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Abstract

This paper presents the outcomes of the Pars-
ing Time Normalization shared task held
within SemEval-2018. The aim of the task
is to parse time expressions into the compo-
sitional semantic graphs of the Semantically
Compositional Annotation of Time Expres-
sions (SCATE) schema, which allows the rep-
resentation of a wider variety of time expres-
sions than previous approaches. Two tracks
were included, one to evaluate the parsing
of individual components of the produced
graphs, in a classic information extraction way,
and another one to evaluate the quality of the
time intervals resulting from the interpretation
of those graphs. Though 40 participants reg-
istered for the task, only one team submitted
output, achieving 0.55 F1 in Track 1 (parsing)
and 0.70 F1 in Track 2 (intervals).

1 Introduction
The task of extracting and normalizing time ex-
pressions (e.g., finding phrases like two days ago
and converting them to a standardized form like
2017-07-17) is a fundamental component of any
time-aware language processing system. TempE-
val 2010 and 2013 (Verhagen et al., 2010; UzZa-
man et al., 2013) included a restricted version of a
time normalization task as part of their shared tasks.
However, the annotation scheme used in these tasks
(TimeML; (ISO, 2012)) has some significant lim-
itations: it assumes times can be described as a
prefix of YYYY-MM-DDTHH:MM:SS (so it
can’t represent, e.g., the past three summers), it
is unable to represent times that are are relative
to events (e.g., three weeks postoperative), and it
fails to reflect the compositional nature of time ex-
pressions (e.g., that following represents a similar
temporal operation in the following day and the
following year). This latter issue especially has
discouraged machine learning approaches to time

normalization; the most accurate systems for nor-
malizing times are still based on sets of complex,
manually-constructed rules (Bethard, 2013; Lee
et al., 2014; Strötgen and Gertz, 2015).

The Parsing Time Normalizations shared task is
a new approach to time normalization based on the
Semantically Compositional Annotation of Time
Expressions (SCATE) schema (Bethard and Parker,
2016), in which times are annotated as composi-
tional time entities. Such entities are more expres-
sive, being able to represent many more time ex-
pressions, and are more machine-learnable, as they
can naturally be viewed as a semantic parsing task.
The top of Figure 1 shows an example. Each an-
notation in the example corresponds to a formally
defined time entity. For instance, the annotation
on top of since corresponds to a BETWEEN entity
that identifies an interval starting at the most re-
cent March 6 and ending at the document creation
time. The bottom of Figure 1 shows how those time
entities can be composed to identify appropriate in-
tervals on the timeline. Here, the BETWEEN entity
finds the interval on the timeline that is between
the intervals of its two arguments: the LAST and
the DOC-TIME. Formally, this BETWEEN operator
is defined as:

BETWEEN([t1, t2) : INTERVAL,

[t3, t4) : INTERVAL) : INTERVAL

= [t2, t3)

In the proposed task, systems need only to iden-
tify time entities in text and link them correctly to
signal how they are to be composed (i.e., systems
would only need to produce annotation structures
like those at the top of Figure 1). The timeline in-
tervals implied by such system output are inferred
through a time entity interpreter provided to the
participants by the workshop organizers.
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Figure 1: Example of semantically compositional time annotations and their interpretation.

The remainder of this paper is organized as fol-
lows. We describe the task goal and proposed
tracks in Section 2. Section 3 contains the descrip-
tion of the data annotation schema and the statistics
of our dataset. In Section 4, we explain the two
evaluation metrics used in the task and in Section 5
the models used as baselines. We present the partic-
ipant systems in Section 6 and the results obtained
in Section 7. Finally, we discuss some conclusions
learned in Section 8.

2 Tasks
The ultimate goal of the shared task is to interpret
time expressions, identifying appropriate intervals
that can be placed on a timeline. Given a doc-
ument, a system must identify the time entities
by detecting the spans of characters and labeling
them with the proper SCATE type. Examples of
time entities and their corresponding types in Fig-
ure 1 would be (6, DAY-OF-MONTH), (Saturday,
DAY-OF-WEEK), (March, MONTH-OF-YEAR) or
(since, BETWEEN). Besides the time entities ex-
plicitly expressed in the text, implicit occurrences
must also be identified, like the THIS and LAST

time entities in Figure 1 that do not have any ex-
plicit triggers in the text.

Once time entities have been identified, they
should be linked together using the relations de-
scribed in the SCATE schema. Following with the
example in Figure 1, the time entity 6 should be
linked as a SUB-INTERVAL of March, Saturday

should be a REPEATING-INTERVAL of the time
entity other, and so on. Finally, all the time entities
must be completed with some additional properties
needed for their interpretation. For example, the
time entity other should have a VALUE of 2, the
END-INTERVAL of since is the Document Creation
Time, etc. Once again, the properties required by
each time entity type are defined by the SCATE
schema.1

Every resulting graph, composed of a set of
linked time entities, represents a time expression
that can be semantically interpreted. For this pur-
pose, we provide a Scala library2 that reads the
graphs in Anafora XML format (Chen and Styler,
2013) and converts them into intervals on the time-
line.

An example of interpreting the time entities cor-
responding to the expression every Saturday since
March 6 relative to an anchor time of April 21,
2017 is given in Figure 2. In this example, the
values today and result store the entities that repre-
sent the time expressions April 21, 2017 and every
Saturday since March 6 respectively. The Scala
command on the right side interprets the latter and
produces the corresponding time intervals.

The task includes two evaluation methods, one
for the parsing step, i.e. time entity identification

1https://github.com/clulab/
anafora-annotations/blob/master/.schema/
timenorm-schema.xml

2https://github.com/clulab/timenorm
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scala> val today =
| ThisRI(
| ThisRI(
| Year(2017),
| RepeatingField(MONTH_OF_YEAR, 4)),
| RepeatingField(DAY_OF_MONTH, 21))

scala> val result =
| ThisRIs(
| Between(
| LastRI(
| today,
| Intersection(Set(
| RepeatingField(MONTH_OF_YEAR, 3),
| RepeatingField(DAY_OF_MONTH, 6)))),
| today),
| RepeatingField(DAY_OF_WEEK, 6))

scala> for (Interval(start, end) <- result.intervals)
| println(start, end)

(2017-03-11T00:00,2017-03-12T00:00)
(2017-03-18T00:00,2017-03-19T00:00)
(2017-03-25T00:00,2017-03-26T00:00)
(2017-04-01T00:00,2017-04-02T00:00)
(2017-04-08T00:00,2017-04-09T00:00)
(2017-04-15T00:00,2017-04-16T00:00)
(2017-04-22T00:00,2017-04-23T00:00)
...

Figure 2: Interpretation of every Saturday since March 6.

and linking, and one to score the resulting time
intervals. For the later, we only consider time ex-
pressions that yield a finite set of bounded intervals,
for example, last Monday. Time expressions that
refer to an infinite set of intervals, like every month,
are not considered in the interval-based part of the
evaluation.

Participants only need to produce Anafora out-
puts with parsed time entities; the interpretation
is carried out by the evaluation system. The eval-
uation system is also able to obtain the intervals
from timestamps in TimeML format. Thus, sys-
tems can be evaluated by both methods or just by
the interval-based one, depending on the output
format.

In summary, the tasks offers two tracks:

Track 1: Parse text to time entities. Systems must
identify time entities in text and link them cor-
rectly to signal how they have to be composed.
The output must be given in Anafora format.
In this track, all time entities and relations of
every time expression are evaluated.

Track 2: Produce time intervals. Systems can
participate through Track 1 or by providing
TimeML annotations. In both cases, the in-
tervals are inferred by our interpreter. In this
track, only bounded time intervals are scored.

3 Data

The Parsing Time Normalization corpus3 covers
two different domains: newswire and clinical notes.
For the former, we have annotated a subset of
Tempeval-2013 corpus (UzZaman et al., 2013),
which contains a collection of news articles from

3https://github.com/bethard/
anafora-annotations/releases

different sources, such as Wall Street Journal, New
York Times, Cable News Network, Voices of Amer-
ica, etc. For the clinical domain, we have annotated
a subset of the THYME corpus used in the Clini-
cal TempEvals (Bethard et al., 2015, 2016, 2017),
which includes a set of de-identified clinical notes
and pathology reports from cancer patients at the
Mayo Clinic.

The Newswire annotation was performed by
linguistic students at the University of Alabama
at Birmingham, and by linguistics students at
the University of Arizona, funded as part of a
university-sponsored undergraduate research op-
portunity. The clinical portion of the corpus was
annotated by linguistics students at the Univer-
sity of Colorado, funded as part of the United
States National Institutes of Health (NIH) award
R01LM010090.

Documents have been annotated by two anno-
tators and adjudicated by a third, and despite the
complexity of the annotation scheme, high levels
of inter-annotator agreement have been achieved:
0.917 F1 on annotation spans and types, and 0.821
F1 on the complete task of spans, types, and links.
(We use F1 since the κ coefficient (Cohen, 1960)
converges to F1 in cases where the number of non-
annotations is much larger than the number of an-
notations (Hripcsak and Rothschild, 2005).)

Annotated data is stored in Anafora XML for-
mat (Chen and Styler, 2013), where, for example,
the annotations from Figure 1 look like Figure 3. A
more detailed explanation of the annotation guide-
lines can be found in Bethard and Parker (2016).
Libraries for parsing this format are available to
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<data>
<annotations>
<entity>
<id>1@e@gold</id>
<span>11,19</span><!-- "Saturday" -->
<type>Day-Of-Week</type>
<properties>
<Type>Saturday</Type>
</properties>
</entity>
<entity>
<id>2@e@gold</id>
<span>10,15</span><!-- "other" -->
<type>This</type>
<properties>
<Interval>4@e@gold</Interval>
<Repeating-Intervals>2@e@gold</Repeating-Intervals>
</properties>
</entity>

<entity>
<id>3@e@gold</id>
<span>10,15</span><!-- "other" -->
<type>Every-Nth</type>
<properties>
<Value>2</Value>
<Repeating-Interval>1@e@gold</Repeating-Interval>
</properties>

</entity>

...

</annotations>
</data>

Figure 3: Snippet of the Anafora XML for Figure 1.

participants in both Python4 and Scala5.
Table 1 shows the statistics of the resulting an-

notation. The Newswire portion of the corpus con-
tains 98 documents with 2,428 time entities anno-
tated. These entities compose a total of 968 time
expressions of which 564 correspond to bounded
intervals. The Clinical portions of the corpus in-
cludes 408 documents. The annotation covers
27,362 time entities that compose 8,163 time ex-
pressions. From these, 4,204 yield bounded inter-
vals.

4 Evaluation Metrics
We propose two types of scoring metrics for this
task, one for the evaluation of each track. The
first follows a more traditional information extrac-
tion evaluation: measure the precision and recall
of finding and linking the various time entities.
Specifically, we define:

P (S,H) =
|S ∩H|
|S|

R(S,H) =
|S ∩H|
|H|

F1(S,H) =
2 · P (S,H) ·R(S,H)

P (S,H) +R(S,H)

where S is the set of items predicted by the system
and H is the set of items produced by the humans.
For these calculations, each item is an annotation,

4https://github.com/bethard/
anaforatools

5https://github.com/bethard/timenorm

and one annotation is considered as equal to an-
other if it has the same character span (offsets),
type, and properties (with the definition applying
recursively for properties that point to other anno-
tations).

The second scoring method evaluates the ac-
curacy of systems with respect to the timeline in
a more direct way. First, annotations, in either
TimeML or SCATE format, are converted into
time intervals. TimeML TIMEX3 (time expres-
sion) annotations are translated into intervals fol-
lowing ISO 8601 semantics of their VALUE at-
tribute. For example, 2010-02-25 is converted
to the interval [2010-02-25T00:00:00, 2018-02-
26T00:00:00), that is, the 24-hour period starting
at the first second of the day on 2010-02-25 and
ending just before the first second of the day on
2010-02-26. SCATE annotations are converted to
intervals according to the formal semantics of each
entity, using the Scala library provided by Bethard
and Parker (2016). For example, Next(Year(2010),
SimplePeriod(YEARS, 4)), is converted to [2011-
01-01T00:00, 2015-01-01T00:00), i.e., the 4 years
following 2010. Note that there may be more than
one interval associated with a single annotation, as
in the every Saturday since March 6 example in
Figure 2. Once all annotations have been converted
into intervals along the timeline, we can calculate
the overlap between the intervals of different anno-
tations.

Given two sets of intervals, we define the in-
terval precision, Pint, as the total length of the in-
tervals in common between the two sets, divided
by the total length of the intervals in the first set.
Interval recall, Rint is defined as the total length
of the intervals in common between the two sets,
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Newswire Clinical
Train Dev Test Train Dev Test

Documents 64 14 20 232 35 141
SCATE entities 1,628 402 398 14,936 2,896 9,530
SCATE time exp. 636 146 186 4,469 879 2,815
SCATE bounded 391 80 93 2,303 430 1,471

Table 1: Number of documents and SCATE annotations for both sections of the corpus following the SCATE
schema.

divided by the total length of the intervals in the
second set. Formally:

IS
⋂
IH = {i ∩ j : i ∈ IS ∧ j ∈ IH}

Pint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑
i∈IS
|i|

Rint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑

i∈∪IH
|i|

where IS and IH are sets of intervals, i ∩ j is the
possibly empty interval in common between the
intervals i and j, |i| is the length of the interval i,
and COMPACT takes a set of intervals and merges
any overlapping intervals.

Given two sets of annotations (e.g., one each
from two time normalization systems), we define
the overall precision, P , as the average of interval
precisions where each annotation from the first set
is paired with all annotations that textually overlap
it in the second set. Overall recall is defined as the
average of interval recalls where each annotation
from the second set is paired with all annotations
that textually overlap it in the first set. Formally:

OIa(B) =
⋃

b∈B:OVERLAPS(a,b)

INTERVALS(b)

P (S,H) =
1

|S|
∑

s∈S
Pint(INTERVALS(s), OIs(H))

R(S,H) =
1

|H|
∑

h∈H
Rint(INTERVALS(h), OIh(S))

where S and H are sets of annotations,
INTERVALS(x) gives the time intervals associated
with the annotation x, and OVERLAPS(a, b) de-
cides whether the annotations a and b share at least
one character of text in common.

Note that as defined, P and R can be applied
only to time expressions that yield a finite set of
bounded intervals.

5 Baseline systems
Two systems were used as baselines to compare
the participating systems against.

Character-based model (Laparra et al., 2018)
is a novel supervised approach for time normaliza-
tion that follows the SCATE schema. This model
decomposes the normalization of time expressions
into two modules:

time entity identification detects the spans of
characters that belong to each time expres-
sion and labels them with their correspond-
ing time entity type. This step is performed
by character-based recurrent neural network
with two stacked bidirectional Gated Recur-
rent Units.

time entity composition links relevant time enti-
ties together while respecting the entity type
constraints imposed by the SCATE schema.
This component is a rule-based algorithm that
iterates over the time entities that are found by
the previous step, linking them and filling in
the required properties. The version used for
the shared task includes some improvements
to the sentence segmentation and Month-Of-
Year normalization of Laparra et al. (2018).

These two tasks are run sequentially using the out-
put of the former as input to the latter. Once identi-
fication and composition steps are completed, the
final product, i.e. the semantic composition of the
time entities, can fed to the SCATE interpreter to
produce time intervals.

HEIDELTIME (Strötgen and Gertz, 2015)6 is
rule-based temporal tagger with multilingual sup-
port that includes English, German, Dutch, Viet-
namese, Arabic, Spanish, Italian, French, Chinese
and Russian. HeidelTime identifies temporal ex-
pressions based on language specific patterns and

6https://code.google.com/p/heideltime/
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normalizes them according to TIMEX annotations
(Sundheim, 1996). As the output of HeidelTime
follows TimeML format, we use this system as a
baseline only for Track 2.

6 Participating systems
Although 40 people registered to the the evaluation
task, only 1 team submitted results. The team par-
ticipated in Track 1 and, consequently, in Track 2.
The team also submitted improved results just after
the end of the evaluation phase. This improvement
was obtained by solving a few bugs in the original
system, and with no access to the test data, so we
have included the fixed version in this paper as an
additional run.

CHRONO (Olex et al., 2018) is a primarily rule-
based system that performs time normalization by
running the following three steps:

1) Temporal tokens are identified and flagged us-
ing regex expressions to identify formatted
dates/times, and by parsing out specific tem-
poral words and numeric tokens.

2) Temporal phrases are identified by searching
for consecutive numeric/temporal tokens ac-
cording to certain constraints.

3) Temporal phrases are parsed and normalized
into the SCATE schema via detailed rule-
based parsing, including the utilization of part-
of-speech tags, to identify each component of
an expression and link sub-intervals appropri-
ately.

A machine learning approach is taken to disam-
biguate PERIODS and CALENDAR-INTERVALS af-
ter the rule-base parsing has determined it is one
or the other (e.g. if it sees the word week it will
pass it to the ML module for assignment to a PERI-
ODS or CALENDAR-INTERVALS). The ML feature
vector is a boolean vector composed of the target
token’s temporal status (1=temporal, 0=not tempo-
ral), the temporal context (1=at least one temporal
token within a window of ±5, 0=no temporal to-
kens within window), the numeric context (1=a
numeric token exists immediately before of after
the target, 0=no numeric tokens in context), and the
lexical context of all words within a 5-word win-
dow of the target (1=word is present, 0=word is not
present). The group explored different supervised
models like naive Bayes, decision trees, support
vector machines, and neural networks. They found

Domain Model F1 P R

Newswire Character 0.51 0.57 0.46
Newswire Chrono 0.44 0.46 0.42
Newswire Chrono* 0.55 0.61 0.50
Clinical Character 0.57 0.52 0.63

Table 2: Official results in Track 1 (parsing) for the
Newswire and Clinical domains.

that the best results were obtained by the neural
network.

CHRONO* improves the previous version by
solving three bugs in the model. First, the parsing
method for various types of temporal components
were supposed to be executed in a specific order.
However, some of them were swapped and not an-
alyzed in the expected order. Second, the system
was supposed to assume there is only one year, one
month, and one day mentioned per temporal phrase.
This worked for the month and day, however, it was
failing with 4-digit years. Finally, for most parsing
methods the system loops through each token in
the temporal phrase but it skipped the loop when
identifying full numeric expressions, like ”1953”
or ”08091998”. Thus, phrases like ”Last 1953”
were not being counted as having any numeric val-
ues in them.

7 Evaluation Results
The official results are presented in Table 2 and Ta-
ble 4. For each track we present the precision (P ),
recall (R) and F1 score obtained by the metrics pre-
sented in Section 4. The only participant of the task
submitted output just for the Newswire domain,
thus, we only report the performance of this system
in this domain. The results of the Character-based
baseline have been obtained training the model
with the training set of the corresponding domain
(Newswire or Clinical) and a set of randomly gen-
erated dates, as explained in Laparra et al. (2018).

In Track 1 (Table 2) the original version of
CHRONO do not reach the Character-based base-
line, 0.44 F1 vs 0.51 F1. However, the fixed ver-
sion of the system (CHRONO*) outperforms the
baseline in terms of F1 (0.55) as well as in terms
of P (0.61) and R (0.50).

Table 3 shows a more detailed comparison be-
tween the Character-based baseline and CHRONO*.
These figures represent the performances of both
models for each SCATE temporal type. This in-
cludes the identification of the time entity, its prop-
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SCATE-type # Char Chrono*
AMPM-Of-Day 1 0.000 0.667
After 19 0.000 0.000
Before 20 0.105 0.000
Between 7 0.000 0.000
Calendar-Interval 27 0.698 0.526
Day-Of-Month 22 0.917 1.000
Day-Of-Week 16 0.812 0.903
Hour-Of-Day 2 0.000 0.667
Intersection 3 0.000 0.000
Last 40 0.500 0.333
Minute-Of-Hour 1 0.000 0.000
Month-Of-Year 36 0.824 0.917
Next 14 0.053 0.412
NthFromStart 4 0.000 0.000
Number 27 0.596 0.522
Part-Of-Day 3 0.000 1.000
Period 56 0.391 0.409
Season-Of-Year 10 0.000 0.182
Sum 1 0.000 0.000
This 37 0.429 0.552
Time-Zone 1 0.000 0.000
Two-Digit-Year 1 0.000 0.000
Year 50 0.822 0.826

Table 3: Results in Track 1 per SCATE type. Char
stands for Character-based baseline. The number of
gold cases per type is included (#).

Domain Model F1 P R

Newswire HeidelTime 0.74 0.71 0.77
Newswire Character 0.77 0.83 0.72
Newswire Chrono 0.65 0.66 0.63
Newswire Chrono* 0.70 0.65 0.75
Clinical HeidelTime 0.70 0.60 0.82
Clinical Character 0.72 0.70 0.75

Table 4: Official results in Track 2 (intervals) for the
Newswire and Clinical domains.

erties and links. In general, CHRONO* performs
better or similar for all the types. It is remarkable
that, while the outcomes for the THIS and NEXT

operators are much better, CHRONO* fails to ex-
tract properly the LAST operator.

In Track 2 (Table 4) the best system is the
Character-based baseline with 0.76 F1, followed
by HEIDELTIME with 0.74 F1. None of the ver-
sions of CHRONO performs better than the base-
lines, although the fixed version (CHRONO*) gets
enhanced results, 0.65 F1 vs 0.70 F1 , following
the improvement obtained in Track 1. It is re-

markable that HEIDELTIME and CHRONO*, es-
sentially rule-based systems, obtain better R than
the Character-based baseline, that relies strongly
on a supervised model. Specifically, HEIDELTIME

obtains the best R (0.77), but CHRONO* also out-
performs the Character-based baseline in terms of
R, 0.75 vs 0.71. However, the Character-based
baseline obtains a much higher P (0.83) than the
0.71 of HEIDELTIME and the 0.65 of CHRONO*.

As explained in Section 4, the metric for Track
1 evaluates the individual temporal components
extracted by the systems, either time entities or
links between time entity pairs. On the other hand,
the intervals scored by the metric for Track 2 are
produced by interpreting the whole graph. More-
over, not all the time expressions yield a finite set
of bounded intervals, as can be seen in Table 1.
Consequently, better performances in Track 1 do
not necessarily yield better results in Track 2. In
particular, although CHRONO* is better than the
Character-based baseline in Track 1 it produces
an excessive number of time expressions yielding
bounded intervals (108), which affects the P in
Track 2. In contrast, the Character-based baseline
is more conservative and accurate in this respect
(85).

Although we didn’t receive any submission for
the Clinical domain, in order to set a reference for
future research, we present in Table 2 and Table 4
the performances of the baseline systems in this
domain.

8 Conclusion

The Parsing Time Normalization task is the first
effort to extend time normalization to richer and
more complex time expressions. We have provided
a complete annotation for two different domains,
newswire and clinical notes, and introduced two
different metrics for evaluation. In particular, the
interval based evaluation for Track 2 is a novelty
for these kind of tasks. The performance of the
systems shows that there is still room for improve-
ment, especially for Track 1.

Although, CHRONOS included a small super-
vised component in its architecture, we were ex-
pecting a higher number of machine learning based
approaches. However, CHRONOS shows that rule-
based models can obtain competitive results. Sadly,
the scarcity of participating systems does not allow
us to form a further judgment.

No submissions were received for the clinical
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domain, despite a wider and more complete dataset
for this domain. This was almost certainly the
result of a change in management at the Mayo
Clinic that put on hold the data use agreement
process (which is required for access to the clinical
data) for several months during the practice phase.
Thus, though many people showed interest in the
task (more than 40 people registered) and Mayo
reported several data use agreement applications,
this problem de-motivated the participation.

The CodaLab competition for the Parsing Time
Normalizations shared task7 will continue to ac-
cept submissions in its Post-Evaluation phase in-
definitely, so as more researchers make it through
the data use agreement process, we expect we will
see future participation in this task.
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