
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 11–15
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

11

HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as
Constituent Tree Parsing

Wei Jiang, Zhenghua Li∗, Yu Zhang, Min Zhang
School of Computer Science and Technology, Soochow University, China

{wjiang0501, yzhang25}@stu.suda.edu.cn, {zhli13,minzhang}@suda.edu.cn

Abstract

This paper describes a simple UCCA
semantic graph parsing approach. The
key idea is to convert a UCCA semantic
graph into a constituent tree, in which
extra labels are deliberately designed to
mark remote edges and discontinuous
nodes for future recovery. In this way,
we can make use of existing syntactic
parsing techniques. Based on the data
statistics, we recover discontinuous
nodes directly according to the output
labels of the constituent parser and
use a biaffine classification model
to recover the more complex remote
edges. The classification model and the
constituent parser are simultaneously
trained under the multi-task learning
framework. We use the multilingual
BERT as extra features in the open tracks.
Our system ranks the first place in the
six English/German closed/open tracks
among seven participating systems. For
the seventh cross-lingual track, where
there is little training data for French, we
propose a language embedding approach
to utilize English and German training
data, and our result ranks the second
place.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework
for semantic annotation proposed by Abend and
Rappoport (2013). Figure 1 shows an example
sentence and its UCCA graph. Words are
represented as terminal nodes. Circles denote
non-terminal nodes, and the semantic relation

∗Corresponding author, hlt.suda.edu.cn/zhenghua

1

2

H

3

4

“

5

lch

6

ging umher

A

7

und

A

8

tastete

9

.

H

UA P

L

A

H

P U

Figure 1: A UCCA graph example from
the German data. The English translation is
“ I went around and groped . We assign a number
to each non-terminal node to facilitate illustration.

between two non-terminal nodes is represented
by the label on the edge. One node may have
multiple parents, among which one is annotated
as the primary parent, marked by solid line
edges, and others as remote parents, marked by
dashed line edges. The primary edges form a
tree structure, whereas the remote edges enable
reentrancy, forming directed acyclic graphs
(DAGs).1 The second feature of UCCA is the
existence of nodes with discontinuous leaves,
known as discontinuity. For example, node 3 in
Figure 1 is discontinuous because some terminal
nodes it spans are not its descendants.

Hershcovich et al. (2017) first propose a
transition-based UCCA Parser, which is used as
the baseline in the closed tracks of this shared
task. Based on the recent progress on transition-
based parsing techniques, they propose a novel set
of transition actions to handle both discontinuous
and remote nodes and design useful features
based on bidirectional LSTMs. Hershcovich et al.
(2018) then extend their previous approach and
propose to utilize the annotated data with other

1The full UCCA scheme also has implicit and linkage
relations, which are overlooked in the community so far.



12

semantic formalisms such as abstract meaning
representation (AMR), universal dependencies
(UD), and bilexical Semantic Dependencies
(SDP), via multi-task learning, which is used as
the baseline in the open tracks.

In this paper, we present a simple UCCA
semantic graph parsing approach by treating
UCCA semantic graph parsing as constituent
parsing. We first convert a UCCA semantic
graph into a constituent tree by removing
discontinuous and remote phenomena. Extra
labels encodings are deliberately designed
to annotate the conversion process and to
recover discontinuous and remote structures.
We heuristically recover discontinuous nodes
according to the output labels of the constituent
parser, since most discontinuous nodes share the
same pattern according to the data statistics. As
for the more complex remote edges, we use a
biaffine classification model for their recovery.
We directly employ the graph-based constituent
parser of Stern et al. (2017) and jointly train the
parser and the biaffine classification model via
multi-task learning (MTL). For the open tracks,
we use the publicly available multilingual BERT
as extra features. Our system ranks the first
place in the six English/German closed/open
tracks among seven participating systems. For
the seventh cross-lingual track, where there is
little training data for French, we propose a
language embedding approach to utilize English
and German training data, and our result ranks the
second place.

2 The Main Approach

Our key idea is to convert UCCA graphs into
constituent trees by removing discontinuous and
remote edges and using extra labels for their future
recovery. Our idea is inspired by the pseudo non-
projective dependency parsing approach propose
by Nivre and Nilsson (2005).

2.1 Graph-to-Tree Conversion

Given a UCCA graph as depicted in Figure 1, we
produce a constituent tree shown in Figure 2 based
on our algorithm described as follows.

1) Removal of remote edges. For nodes that
have multiple parent nodes, we remove all remote
edges and only keep the primary edge. To fa-
cilitate future recovery, we concatenate an extra
“remote” to the label of the primary edge, indicat-

ROOT

H

U

“

H-ancestor1

A-remote

lch

P

ging umher

L-ancestor1

und

P

tastete

U

.

Figure 2: Constituent tree converted from UCCA
gragh.

train dev total percent(%)

ancestor 1 1460 149 1609 91.3

ancestor 2 96 19 115 6.5

ancestor 3 21 0 21 1.2

discontinuous 16 2 18 1.0

Table 1: Distribution of discontinuous structures
in the English-Wiki data, which is similar in the
German data.

ing that the corresponding node has other remote
relations. We can see that the label of the child
node 5 becomes “A-remote” after conversion in
Figure 1 and 2.

2) Handling discontinuous nodes. We call
node 3 in Figure 1 a discontinuous node because
the terminal nodes (also words or leaves) it spans
are not continuous (“lch ging umher und” are not
its descendants). Since mainstream constituent
parsers cannot handle discontinuity, we try to re-
move discontinuous structures by moving specific
edges in the following procedure.

Given a discontinuous node A = 3, we first
process the leftmost non-descendant node B =
“lch′′. We go upwards along the edges until we
find a node C = 2, whose father is either the
lowest common ancestor (LCA) of A = 3 and
B = “lch′′ or another discontinuous node. We
denote the father of C = 2 as D = 1.

Then we move C = 2 to be the child of A =
3, and concatenate the original edge label with
an extra string (among “ancestor 1/2/3/...” and
“discontinuous”) for future recovery, where the
number represents the number of edges between



13

xi... ...

Shared BiLSTMs

MLPs and Biaffines MLPs

Remote recovery Constituent Parsing

Figure 3: The framework of MTL.

the ancestor D = 1 and A = 3.
After reorganizing the graph, we then restart

and perform the same operations again until there
is no discontinuity.

Table 1 shows the statistics of the discontinuous
structures in the English-Wiki data. We can see
that D is mostly likely the LCA of A and B, and
there is only one edge between D and A in more
than 90% cases.

Considering the skewed distribution, we only
keep “ancestor 1” after graph-to-tree conversion,
and treat others as continuous structures for sim-
plicity.

3) Pushing labels from edges into nodes.
Since the labels are usually annotated in the nodes
instead of edges in constituent trees, we push all
labels from edges to the child nodes. We label the
top node as “ROOT”.

2.2 Constituent Parsing
We directly adopt the minimal span-based parser
of Stern et al. (2017). Given an input sentence
s = w1...wn, each word wi is mapped into a dense
vector xi via lookup operations.

xi = ewi ⊕ eti ⊕ ...

where ewi is the word embedding and eti is the
part-of-speech tag embedding. To make use of
other auto-generated linguistic features, provided
with the datasets, we also include the embeddings
of the named entity tags and the dependency
labels, but find limited performance gains.

Then, the parser employs two cascaded bidirec-
tional LSTM layers as the encoder, and use the
top-layer outputs as the word representations.

Afterwards, the parser represents each span
wi...wj as

ri,j = (fj − fi)⊕ (bi − bj)

where fi and bi are the output vectors of the top-
layer forward and backward LSTMs.

The span representations are then fed into MLPs
to compute the scores of span splitting and label-
ing. For inference, the parser performs greedy top-
down searching to build a parse tree.

2.3 Remote Edge Recovery

We borrow the idea of the state-of-the-art biaffine
dependency parsing (Dozat and Manning, 2017)
and build our remote edge recovery model. The
model shares the same inputs and LSTM encoder
as the constituent parser under the MTL frame-
work (Collobert and Weston, 2008). For each
remote node, marked by “-remote” in the con-
stituent tree, we consider all other non-terminal
nodes as its candidate remote parents. Given a
remote node A and another non-terminal node B,
we first represent them as the span representations.
ri,j and ri′,j′ , where i, i′, j, j′ are the start and end
word indices governed by the two nodes. Please
kindly note that B may be a discontinuous node.

Following Dozat and Manning (2017), we apply
two separate MLPs to the remote and candidate
parent nodes respectively, producing rchildi,j and
rparenti′,j′ .

Finally, we compute a labeling score vector via
a biaffine operation.

s(A← B) =

[
rchildi,j

1

]T

Wrparenti′,j′ (1)

where the dimension of the labeling score vector
is the number of the label set, including a “NOT-
PARENT” label.

Training loss. We accumulate the standard
cross-entropy losses of all remote and non-
terminal node pairs. The parsing loss and the
remote edge classification loss are added in the
MTL framework.

2.4 Use of BERT

For the open tracks, we use the contextualized
word representations produced by BERT (Devlin
et al., 2018) as extra input features.2 Following
previous works, we use the weighted summation
of the last four transformer layers and then mul-
tiply a task-specific weight parameter following
(Peters et al., 2018).

2We use the multilingual cased BERT from https://
github.com/google-research/bert.

https://github.com/google-research/bert
https://github.com/google-research/bert


14

3 Cross-lingual Parsing

Because of little training data for French, we bor-
row the treebank embedding approach of Stymne
et al. (2018) for exploiting multiple heterogeneous
treebanks for the same language, and propose a
language embedding approach to utilize English
and German training data. The training datasets
of the three languages are merged to train a single
UCCA parsing model. The only modification is
to concatenate each word position with an extra
language embedding (of dimension 50), i.e. xi ⊕
elang=en/de/fr to indicate which language this
training sentence comes from. In this way, we
expect the model can fully utilize all training
data since most parameters are shared except the
three language embedding vectors, and learn the
language differences as well.

4 Experiments

Except BERT, all the data we use, including the
linguistic features and word embeddings, are pro-
vided by the shared task organizer (Hershcovich
et al., 2019). We also adopt the averaged F1
score as the main evaluation metrics returned by
the official evaluation scripts (Hershcovich et al.,
2019).

We train each model for at most 100 iterations,
and early stop training if the peak performance
does not increase in 10 consecutive iterations.

Table 2 shows the results on the dev data. We
have experimented with different settings to gain
insights on the contributions of different com-
ponents. For the single-language models, it is
clear that using pre-trained word embeddings out-
performs using randomly initialized word embed-
dings by more than 1% F1 score on both English
and German. Finetuning the pre-trained word
embeddings leads to consistent yet slight perfor-
mance improvement. In the open tracks, replacing
word embedding with the BERT representation is
also useful on English (2.8% increase) and Ger-
man (1.2% increase). Concatenating pre-trained
word embeddings with BERT outputs leads is also
beneficial.

For the multilingual models, using randomly
initialized word embeddings is better than pre-
trained word embeddings, which is contradictory
to the single-language results. We suspect this
is due to that the pre-trained word embeddings
are independently trained for different languages
and would lie in different semantic spaces with-

Methods
F1 score

Primary Remote Avg
Single-language models on English

random emb 0.778 0.542 0.774
pretrained emb (no finetune) 0.790 0.494 0.785

pretrained emb 0.794 0.535 0.789
bert 0.821 0.593 0.817

pretrained emb ⊕ bert 0.825 0.603 0.821
official baseline (closed) 0.745 0.534 0.741
official baseline (open) 0.753 0.514 0.748

Single-language models on German
random emb 0.817 0.549 0.811

pretrained emb (no finetune) 0.829 0.544 0.823
pretrained emb 0.831 0.536 0.825

bert 0.842 0.610 0.837
pretrained emb ⊕ bert 0.849 0.628 0.844

official baseline (closed) 0.737 0.46 0.731
official baseline (open) 0.797 0.587 0.792

Multilingual models on French
random emb 0.688 0.343 0.681

pretrained emb 0.673 0.174 0.665
bert 0.796 0.524 0.789

official baseline (open) 0.523 0.016 0.514

Table 2: Results on the dev data.

out proper aligning. Using the BERT outputs is
tremendously helpful, boosting the F1 score by
more than 10%. We do not report the results
on English and German for brevity since little
improvement is observed for them.

5 Final Results

Table 3 lists our final results on the test data.
Our system ranks the first place in six tracks (En-
glish/German closed/open) and the second place
in the French open track. Note that we submitted
a wrong result for the French open track during
the evaluation phase by setting the wrong index
of language, which leads to about 2% drop of
averaged F1 score (0.752). Please refer to (Her-
shcovich et al., 2019) for the complete results and
comparisons.

6 Conclusions

In this paper, we describe our system submitted to
SemEval 2019 Task 1. We design a simple UCCA
semantic graph parsing approach by making full
use of the recent advance in syntactic parsing
community. The key idea is to convert UCCA
graphs into constituent trees. The graph recovery



15

Tracks
F1 score

Primary Remote Avg
English-Wiki closed 0.779 0.522 0.774
English-Wiki open 0.810 0.588 0.805
English-20K closed 0.736 0.312 0.727
English-20K open 0.777 0.392 0.767

German-20K closed 0.838 0.592 0.832
German-20K open 0.854 0.641 0.849
French-20K open 0.779 0.438 0.771

Table 3: Final results on the test data in each
track. Please refer to the official webpage for more
detailed results due to the limited space

problem is modeled as another classification task
under the MTL framework. For the cross-lingual
parsing track, we design a language embedding
approach to utilize the training data of resource-
rich languages.

Acknowledgements

The authors would like to thank the anonymous
reviewers for the helpful comments. We also
thank Chen Gong for her help on speeding up the
minimal span parser. This work was supported
by National Natural Science Foundation of China
(Grant No. 61525205, 61876116).

References
Omri Abend and Ari Rappoport. 2013. Universal

Conceptual Cognitive Annotation (UCCA). In Proc.
of ACL, pages 228–238.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv:1810.04805.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of ICLR.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-lingual
semantic parsing with ucca. arXiv:1903.02953.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proc. of ACL,
pages 99–106.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proc. of NAACL.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proc. of ACL, pages 818–827.

Sara Stymne, Miryam de Lhoneux, Aaron Smith,
and Joakim Nivre. 2018. Parser training with
heterogeneous treebanks. In Proc. of ACL, pages
619–625.


