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Abstract 

We propose a novel attentive hybrid GRU-
based network (SAHGN), which we used at 
SemEval-2018 Task 1: Affect in Tweets. 
Our network has two main characteristics, 
1) has the ability to internally optimize its 
feature representation using attention 
mechanisms, and 2) provides a hybrid rep-
resentation using a character-level Convo-
lutional Neural Network (CNN), as well as 
a self-attentive word-level encoder. The key 
advantage of our model is its ability to sig-
nify the relevant and important information 
that enables self-optimization. Results are 
reported on the valence intensity regression 
task. 

1 Introduction 

Affect analysis is one of the main topics of nat-
ural language processing (NLP). It involves many 
sub-tasks such as sentiment and valence analyses 
expressed in text. We focus on the task of determin-
ing valence intensity. 

Hand-crafted features and/or sentiment lexicons 
are commonly used for affect analysis 
(Mohammad, Kiritchenko, & Zhu, 2013; Taboada, 
Brooke, Tofiloski, Voll, & Stede, 2011) with clas-
sifiers such as random forest and support vector 
machines (SVM). 

Affect in tweets (AIT) is a challenging task as it 
requires handling an informal writing style, which 
typically has many grammar mistakes, slangs, and 
misspellings.  

In this paper, we present a self-attentive hybrid 
GRU-based network (SAHGN) that competed at 
SemEval-2018 Task 1 (Mohammad, Bravo-
Marquez, Salameh, & Kiritchenko, 2018; 
Mohammad & Kiritchenko, 2018). 

Our contributions can be summarized as below. 

• The implementation of a social media text 
processor: A library to help process social 
media text such as short-forms, emoticons, 
emojis, misspellings, hash tags, and slangs, 
as well as tokenization, word normalization, 
and sentence encoding. 

• The implementation of a self-attentive 
deep learning system: This system can pre-
dict valence and intensity with limited cor-
pora and vocabulary, and yet can have ac-
ceptable performance.  

2 High-Level Description of Our System 

Our goal is to provide a system that can predict va-
lence and intensity for short text. Figure 1 shows a 
high-level description of our solution, which con-
sists of two main components, social media text 
processor (Section 3) and self-attentive hybrid 
GRU-based network (Section 4.2).  

 
 

Figure 1: System architecture. 

3 Social Media Text Processor 

The social media text processor aims to provide 
a reliable and fast tokenization. It involves the fol-
lowing preprocessing steps: 
• Use a named entity recognizer (NER) (Finkel, 

Grenager, & Manning, 2005) to identify enti-
ties such as persons, names, and places, and 
then replace them accordingly.  

• Build a vocabulary using an NGram tokenizer. 
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• Tokenize sentences into a set of tokens, and 
then use them to encode text into a sequence of 
indices (Table 1), which are fed into the net-
work. 

• Clean text from accents, punctuations, and 
non-Latin characters. 

• Identify emoticons and emojis, and then re-
place them with meaningful text; e.g., replace 
the happy face emoticon :) with <happy>. 

• Recognize hashtags, URLs, and then briefly 
describe them; e.g. replace #depressed by 
<hashtag_start>depressed<hashtag_end>. 

• Identify user reference mentions, and then re-
place them with a person entity; e.g. <person>. 
 

Text @name I am feeling under the weather af-
ter I met with Carl :’( #sick \\u0001F600 

Pro-
cessed 

<SOS> <reference> I am feeling under the 
weather after I met with <person> <cry-
ing> <hashtag_start> sick <hashtag_end> 
<grinning_face> <EOS> 

Table 1:  Example of processed text. 

4 Model Description 

The overall architecture of our SAHGN model is 
shown in Figure 2.  The main components include 
1) a word sequence encoder, 2) a bidirectional 
GRU-based layer that applies a self-attentive 
mechanism on the word level, 3) a character-level 
CNN feature extractor, and 4) an attention with 
context-aware mechanism. 

4.1 Word Sequence Encoder 

A network input is described as a sequence (𝑆𝑆) of 
tokens (such as words), where 𝑆𝑆 =  [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡] 

and 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖 is a one-hot input (𝑖𝑖) 
vector of a fixed length (𝑇𝑇) of tokens. A sequence 
that exceeds this length is truncated.  

Word encoding. We use a 𝑊𝑊 word vocabulary 
to encode a sequence. 𝑊𝑊 has fixed terms to deter-
mine the start and end of the sequence, as well as 
the out of vocabulary (OOV) words. We handle the 
variable length through padding for short se-
quences and truncating for long sequences.  

Embedding layer. We apply a pretrained GloVe 
word embedding (Pennington, Socher, & Manning, 
2014) on 𝑆𝑆𝑖𝑖. GloVe projects these words into a low-
dimensional vector representation (𝑥𝑥𝑖𝑖), where 𝑥𝑥𝑖𝑖 ∈
𝑅𝑅𝑊𝑊 and 𝑊𝑊 is the word weight embedding matrix. 
𝑊𝑊 is used to initialize the word embedding layer. 

We used the official training and development 
corpora to train the GloVe word embedding with a 
dimension of 100. The vocabulary size of this 
model is 8145 words, which is small and poses a 
major challenge to training, as well as to perfor-
mance.  

4.2 Self-attentive GRU-based Mechanism 

Recurrent neural network (RNN) is commonly 
used for NLP problems (Yin, Kann, Yu, & Schütze, 
2017; Young, Hazarika, Poria, & Cambria, 2017), 
as it enables remembering values over arbitrary 
time durations. RNN processes every element of an 
input embedding (𝑥𝑥𝑖𝑖) sequentially, such that ℎ𝑡𝑡 =
tanh (  𝑊𝑊𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑡𝑡−1). 𝑊𝑊 is the weight matrix be-
tween an input and hidden states, while ℎ𝑡𝑡 is the 
hidden state of the recurrent connection at timestep 
(𝑡𝑡). The design of the RNN enables variable length 
processing while preserving the sequence order.  

Figure 2: The architecture of Self-Attentive Hybrid GRU-Based Network. 
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However, RNN has many limitations with long 
sequences, in particular the exponentially growing 
or decaying gradients.  A common way to resolve 
these issues is by using gating mechanisms, such as 
LSTM and GRU (Gers, Schmidhuber, & 
Cummins, 2000; Hochreiter & Schmidhuber, 
1997). We use GRU as it is faster to converge, in 
addition to being memory efficient.  

Bidirectional GRU layer. In our model, we use 
bidirectional GRU layers. GRU receives a se-
quence of tokens as inputs, and then projects word 
information 𝐻𝐻 = (ℎ1,ℎ2, … . , ℎ𝑇𝑇), where ℎ𝑡𝑡 de-
notes the hidden state of GRU at a timestep (𝑡𝑡). It 
captures the temporal and abstract information of 
sequences in a forward (ℎ𝑓𝑓) or reverse (ℎ𝑏𝑏) man-
ner. After that, we concatenate forward and back-
ward representations; e.g. ℎ𝑡𝑡 = ℎ𝑡𝑡

𝑓𝑓|| ℎ𝑡𝑡𝑏𝑏.  
Attention mechanism. Words do not have 

equal valence weights in sentences. Towards that, 
we use an attention mechanism to signify the rela-
tively important words. 

Attention is used to compute the compatibility 
between a given source (𝑥𝑥𝑖𝑖) and query (𝑞𝑞). It uses 
an alignment function 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) to measure the level 
of dependency of 𝑞𝑞 to 𝑥𝑥𝑖𝑖. This function produces 
an attention weight 𝑎𝑎 = 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞)𝑖𝑖=1𝑇𝑇 . Then, a soft-
max function is applied to produce a probability 
distribution 𝑝𝑝(𝑧𝑧|𝑥𝑥, 𝑞𝑞) for each word (𝑡𝑡) of an input 
(𝑥𝑥). Hence, a bigger weight of 𝑥𝑥𝑖𝑖 indicates a higher 
importance than other words.  

The attention alignment approaches have the 
same implementation, but they mainly differ on 
how they compute weights. This can be either in an 
additive manner 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑞𝑞) = tanh (𝑊𝑊𝑇𝑇𝐵𝐵(𝑊𝑊𝑥𝑥𝑖𝑖 +
 𝑊𝑊𝑞𝑞)) (Bahdanau, Cho, & Bengio, 2014), or a mul-
tiplicative manner 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) = tanh (�𝑊𝑊𝑥𝑥𝑖𝑖 .𝑊𝑊𝑞𝑞�) 
(Vaswani et al., 2017). In our model training, we 
use an additive attention mechanism, as it helped 
improve the prediction performance. 

Self-Attention mechanism. In our model train-
ing, we have a small number of corpora, which are 
not sufficient to train an efficient word embedding 
or alleviate well-known problems such as poly-
semy. In an effort to overcome such limitations, we 
use a self-attention mechanism. This approach 
measures the dependency of different tokens in the 
same input embedding (𝑥𝑥𝑖𝑖).  It mainly computes at-
tention for each word by replacing 𝑞𝑞 and 𝑥𝑥𝑖𝑖 with a 
set of token pairs (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗). 

4.3 Character-level CNN 

The CNN encoding layer (Figure 3) takes an input 
of a sequence (𝑆𝑆) of characters, where 𝑆𝑆 =
 [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡] such that 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖 
is a one-hot input (𝑖𝑖) vector of a fixed length (𝑇𝑇) of 
characters. 

 

 
Figure 3: Character-level CNN. 

 
CNN usually uses temporal convolutions 

(timestep-based) rather than spatial convolutions 
with text analysis.  

We mainly use convolutions to extract low-level 
character information such as misspellings, slangs, 
and so on. 

Character encoding. We define a charset of the 
size 95, including the upper and lower cases of the 
English alphabet, special characters, padding, and 
the start and end of a given input sequence. We 
need this charset to build a vocabulary, which is 
used to encode a character sequence.  Similarly to 
the word embedding, we handle the variable length 
through padding and truncating (Section 4.1). 

Character embedding layer. We build a char-
acter embedding of 32 dimensions. We use a uni-
form distribution scheme of a range (-0.5 to +0.5) 
to initialize its weight matrix.   

We apply 3 convolutions of 100 features, as well 
as different filter lengths 2, 3, and 4. Each one-di-
mensional operation is used, where 𝐶𝐶𝑖𝑖𝑛𝑛 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝑑𝑑(𝑆𝑆𝑖𝑖), and 𝐶𝐶 is the filter length. After that, 
a max-pooling layer is applied on the feature map 
to extract abstract information, 𝐶𝐶𝚤𝚤𝑛𝑛� = max(𝐶𝐶𝑖𝑖𝑛𝑛). 
Then, we concatenate these feature representations 
into one output. 

As opposed to recurrent layers (Section 4.2), 
convolutional operations with max-pooling are 
helpful to extract word features without paying at-
tention to their sequence order (Kalchbrenner, 
Grefenstette, & Blunsom, 2014). These features are 
combined with recurrent features to improve the 
performance of our model.  
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4.4 Attention with Context 

Output vectors received from previous steps are 
concatenated, and then fed into an attention with 
context. 

We use a context-aware attention mechanism 
(Yang et al., 2016) to compute a fixed representa-
tion (𝑟𝑟 = ∑ 𝑎𝑎𝑖𝑖ℎ𝑖𝑖𝑇𝑇

𝑖𝑖=1 ) of a sequence as the weighted 
sum of all tokens in that sequence. This representa-
tion is used as a classification feature vector to be 
fed to the final fully-connected sigmoid layer. This 
layer outputs a continuous value representing the 
valence of a given sentence.  

4.5 Training 

In our training, we use mini batch stochastic gra-
dient of the size 32, to minimize the mean-squared 
error using back-propagation. We use Adam opti-
mizer with a learning rate of 0.001 (Kingma & Ba, 
2014). For training, we use 80% of the training set 
and 20% for validation. We test and report our re-
sults on both development and test sets. 

Regularization. We use dropout to randomly 
drop neurons off the network, which helps prevent-
ing co-adaptation of neurons (Srivastava, Hinton, 
Krizhevsky, Sutskever, & Salakhutdinov, 2014). 
Dropout is also applied on the recurrent connection 
of our GRU-based layers. Additionally, we apply a 
weight decay approach through setting an L2 regu-
larization penalty (Cortes, Mohri, & 
Rostamizadeh, 2012).  

Hyperparameters. The size of the embedding 
layer is 200, and of the GRU layers is 150, which 
becomes 300 for bidirectional GRU. We apply a 
dropout of 0.4, and a dropout of 0.2 on the recurrent 
connections. Finally, an L2 regularization of 
0.00001 is applied at the loss function. 

5 Results 

We report our results using the Pearson correla-
tion between the prediction and gold rating sets on 
the test set (all instances). The other one (gold in 
0.5-1 shown in Table 2) differs in including tweets 
only with intensity greater than or equal to 0.5.  

Our model performed well on the development 
set scoring 0.869, while on the testing set, the per-
formance degraded to 0.752. This degradation 
could be related to the size of the corpus we used 
to train our word embedding. We also trained only 
on 80% of the training set. 

 
 

Dataset 

Valence task 
Pearson  

correlation  
(all instances) 

Pearson  
correlation 

(gold in 0.5-1) 
Development 0.869 0.692 
Testing 0.752  0.559 

Table 2:  Results of valence intensity regression (Eng-
lish). 

6 Conclusion 

In this paper, we presented a self-attentive hybrid 
GRU-based network for predicting valence in-
tensity for short text.  

We used a hybrid approach combining low-char-
acter-level features with self-attentive word em-
bedding. Our network uses two different attention 
mechanisms to signify the relevant and important 
words, and hence optimize feature representation.  

With limited corpora and vocabulary of the size 
8152, our model still managed to achieve an opti-
mized feature representation, which achieved ex-
cellent results on the development set. However, 
our model failed to maintain the same performance 
on the testing set. 

For future work, we will explore the perfor-
mance of our model with larger corpora against the 
testing set. It would also be interesting to see if the 
model performs well on other long-text NLP tasks 
such as topic classification.  
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