally, class-referring translation knowledge is 
defined as a set of pairs of C and D. C is a domain 
class, and D is a document that contains terms lin-
guistically referring to C. D has two types; a class 
document and a value document. For each domain 
class, a class document is created from pER de-
scriptions. In addition, for each domain class cor-
responding to columns, a value document is 
created from column data for the domain class. 
These documents are indexed to create a document 
collection to be used by the later noun translation 
module. 

 
Class Document 
 
A class document contains a set of lexically syn-
onymous class terms for a domain class. Antici-
pated class terms are extracted from both linguistic 
names and definitions in a pER schema. A linguis-
tic name X for a domain class is a noun phrase. In 
Korean, it is a compound noun optionally having a 
Korean genitive case marker �‘uy�’ (of). Its general 
form is (N+(uy)?_)*N+ in a regular expression, 
where _ is a word boundary and N is a simple noun. 



A linguistic definition for a domain class is a defi-
nitional sentence, so it takes one of the following 
restricted forms in English translations. 

 
(a kind of) + Y + adjective phrase modifying Y 
X|it + be|mean|indicate|�… + (a kind of) + Y + adjective 
phrase modifying Y 

 
Both X and Y are class term candidates, since a 

taxonomic relation exists between them. Y, which 
may be also a compound noun, can be easily iden-
tified using a few patterns. 

Class term extraction proceeds as follows. Given 
a compound noun, its genitive case markers are 
deleted, and each of the remaining compound 
nouns is segmented into a sequence of simple 
nouns. For example, N3N2uy_N1 is converted into 
N3+N2+N1, where the last noun N1 is a head of 
N3N2uy_N1 in Korean, and uy is a genitive case 
marker. Since different combinations of the simple 
nouns may constitute different question words to 
refer to the same domain class, a set of head-
preserving compound nouns are generated from the 
simple nouns as follows.  

 
N3N2 _N1  N3N2+N1  N3+N2+N1  {N3N2N1, N2N1, N1} 

 
Since a head is an underlying concept of the 

compound noun, a head noun is preserved for all 
combinations. 
 
Value Document 
 
For each value term in a user question, an NLDBI 
system should determine the domain class to which 
it belongs. This value recognition problem 
(Templeton and Burger 1983) is critical since, 
unlike class terms, most value terms are open-
ended. In addition, question value terms may take 
different forms from domain class instances stored 
in a database. For example, to refer to a database 
value sam-seng-cen-ca (Samsung Electronics) in 
Korean, users prefer partial forms like sam-seng 
(Samsung) in sam-seng-ey-se cwu-mwun-han (�… 
that Samsung ordered). 

To support partial matching between question 
value terms and domain class instances, this paper 
proposes n-gram value indexing. For each column 
of a target database, n-gram value indexing gener-
ates n-grams of the column data to create a value 

document. Among column data, linguistic terms 
are distinguished from alphanumeric terms. 

For a linguistic term of k syllables, all-length n-
grams from bi-grams to k-grams are generated as 
index terms of a value document in order to pre-
pare all substrings expected as question value 
terms. For example, a column value se-wul-thuk-
pyel-si is processed to generate these n-grams, se-
wul, wul-thuk, thuk-pyel, pyel-si, se-wul-thuk, wul-
thuk-pyel, thuk-pyel-si, se-wul-thuk-pyel, wul-thuk-
pyel-si, se-wul-thuk-pyel-si, among which legiti-
mate words as question terms are se-wul, thuk-
pyel-si, se-wul-thuk-pyel-si. 

On the other hand, generating n-grams for al-
phanumeric terms causes a severe storage problem. 
Damerau�’s method (Damerau 1985) reduces an 
open-ended set of alphanumeric terms into a closed 
set of patterns. Thus, it is adopted and slightly 
modified to include 2-byte characters like Korean. 
In the modified version, a canonical pattern P is 
defined as follows.  

 
<P> ::= <U>{<U>} 
<U> ::= [<C1>|<C2>|<N>|<S>][1|2|�…|255] 
where <Ck> is a sequence of k-byte characters, 
 <N> is a sequence of numbers, 

<S> is a sequence of special characters. 
 

For example, an alphanumeric database value 
se-wul-28@A-ma is converted into a canonical 
pattern, C22N2S1C11C21. Next, in order to provide 
partial matching between patterns, a canonical pat-
tern is decomposed into bi-grams. That is, for 
C22N2S1C11C21, bi-grams _C22, C22N2, N2S1, 
S1C11, C11C21, C21_ are created and stored as in-
dex terms in a value document.  

Pattern-based n-grams provide considerable 
storage reduction over storing canonical patterns, 
since canonical patterns are sliced into smaller n-
grams that will have many duplicate n-grams. 
Hopefully, these n-grams provide partial matching 
capability even to the arbitrary alphanumeric terms. 

5.3 Class-Constraining Translation Knowl-
edge 

As class-constraining translation knowledge, two 
types of selection restrictions are defined for do-
main classes. Kv is a set of selection restrictions 
between domain verbs and domain classes. Kcm is a 

cmcmvv CcmKCvK ,,,  



set of selection restrictions between surface case 
markers and domain classes. v is a verb appearing 
in pER descriptions, and Cv is a set of domain 
classes corresponding to arguments that v governs. 
cm is a surface case marker appearing in pER de-
scriptions, and Ccm is a set of domain classes corre-
sponding to arguments that cm attaches. 

Kv and Kcm are extracted from predicate-
argument pairs that are acquired by parsing pER 
descriptions. First, each predicate-argument pair is 
expanded to a triple of <verb, noun, case marker>. 
The case marker means a surface case marker of 
the noun. In Korean, the triple <verb, noun, case 
marker> is easily constructed from a predicate-
argument pair, since each nominal argument has a 
surface case marker as a postposition within a 
word boundary. The second term of a triple is re-
placed by a domain class related to the noun. The 
modified triple is further divided into <verb, do-
main class> and <case marker, domain class>. 
Next, by merging a set of <verb, domain class> 
having the same verb, Kv is produced. Similarly, 
Kcm is obtained by merging a set of <case marker, 
domain class> having the same case marker. Kcm 
will be useful for value terms that correspond to 
different domain classes according to its case 
marker. 

6 

6.1 

6.2 

Noun Translation 

After question analysis, a user question is analyzed 
into a set of question nouns and a set of predicate-
argument pairs. Noun translation utilizes an IR 
framework to translate each question noun into a 
probable domain class. First, class retrieval con-
verts each question noun into an IR query and re-
trieves relevant documents. Here, retrieved 
documents refer to candidate domain classes for 
the question noun, because each document is asso-
ciated with a domain class. Next, class disam-
biguation selects a likely domain class among the 
candidate domain classes retrieved by class re-
trieval using predicate-argument pairs of the user 
question. 

Class Retrieval  

A question noun may be a class term or a value 
term, and a value term may be a linguistic value 
term or an alphanumeric value term. To be used as 
an IR query, these terms are converted into differ-

ent vector queries, as these terms are differently 
treated in indexing class or value documents. That 
is, class terms are converted into word-based terms, 
linguistic value terms into a list of all-length n-
grams, and alphanumeric value terms into a list of 
pattern-based n-grams. We employ three types of 
query representations; a conceptual vector for a 
class term, an all-length n-gram vector for a lin-
guistic value term, and a pattern-based n-gram vec-
tor for an alphanumeric value term. 

It is straightforward to distinguish whether a 
question noun is an alphanumeric term. However, 
it is nontrivial to distinguish between a class term 
and a linguistic value term, because many domain-
dependent class terms are out-of-vocabulary words. 
So, for a question noun other than an alphanumeric 
term, class retrieval creates both a conceptual vec-
tor and an all-length n-grams vector, and retrieves 
documents for each query, and merges the re-
trieved documents. In the following, a conceptual 
vector representation for class terms is described. 

If we simply convert a class term into a single 
term vector, it may cause a severe word mismatch 
problem (Furnas el al., 1987). Thus, the question 
noun is generalized to concept codes, which are 
then included in a vector query.  Unfortunately, 
this method may risk obtaining mistaken similarity 
values if the correct concepts of the two terms are 
not similar while incorrect concepts of the two 
terms are similar. However, considering that do-
main terminologies show marginal sense ambigui-
ties (Copeck et al., 1997), this concern will not be 
critical. 

A query-document similarity is computed as fol-
lows. 

 
Similarity(Q, D) = argmax t WQ(t) * WD(t) 

 
It simply selects the maximum value among 

weights of each matching term t. The reason is that, 
because all query terms belong to one homogene-
ous term group that originates from one lexical 
query term, the similarity between a query and a 
document means the best of similarities between 
the homogeneous group of a query term and ho-
mogeneous groups of several document terms.  

Class Disambiguation 



 
Figure 3. Class Disambiguation 

 
When question nouns are translated into domain 
classes, two types of ambiguities occur. Class term 
ambiguity occurs when a class term in a question 
refers to two or more domain classes. This ambigu-
ity mostly results from general attributes that sev-
eral domain entities share. For example, a question 
noun �‘address�’ can refer to any �‘address�’ attribute 
that the two entities �‘customer�’ and �‘employee�’ 
have at the same time. A value term ambiguity oc-
curs when more than two domain classes share at 
least one domain class instance. Hence, date or 
numeric expressions almost always cause value 
term ambiguity. In particular, in an air flight do-
main, country names or city names will be shared 
by many domain classes, such as the location of 
departure and the location of arrival.  

Class retrieval reduces the translation equiva-
lents of each question noun to lexically or semanti-
cally equivalent domain classes. However, the 
above two ambiguities still remain after class re-
trieval. Class disambiguation resolves these ambi-
guities using class-constraining translation 
knowledge of Kv and Kcm. Disambiguation proce-
dures proceed in two stages, as shown in figure 3. 

In the first stage, for each question noun with 
two or more domain classes after class retrieval, Kv 
is searched to find a domain verb that is the most 
similar to the head verb of the question noun. The 
SIM value between two lexical words is the maxi-
mum of concept similarity values between all pos-
sible concept pairs of the two lexical words. Let B 
represent the set of domain classes associated with 
the domain verb, and let A be the set of domain 
classes retrieved by class retrieval for the question 
noun. Then, A is replaced by A intersection B. The 
effect is to reduce ambiguities by removing from A 

inconsistent domain classes that is not expected by 
a governor of the question noun.  

N A

N : a question noun
V :  Governor of N
CM : Case marker of N

Selection Restrictions
Kv={<verb,{domain classes}>}

Kcm=<case marker, {domain classes}>

Vi

CM

C

V* = argmaxi SIM(V, Vi)

A = A B

B

A = A C
Case

marker
filtering

Class Retrieval

V

A : a set of domain classes for N
B : a set of domain classes for V*

C : a set of domain classes for CM

|A| 2

Yes

No

N A

N : a question noun
V :  Governor of N
CM : Case marker of N

Selection Restrictions
Kv={<verb,{domain classes}>}

Kcm=<case marker, {domain classes}>

Vi

CM

C

V* = argmaxi SIM(V, Vi)

A = A B

B

A = A C
Case

marker
filtering

Class Retrieval

V

A : a set of domain classes for N
B : a set of domain classes for V*

C : a set of domain classes for CM

|A| 2

Yes

No

The second stage takes the remaining ambigui-
ties after applying Kv. Kcm is searched to find the 
same surface case marker as that of the question 
noun, and let C be the set of domain classes asso-
ciated with the case marker. Then, A is further re-
placed by A intersection C. The effect is to select 
from A only the domain classes to which the case 
marker can attach.  

For example, consider the following question. 
 

Q1: sam-seng-ey-se cwu-mwun-han cey-phwum-un ?  
E1: Show me products (cey-phwum) that Samsung(sam-seng) 
ordered (cwu-mwun-han) ? 

 
A word sam-seng-ey-se consists of a root sam-

seng and a postpositional case marker ey-se. Sup-
pose that the question noun sam-seng retrieves 
three ambiguous domain classes {TB_Supplier, 
TB_Customer, TB_Shipper} by class retrieval. 
Then, using a governor cwu-mwun-ha of sam-seng, 
Kv is searched to find <cwu-mwun-ha, 
{TB_Customer, TB_Product, TB_Order.Amount, 
TB_Order.Date} >, and reduce ambiguity as fol-
lows. 

 
A = {TB_Supplier, TB_Customer, TB_Shipper} 
B = {TB_Customer, TB_Product, TB_Order.Amount, 
TB_Order.Date} 
A = A  B = {TB_Customer} 

 
In this case, Kcm is not used. As another example, 

consider this question. 
 

Q2: se-wul-ey-se len-ten-kka-ci pi-hayng-si-kan-un ? 
E2: Show me the flight duration (pi-hayng-si-kan) from(ey-se) 
Seoul(se-wul) to(kka-ci) London(len-ten) ? 

 
By class retrieval, a question noun se-wul will 

retrieve two domain classes {TB_Flight.Departure, 
TB_Flight.Arrival}. Unlike Q1, B will be empty 
since Q2 does not provide any verb. Then, using a 
case marker ey-se, Kcm is searched to find < ey-se, 
{TB_City, TB_Country, TB_Flight.Departure}>, 
and reduce ambiguity as follows. 

 
A = {TB_Flight.Departure, TB_Flight.Arrival} 
C = {TB_City, TB_Country, TB_Flight.Departure } 
A = A  C = {TB_Flight.Departure} 



7 Conclusion 

To effectively deal with the domain portability 
problem, this paper proposed the conceptual 
schema approach, which depends on the following 
three main components that differ from previous 
approaches. 

The first is an introduction of a physical ER 
schema, which is easily created from a target data-
base itself by domain experts with the help of a 
database modeling tool. The schema is used for 
capturing domain-dependent question meaning, 
because semantic constraints among domain ob-
jects are represented in the graph part of the ER 
schema. The second is the automatic construction 
of translation knowledge from a physical ER 
schema. To accomplish this, we defined two types 
of translation knowledge structures: a set of class-
referring documents and a set of class constraining 
selection restrictions. The construction process 
requires only a shallow analysis of linguistic de-
scriptions for a physical ER schema. The third is a 
noun translation strategy based on an information 
retrieval framework, where question nouns are as-
sociated with domain classes, lexically or semanti-
cally. 

In future, we will extend the current translation 
knowledge from other resources, such as domain 
materials, dictionaries, and corpora. 
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Document Classification in Structured Military Messages  

 

 

Abstract 

We present new results for the DSTO 
project on document classification of 
military messages. We report more 
specifically on the improvements to the 
Part-Of-Speech (POS) tagging, a 
probabilistic process that assigns a tag to 
a token, and discuss the training for Date 
Time Groups POS tags. A new 
implementation of the rule-based 
classifier is described. The results 
obtained on two databases of real military 
messages are encouraging and the 
document classification module has now 
been integrated with a query user 
interface. 

1 Introduction 

In (Carr and Estival, 2002), we presented the first 
tentative results of the Document Classification 
project we have been conducting at DSTO and we 
discussed the shortcomings of the approach we 
were using. In this paper, we present the results we 
have obtained in the continuation of that project, 
after having implemented improvements in the 
POS tagging component and taken a different 
approach for the rule-based classifier component.  
These results show that rule-based classifiers can 
give reasonable results for structured textual 
information, when using appropriate language 
models for POS tagging. 

1.1 Goals of the project  
A large part of the Defence Information 
Environment (DIE) used at the Deployable Joint 
Force Headquarters (DJFHQ) is based on Lotus 
collaborative and messaging applications.  The 
staff members of DJFHQ use Lotus databases to 

log operational events and Lotus e-mail for actions 
and administrative functions. Around 200 
messages per day are entered into these Lotus 
Notes log databases. Many DJFHQ staff members 
have expressed difficulty in finding particular 
information in their information reservoirs and our 
goal is to develop a more effective query interface 
between DJFHQ staff and their information 
reservoirs. This work already resulted in the 
development of the Query Building Interface 
(QBI), which was designed to create a better 
search interface to multiple log databases and to 
the users e-mail database. The rule-based 
Document Classifier we describe here has been 
trained and evaluated on Lotus operational log 
databases (OPS logs) from DJFHQ. It can now 
provide a categorisation for each document from 
the OPS logs and is integrated with QBI, as 
described in Section 7.2.   

1.2 Proposed Architecture 
Fig.1 below shows how QBI and the Document 
Classifier could be integrated in the existing IT 
infrastructure. In this new Server Environment, 
both QBI and the Document Classifier interface 
with the Lotus Notes database.   
 

Lotus Notes
Client Lotus Databases Lotus E-mail

Speech
Synthesis

Query Building
InterfaceOPS Log

User

Document
Classifier

PC's

Server Environment  
Fig.1 Proposed Architecture 

 
In this architecture, users enter and access 
documents through Lotus Notes as they do now, 
and they receive notification of the document 
classification. One possible scenario is to use a 
Text-to-Speech module to warn of the arrival of 
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some pre-specified document types, eg. NOTICAS 
(Notification of Casualty) or MEDSITREP 
(Medical Situation Report). For a NOTICAS, the 
injured person's details could be automatically 
retrieved and read out to the Commander or sent to 
a different display.   

1.3 Structure of the system 
The Document Classifier module in Fig.1 is named 
SOP-MRC (Standard Operating Procedures Rule 
Based Multiclass Classifier), and as shown in 
Fig.2, it consists of two main components: a Part-
Of-Speech (POS) Tagger and a Classifier.   

 

 
Fig. 2 The SOP-MRC module 
 
The POS Tagger component, described in Section 
3, is a probabilistic process that assigns a tag to a 
token. We also describe the training of this 
component in Section 3 and present our extension 
of the POS tagset for the military message data.   

The Classifier component, described in Section 
4, takes as input the list of pairs <token> <tag> 
produced by the POS Tagger for an incoming 
message and uses rules to determine the document 
type (including "free text") of the message. 

We present in Section 5 the results we obtained 
on data from two military exercises.  One database 
(VP-02) contains messages used to train the POS 
Tagger and to develop the classifier rules.  The 
second database (TT-01) contains similar 
documents from another military exercise. 

2 Shortcomings of the previous approach 

There were two types of problems with the first 
approach we took to classify the SOP documents 
from the DJFHQ message database.  The first one 
was that the data did not conform to expectations 
and the second one was that the classification rules 
were too brittle. Both issues have been addressed 
by the new approach to writing the classification 
rules described in Section 4.2. 

DJFHQ operators use formatted text in the 
free text fields of their Lotus Notes operational log 
databases. This formatted text is defined by 
Standard Operating Procedure (SOP) documents, 
and there are 88 different SOP Document Types 
corresponding to different message types. Our first 
approach had been to define rules based on the 
definition of the SOPs, which are available to the 
operators writing those messages as MS Word 
documents. However, the actual messages often do 
not follow the format prescribed by the SOPs and, 
in addition, they often contain attachments and 
other material, which makes classification more 
difficult. The new rules now take into account 
variations in the way operators actually write their 
messages and allow more flexibility in the 
classification. This is described in Section 4. 

Another problem was that the POS tagset used 
by our POS Tagger did not cover some token types 
that are very important in military messages. In 
particular, one lesson from our earlier work was 
that it is necessary to recognise Date Time Group 
(DTG) expressions and that we would have to 
develop our own tagset to fit the military domain. 
The additions we made to the POS tagset, are 
discussed in more detail in Sections 3.2 and 3.5. 

3 POS Tagging 

3.1 QTAG 
The POS tagger we chose to use is Qtag, a portable 
trainable language-independent probabilistic tagger 
developed by the University of Birmingham 
(Mason, 2003; Tufis and Mason, 1998). There are 
several training corpora available on the Internet to 
train POS taggers.1 Qtag was originally trained 
with the Industrial Parsing of Software Manuals 
(IPSM) (Sutcliffe et al, 1996), which uses the Penn 
Treebank tagset, and it comes with the 
Birmingham – Lancaster Tagset and the associated 
resource file trained for English.     

Qtag takes free text as input and outputs 
SGML, with each line containing the tag and the 
token it corresponds to. An example of input from 
our corpus and of the output produced by Qtag is 
given in Fig. 3. 
                                                             
1 See e.g. the Automatic Mapping Among Lexico-
Grammatical Annotation Models (AMALGAM) project: 
http://www.comp.leeds.ac.uk/amalgam/amalgam/multi-
parsed.html 



Input (VP-02) Qtag Output 
From HQCLSC, 
HSS facilities 
allocated to 
CLSC as 
follows, A. 34 
Fd Hosp (U.K) 

<w pos="IN">From</w>  
<w pos="JJ">HQCLSC</w>  
<w pos=",">,</w>  
<w pos="NN">HSS</w>  
<w pos="NNS">facilities</w>  
<w pos="VBN">allocated</w>  
<w pos="TO">to</w>  
<w pos="NN">CLSC</w>  
<w pos="CS">as</w>  
<w pos="VBZ">follows</w>  
<w pos=",">,</w>  
<w pos="NN">A.</w>  
<w pos="CD">34</w>  
<w pos="NN">Fd</w>  
<w pos="NN">Hosp</w>  
<w pos="NN">(U.K)</w> 

     Fig. 3  Output of Qtag using original tagset  
 
To deal with the particular type of text contained in 
SOP documents, 59 new POS tags (mainly 
formatting tags) were added to the original tagset 
of 45 tags. Fig. 4 shows the same text as Fig. 3, 
tagged by Qtag using the language model 
containing these additional domain specific tags.2,3 
 

Input (VP-02) Qtag Output 
From HQCLSC, 
HSS facilities 
allocated to 
CLSC as 
follows, A. 34 
Fd Hosp (U.K) 

<w pos="From">From</w>  
<w pos="VB">HQCLSC</w>  
<w pos=",">,</w>  
<w pos="NN">HSS</w>  
<w pos="NNS">facilities</w>  
<w pos="VBN">allocated</w>  
<w pos="TO">to</w>  
<w pos="NN">CLSC</w>  
<w pos="as">as</w>  
<w pos="NPS">follows</w>  
<w pos=",">,</w>  
<w pos="FrmA">A.</w>  
<w pos="CD">34</w>  
<w pos="NN">Fd</w>  
<w pos="NN">Hosp</w>  
<w pos="JJ">(U.K)</w> 

      Fig. 4  Output of Qtag using new tagset 

3.2 Date Time Groups (DTGs) 
As was described in (Carr and Estival, 2002), the 
analysis of our previous results showed that they 
were unsatisfactory in part because the POS 
Tagger did not recognise Date Time Groups 
(DTGs), which are very common in our texts, and 
                                                             
2 HQCLSC stands for "Headquarters Combined Logistics 
Support Command".  Note that the POS tags assigned to it (JJ 
in Fig.3 and VB in Fig.4) are incorrect, as are several of the 
other tags. 
3 The tag <FrmA>, meaning  a "formatted A character", 
covers the strings "\nA.", "\n(A)" and "\nA)".  
 

which play an important role in document type 
recognition for SOPs. For the purpose of document 
classification, a DTG is a single unit of 
information, but there are 3 types of DTGs that 
appear in the SOPs:  
• DTG_S, with time and time zone information, 
• DTG_M, with day, time and time zone 

information, 
• DTG_L, with day, time, time zone, month, and 

year information.   
Examples of these are given in (1) with their 
corresponding POS tag.  
 
(1) DTG_S  1259Z  
 DTG_M  310745Z 
 DTG_L  200830ZAUG02 
 
Although the 3 different types of DTGs are not 
often distinguished by the classifier rules, the POS 
Tagger needs to be trained on these 3 different 
DTG types, to avoid confusion with other 
alphanumeric strings. (2) is an example of the 
output from Qtag, where the DTG_S tag is 
correctly assigned to the text "1100K". 
 
(2)  <w pos="at">AT</w>  
  <w pos="DTG_S">1100K</w> 
  <w pos="NN">C130</w> 
 
As shown in Table 1, the baseline performance of 
Qtag (trained on 80% of the VP-02 data and tested 
on the remaining 20%) for DTGs was fairly low.  
This is due to the inadequate training data for 
DTGs in this corpus, which comes from one 
military exercise covering a short period of time, 
and thus conatining few variations for dates.  
  

  POS Baseline    

  DTG_S DTG_M DTG_L All Tags 

Recall 9.68% 15.72% 24.28% 74.39% 

Precision 6.90% 13.74% 14.86% 75.23% 

       Table 1  Baseline Performance of Qtag 

3.3 Training with additional data. 
To improve recognition of DTGs, we decided to 
create additional examples of DTGs to boost the 
training data for Qtag. For each of the DTG types, 
additional data was created in a systematic way to 
obtain instances of DTGs covering a wider range 
of dates and times. Table 2 shows the performance 
of Qtag with additional training data for DTGs. 
 



  
 

additional DTG_M 
  

 

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 90.81% 

Precision 80.52% 98.91% 95.65% 85.94% 

  additional DTG_S  

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 92.75% 

Precision 80.52% 98.91% 95.65% 87.77% 

  additional  DTG_L  

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 90.95% 

Precision 80.52% 98.91% 59.46% 85.94% 

 
Table 2  Additional training data for DTGs  
 
Since the worst performing category had been 
DTG_M, we first added 482 additional instances of 
DTG_M to the training file for Qtag. The same 
process was repeated for DTG_S and DTG_L, with 
158 and 8,063 additional instances respectively.   

3.4 Overtraining 
Table 2 shows that the performance of Qtag 
improved when the DTG_M data was first added 
but decreased significantly after DTG_L data was 
added (additional DTG_S training data did not 
make any significant difference). The decrease in 
performance after the DTG_L data was added is 
due to overtraining of Qtag. Using the same 
recursive algorithm, adding year information leads 
to the creation of many more instances of DTG_L 
than DTG_M and DTG_S and skews the training 
data, resulting in many false positives for that 
category. Since the training text with the added 
DTG_M and DTG_S gave the best performance, 
this is what we used to create the Qtag language 
model. 

3.5 New POS tags for measure units 
Table 3 shows examples of DTG tokens that were 
miscategorised by Qtag. We can see that most of 
these are in fact genuine DTGs, which is good 
news since the classifier rules are not concerned 
with the type of DTG (DTG_S, DTG_M, or 
DTG_L) but only with the occurrence of a DTG. 

 
 
 
 

Number Example Tag Correct Tag(s) 

1 030/02OF170015ZMAY02 NN DTG_L 

1 2100S DTG_S LAT_LONG_S 

2 4000FT, DTG_S DST 

8 4000L DTG_S WGT 

5 171659Z NN DTG_M 

13 WEST req NN 

8 5000M DTG_S DST 

32 (2)AT NN Frm2 at 

7 (0.5-0.7 NN CD 

1 A.151206KMAR02 NN FrmA DTG_L 

2 PD:130800K NN Pd DTG_M 

1 C.LAND NN FrmC VB 

 
Table 3 Errors in POS tagging for DTGs 
 
Further analysis of the miscategorisations shown in 
Table 3 suggests ways in which the performance of 
the POS Tagger can be improved: 
§ add additional training data for DTGs with 

different minute information than 0 or 5;   
§ add POS tags for measure units, such as 

<WGT> for weights, <DST> for distances, 
<SPD> for speeds, 

§ add POS tags for the various different types 
of Latitude and Longitude information or 
Grid reference. 

Some examples are given in (3). 
 
(3)  <w pos= "WGT">2500KG</w> 
 <w pos ="DST">500NM</w> 
 <w pos = LATLONG>15.35S/151.20E </w> 
 
In the end, 71 extra tags were added to the tagset, 
giving a total of 116 POS tags.2 The new Qtag 
language model was trained on 80% of the POS 
tags from the VP-02 data. The remaining 20% 
(36862 tags from 430 messages from VP-02) were 
used to test the performance of the POS Tagger. 
Table 4 shows the results obtained for the DTG_S, 
DTG_M and DTG_L tags, after Qtag was trained 
with the additional training data for the new 
measure units POS tags. 

 
New Tags Recall Precision 

DTG_S 100.00% 91.18% 

DTG_M 98.91% 99.27% 

DTG_L 97.34% 100.00% 

 
Table 4  DTGs with new language model 
                                                             
2 There were 57 tags for formatting, 3 for DTGs, 3 for 
measure units and 6 for Lat/Long/Grid.  Only 111 out of the 
116 different POS tags appear in our test data. 



 
Table 5 shows the overall results for Qtag using 
the macroaverage and microaverage statistics as 
described in (Sebastiani, 2001). Almost half of the 
POS tags in the test data were <NN>. We believe 
using the microaverage result without <NN> gives 
a better indication of performance. 

 
 Recall and Precision Averages Recall Precision
Macroaverage 89.69% 95.65% 
Microaverage 97.84% 97.08% 
Microaverage (no NN) 92.67% 94.75% 

 
Table 5  Overall Performance of Qtag 

4 Rule-based Classifier 

Unlike most work on document classification (see 
Jackson and Moulinier, 2002, or Manning and 
Schütze, 1999), we do not rely on the semantic 
content of the documents to classify our 
documents, but take advantage of the very highly 
constrained structure of the documents. This is an 
example of Category-Pivoted Text Classification 
where the classifier is given a classification and 
must find which messages should be assigned to a 
given class, as opposed to Document-Pivoted Text 
Classification, which tries to determine the 
appropriate classifications for a set of documents 
(Sebastiani, 2002). 

Quoting from (Jackson and Moulinier, 2002), 
there are two views of NLP: "Symbolic NLP tends 
to work top-down by imposing known grammatical 
patterns and meaning associations upon texts. 
Empirical NLP tends to work bottom-up from the 
texts themselves, looking for patterns and 
associations to model, some of which may not 
correspond to purely syntactic or semantic 
relationships." Empirical NLP has been widely 
used since the early 1990's while Symbolic NLP 
has been viewed less favourably. The system we 
describe here is in the tradition of Symbolic NLP, 
as the categories we use have been pre-defined and 
do not emerge from the data. However, at this 
point, classification is mainly performed on the 
basis of formatting structures, not on linguistic 
constructs. 

Our first rule-based classifier used an "if, else" 
structure to parse the tags returned from Qtag one 
at a time. The document type was determined 
solely on the basis of the previous tag and the 

current tag, and only <Start> tags and the last one 
or two <End> tags were used to classify a 
message. A large amount of code (in Python) was 
written to implement this method, which turned out 
to be neither efficient nor successful. 

Our first approach was too optimistic and too 
reliant on the document structure given in the 
SOPs, and our rules did not perform well. Our 
second implementation of a rule-based classifier 
uses regular expressions to state the rules. Regular 
expressions allow us to define more detailed rules 
and they also allow for more flexibility. 

4.1 Regular Expressions as rules 
As discussed in (Carr and Estival, 2002), the 
discrepancy between the format prescribed by the 
SOPs and the real text input by the operators was 
one of the main causes of errors. The use of regular 
expressions as rules allows flexibility in rule 
definition and result in shorter and more effective 
code.  Several rules can be written to recognise one 
SOP document type.   

The output of Qtag is read into a string. This 
string contains the list of POS tags for a message. 
Each rule recognises the tags for one SOP 
document type and allows any number of other 
tags in between. Only those POS tags required by 
the classifier rules are read into the Classifier. 
Having all the POS tags in a string also allows 
message headers and multiple SOPs to be pruned 
off or recognised differently very easily.    

We give in (4) an example of a classifier rule 
for document type "P", where there can be any 
number of tags before <Frm1> and at least one 
instance of the separator or more tags before 
<Frm2>. In (5), we give an example of a message 
containing a document of type "P". 
 
(4)  P = ([ a-za-z]|[ A-Za-za-z0-9]|[ A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){0,}Frm1([ a-za-z]|[ A-Za-za-z0-9]|[ A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){1,}Frm2.([ a-za-z]|[ A-Za-za-z0-9]| [A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){0,}  
  
(5)   CD DTG_M Frm1 CD From at Frm2 DTG_L 

4.2 SOP-MRC rules 
As mentioned earlier, the classifier rules were first 
created following the 88 SOP document 
definitions. They were later derived from a corpus 



analysis and further refined after analysis of the 
results on the same corpus. The rules use mostly 
POS tags relating to formatting, eg. <Frm1> 
("formatted 1") or <FrmB> ("formatted B"), but 
also some content information, with the POS tags 
for DTGs and <CD> (number). A total of 66 rules 
were used to recognise the 37 document types that 
appeared in the VP-02 data. Of these 66 rules, 44 
rely on the POS tags for DTGs or <CD>.  

One disadvantage of using regular expressions 
to implement classifier rules might be that they can 
be fairly long. The example in (4) is one of the 
shortest rules in terms of number of elements.  
However, this problem can be alleviated by the use 
of named groups and the Python interpreter is 
useful to test the regular expressions before they 
are included into the classifier. 

It is also worth noting that these handcrafted 
rules were in fact written very quickly, much more 
quickly than "one rule in two days" as described by 
(Jackson and Moulinier, 2002). 

Each message is tested against all the rules for 
SOP document types. If no match is found, then 
the document is assigned to the document type 
"Free Text". Some rules are in fact subsets of other 
rules. This defines a hierarchy of rules which can 
be used to determine the correct SOP document 
type, see Section 6. 

5 Results 

We present the results obtained by SOP-MRC on 
two different message databases. The VP-02 
database was used for training the POS Tagger and 
to define the classifier rules. It contains 2328 
messages and 37 document types. The TT-01 
database contains 3131 messages and 18 document 
types.  The detailed results for each document type, 
for both VP-02 and TT-01, are given in Appendix 
1 and 2. 

The first part of Table 6 shows the overall 
results of SOP-MRC for VP-02. Since over 75% of 
the messages are "Free Text", we also show the 
microaverage result without the "Free Text" 
category to give a better indication of performance. 

The second part of Table 6 shows the overall 
results of SOP-MRC for TT-01. In this corpus, 
over 85% of the messages are "Free Text" and the 
microaverage result is again given without the 
"Free Text" category. 

Recall and Precision Averages Recall Precision 

VP-02   

Macroaverage 79.99% 67.94% 

Microaverage 82.49% 81.52% 

Microaverage (no Free Text) 70.53% 43.41% 

TT01   

Macroaverage 12.72% 13.09% 

Microaverage 86.77% 83.88% 

Microaverage (no Free Text) 77.39% 26.81% 

   
 Table 7  SOP-MRC for VP-02 and TT01 
 
These results are very encouraging. Although the 
macroaverage for TT-01 is not very good, this is 
explained by the fact that there were a number of 
False Positives for document types which do not 
occur in this data (see Appendix 2). The 
microaverage shows that the document types with 
larger numbers of documents are giving as good 
results for the new unseen data as for VP-02.  

An explanation for the discrepancies between 
the document types used in VP-02 and in TT-01 is 
that the SOP definitions were actually developed at 
DJFHQ, and that VP-02 was a military exercise 
which only involved that headquarters, with all the 
messages coming from DJFHQ, while TT-01 was a 
four nation exercise, with messages coming from a 
number of different headquarters. 

Another issue concerns the "Shift Handover" 
documents. The Shift Handover form is filled in by 
officers "handing over" their shift to another 
officer who "watches" the database for outstanding 
issues, and is a summary of the past 12 or 24 
hours. Although this form is essentially free text, 
because the officers tend to think in terms of 
formatted documents, they often write it as another 
formatted document, eg. with numbered items for 
new paragraphs. If we classified the Shift 
Handover form as "Free Text", the accuracy would 
improve. This can be seen as another example of 
the well-know fact that the operator or human 
element is a large factor in system success.  

6 Multilabel classification 

One of the lessons from our earlier work was that 
we needed to use a multilabel classification rather 
than a simple multiclass classification. In 
multiclass classification, each message is assigned 
to only one of several possible classes, while in a 
multilabel classification, a message can be 
assigned to one or more classes (Lewis, 2002). Our 



new classifier rules now perform a type of 
multilabel classification, by assigning a complex 
label to each message. An example of this complex 
label is shown in (6).3 

 
(6) C:B:A:Free Text 
 
This example shows the output of a message that 
contains a document of type C. As mentioned 
above, some rules are actually subsets of other 
rules, thereby defining a hierarchy of document 
types. In this case, the rule for document type C 
includes the rule for document type B, which 
includes the rule for document type A; thus A and 
B are also included in the complex label, as well as 
Free Text, the default classification. 

In our current implementation, we choose the 
label returned by the more specific rule in the 
complex label, and return it as the single label, or 
multiclass classification, for the message being 
classified (in this case, C). Although Sebastiani 
(2002) argues that a multilabel classifier cannot be 
used as a single label classifier, the complex label 
that is returned by our classifier component is in 
fact a multilabel classification in terms of the 
hierarchical structure of the classifier rules. This 
hierarchy can be thought of as a set of binary 
classifiers (implemented as classifier rules) listed 
in order, from smallest (more general) to largest 
(more specific). This set is ordered such that a 
document type is a subset (in terms of structure, 
not content) of the next document type.4 

 

7 Conclusions and future work 

7.1 Improvements  
The expanded POS tagset provides a better 
coverage for the texts in our domain, and the POS 
Tagger component is now trained for the real data 
found in military message databases. 

The new classifier component is much cleaner 
and more efficient. Python provides high-level 
methods to implement regular expressions and use 
                                                             
3 The names of the document types have been replaced by 
alphabetical labels for presentation; in the real system, the 
categories have meaningful labels. 
4 For example, a MEDSITREP (Medical Situation Report) is 
conceptually a kind of SITREP (Situation Report), but a 
SITREP is not a kind of "Free Text", even though the rules for 
"SITREP" and "Free Text" are in a subset relation. 

them to search strings of text, which makes it 
easier to modify the classifier and to add or change 
the rules. 

The results on a new database of messages, 
which were not used to create the classifier rules, 
are encouraging and indicate that we can improve 
the performance of SOP-MRC with little effort. 

7.2 Integration with QBI 
QBI is an improved search interface to the Lotus 
Notes operational log database used at DJFHQ, 
which is developed by the same DSTO team as 
SOP-MRC. We aim to incorporate the output of 
SOP-MRC with QBI by providing a category-
pivoted view of the documents as categorised by 
SOP-MRC. An example of this view is shown in 
Fig. 5.  

The categorised view will allow the users of the 
QBI to quickly find messages in a Lotus Notes 
operational log database by using document types 
to limit their search or to locate the relevant 
message. 

7.3 Other Improvements to SOP-MRC 
The performance of the POS Tagger could be 
improved by pre-processing the messages. Text 
such as "10 KM" could be normalised to "10KM" 
so the POS Tagger can properly tag it <DST> 
rather than <CD> <NN>. This would also help 
improve the classifier’s performance. 

The current implementation relies on a one-to-
one correspondence between classifier rules and 
document types. We are looking at another 
approach, in which a classifier rule would be a 
subset of a number of rules for a few document 
types, in other words we would have a more 
general rule for a set of document types. This 
would correspond to implementing the true 
multilabel classification mentioned in Section 6, 
where the hierarchy of rules also correspond to the 
conceptual hierarchy of document types. 

 



 
 
Fig. 5  Screenshot of QBI with SOP-MRC  

 
If an incoming message matches the more general 
rule, it can then be tested against more specific 
rules. If the message fails to match one of these, 
then other methods can be used to determine the 
more specific document type, but at least the more 
general category can be kept, rather than defaulting 
to "Free Text", as is currently the case.   

Further analysis to determine the more specific 
document type would involve the number of 
certain POS tags, the ordering of these tags or the 
absence of certain tags.   

Another improvement concerns the addition of 
further POS tags for our domain, for example, tags 
for unit names and ranks. This information would 
also be useful in further work on both document 
classification and information extraction. For 
instance, it would allow extracting information 
about which units are involved or identify the 
personnel injured from NOTICAS messages.    

We are also investigating the development of a 
trainable system, using approaches such as TF-
IDF, Rocchio Method, Support Vector Machines 
or hybrid solutions such as Learning from Positive 
and Unlabeled text documents (Jackson and 
Moulinier, 2002; Joachims, 1998; Vapnik, 1995; 
Lee and Lui, 2003). 
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Doc Type Gold Total TP FP FN Recall Precision 

A 1 2 1 1 0 100.00% 50.00% 

B 1 1 1 0 0 100.00% 100.00% 

C 10 6 6 0 4 60.00% 100.00% 

D 2 5 1 4 1 50.00% 20.00% 

E 14 10 3 7 11 21.43% 30.00% 

F 1 2 1 1 0 100.00% 50.00% 

G 6 5 4 1 2 66.67% 80.00% 

H 1 1 1 0 0 100.00% 100.00% 

I 2 2 2 0 0 100.00% 100.00% 

J 1 3 1 2 0 100.00% 33.33% 

K 11 18 7 11 4 63.64% 38.89% 

L 33 16 9 7 24 27.27% 56.25% 

Free Text 1846 1657 1625 32 221 88.03% 98.07% 

M 3 2 2 0 1 66.67% 100.00% 
N 19 28 8 20 11 42.11% 28.57% 

O 2 4 2 2 0 100.00% 50.00% 

P 164 391 131 260 33 79.88% 33.50% 

Q 34 22 13 9 21 38.24% 59.09% 
R 3 3 3 0 0 100.00% 100.00% 

S 32 27 27 0 5 84.38% 100.00% 

T 1 4 1 3 0 100.00% 25.00% 

U 20 30 18 12 2 90.00% 60.00% 

V 5 5 5 0 0 100.00% 100.00% 

W 1 3 1 2 0 100.00% 33.33% 

X 1 2 1 1 0 100.00% 50.00% 
Y 5 2 2 0 3 40.00% 100.00% 

Z 1 11 1 10 0 100.00% 9.09% 

AA 1 1 1 0 0 100.00% 100.00% 

BB 2 3 2 1 0 100.00% 66.67% 

CC 1 1 1 0 0 100.00% 100.00% 

DD 81 31 31 0 50 38.27% 100.00% 

EE 3 4 2 2 1 66.67% 50.00% 

FF 1 2 1 1 0 100.00% 50.00% 

GG 1 1 1 0 0 100.00% 100.00% 

HH 1 1 1 0 0 100.00% 100.00% 

II 13 19 8 11 5 61.54% 42.11% 

JJ 4 3 3 0 1 75.00% 100.00% 

Total 2328 2328      

Appendix 1 SOP-MRC on VP02 
 

 

 

 

 

 

 

 

 

 

 
Doc Type Gold Total TP FP FN Recall Precision 

A 0 1 0 1 0 0.00% 0.00% 
B 0 1 0 1 0 0.00% 0.00% 
C 1 0 0 0 1 0.00% 0.00% 
D 2 0 0 0 2 0.00% 0.00% 
E 10 11 0 11 10 0.00% 0.00% 
F 0 1 0 1 0 0.00% 0.00% 
G 0 1 0 1 0 0.00% 0.00% 
J 0 2 0 2 0 0.00% 0.00% 
K 0 14 0 14 0 0.00% 0.00% 
L 26 10 4 6 22 15.38% 40.00% 

Free Text 2767 2493 2471 22 296 89.30% 99.12% 
M 0 1 0 1 0 0.00% 0.00% 
N 5 26 3 23 2 60.00% 11.54% 
O 2 2 2 0 0 100.00% 100.00% 
P 176 521 167 354 9 94.89% 32.05% 
Q 57 0 0 0 57 0.00% 0.00% 
S 5 1 0 1 5 0.00% 0.00% 
T 0 3 0 3 0 0.00% 0.00% 
U 0 1 0 1 0 0.00% 0.00% 
V 1 0 0 0 1 0.00% 0.00% 
W 0 3 0 3 0 0.00% 0.00% 
Y 0 1 0 1 0 0.00% 0.00% 
Z 0 7 0 7 0 0.00% 0.00% 

AA 14 0 0 0 14 0.00% 0.00% 
CC 1 0 0 0 1 0.00% 0.00% 
DD 50 10 1 9 49 2.00% 10.00% 
EE 2 16 0 16 2 0.00% 0.00% 
FF 1 0 0 0 1 0.00% 0.00% 
II 3 1 0 1 3 0.00% 0.00% 
JJ 5 1 1 0 4 20.00% 100.00% 

Total 3128 3128           
Appendix 2  SOP-MRC on TT01 

 





Context Categories of social situation

Semantics Systems of meaning

Lexicogrammar Systems of wording

Phonology / Graphology

Systems of sounding / writing














