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Abstract 

Sentiment analysis is the process of identi-
fying the opinion expressed in text. Re-
cently it has been used to study behavioral 
finance, and in particular the effect of 
opinions and emotions on economic or fi-
nancial decisions. SemEval-2017 task 5 
focuses on the financial market as the do-
main for sentiment analysis of text; specif-
ically, task 5, subtask 1 focuses on finan-
cial tweets about stock symbols. In this 
paper, we describe a machine learning 
classifier for binary classification of finan-
cial tweets. We used natural language pro-
cessing techniques and the random forest 
algorithm to train our model, and tuned it 
for the training dataset of Task 5, subtask 
1. Our system achieves the 7th rank on the 
leaderboard of the task.  

1 Introduction 

The recent explosion of textual data creates an 
unprecedented opportunity for investigating peo-
ple’s emotions and opinions, and for understand-
ing human behavior. Although there are several 
methods to do this, sentiment analysis is an espe-
cially effective method of text categorization that 
assigns emotions to text (positive, negative, neu-
tral, etc.). Sentiment analysis methods have been 
used widely on blogs, news, documents and mi-
croblogging platforms such as Twitter. 

Although social media and blogging are pop-
ular and widely used platforms to discuss many 
different topics, they are challenging to analyze. 
This is to large extent due to the specific of vo-
cabulary and syntax, which are dependent on top-
ics, with the same words possibly expressing dif-
ferent sentiments in different contexts. For exam-
ple, a word in a casual context might have positive 
or neutral sentiment (e.g., crush), while the same 
word generally has a negative sentiment in fi-

nance. Therefore, with the absence of general nat-
ural language understanding, context-dependent 
and domain-specific approaches allow us to in-
crease the accuracy of sentiment analysis at a rela-
tively low implementation cost.  

Domain-specific sentiment analysis is being 
used to analyze or investigate various areas in fi-
nance, such as corporate finance and financial 
markets, investment and banking, asset and deriv-
ative pricing. Ultimately, the goal is to understand 
the impact of social media and news on financial 
markets and to predict the future prices of assets 
and stocks. 

The proposed task in SemEval-2017 targets a 
sentiment analysis task, which we should identify 
a range of negative to positive affect on the stock 
of certain companies. The objective of the task 
was to predict the sentiment associated with com-
panies and stock with floating point values in the 
interval from -1 to 1.  

Previous research on textual analysis in a fi-
nancial context has primarily relied on the use of 
bag of words methods, to measure tone (Tetlock, 
2007) (Loughran & McDonald, 2011) which is 
one of the prominent efforts to improve sentiment 
analysis in financial domain, showed that using 
non-financial word lists for sentiment analysis 
will produce misclassifications and misleading re-
sults. To illustrate this, they used the Harvard-IV-
4 list on financial reports, and found that 73.8% of 
the negative word counts were attributable to 
words that were not actually negative in a finan-
cial context. 

Recently, there has been an increasing interest 
towards the use of machine learning techniques to 
get better sentiment result; e.g., naïve Bayesian 
classifier (Saif, He and Alani 2012) with various 
features got the accuracy of 83.90%. Other report-
ed results include the use of support vector ma-
chines (SVMs) with the accuracy of 59.4% 
(O’Hare et al., 2009), and multiple-classifier 
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voting systems with the 72% accuracy (Das & 
Chen, 2007).  

In this paper, we describe our approach to 
building a supervised classifier predicting the sen-
timent scores of financial tweets provided by 
SemEval-2017.  The classifier is fed pre-
processed tweets as input and it predicts the bina-
ry labels of the tweets.  Once tweets were pre-
process and features were extracted, various clas-
sification models were applied using Weka tool 
(Hall et al., 2009). This environment contains a 
collection of machine learning-based algorithms 
for data mining tasks, such as, classification, re-
gression, clustering, association rules, and visuali-
zation. We ultimately used Random Forest as our 
classifier as in our various tests it showed the best 
and accuracy in classifying the tweets.  After pre-
dicting the binary labels, we then use the probabil-
ity of the tweets being correctly classified to cre-
ate a range of predictions from -1 to 1 as it was 
requested in the task. 

2 Method  

2.1 Preprocessing the data  

SemEval task 5, subtask 1 provided a training da-
taset with 1800 tweets.  Every tweet had a senti-
ment score between -1 to 1 and it showed its sen-
timent toward the stock symbol that was assigned 
to that tweet. Table 1 describes variables in the 
training dataset we used for analyzing the tweets: 
 

Label Description 

ID Each tweet was assigned a unique 
ID 

Span Part of tweet that was considered 
to carry the sentiment toward the 
company or stock. 

Sentiment Score provided to us with num-
bers between -1 to 1.  

Cashtag Stock symbol that was the target 
of each tweet, e.g. $GE.  

Table 1. Attributes used to create the sentiment 
classification model. 

To prepare the dataset for classification, we 
first converted the sentiment scores to -1, 0 and 1. 
Tweets with sentiments between -0.01 and 0.01 
were labeled as zero, positive sentiments labeled 
as 1 and negative tweets were labeled as -1. We 
then disregarded the tweets with neutral senti-
ment, which left us 1560 tweets to train our mod-

el. Some tweets had multiple Spans, describing 
the sentiment toward the Cashtag. To keep things 
simple, we concatenated the spans of each tweet 
with each other. Then using the Python NLTK1 li-
brary we deleted the punctuations, tokenized the 
spans, and deleted the stop words. 

Since certain stop words in financial context 
can have impact on the sentiment of the tweets, 
we excluded them from the stop word list. Words 
like “up”, and “down” were not removed from 
tweets. We also removed the negations from the 
stop word lists, as we later handle the negations 
on our own when creating the features. 

2.2 Feature Selection Process 

To add features to our training dataset, we used 
the McDonald’s wordlist (Loughran & McDonald, 
2011). This is a list of positive and negative words 
for financial 10-K reports containing the summary 
of the company’s performance.  
    We calculated number of positive or negative 
words in each Span, using the McDonald’s word-
list in the added features. There were some words, 
such as “short” which was not in any wordlist as a 
negative word, yet shorting a stock expresses a 
negative sentiment toward that stock. For this rea-
son, we manually added positive or negative 
words to each list that to our best knowledge carry 
those sentiments. Table 2 shows some of the 
words were added to McDonald’s wordlist: 
 

Word Sentiment 
Profit Positive 
Long Positive 

Short Negative 
Decay Negative 

Table 2. Example of the words added to McDon-
ald’s wordlist. (See full list in Appendix A) 

Adding these words to the wordlist improved 
our results. Then we realized in context of fi-
nance, co-occurrence of some words with each 
other in one tweet changes the sentiment of the 
tweet completely. For example, “short” and “sell” 
are both negative words in context of finance, but 
selling a short contains a positive sentiment in 
stock market context. Another example would be 
the co-occurrence of “go” and “down”, or “pull” 
and “back” in our tweets. In a similar fashion we 
                                                        
1 http://www.nltk.org/ 
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also we handled the negations. Once we found 
these patterns, we normalized our data, i.e. we re-
placed the combinations of words in the tweet 
with a single positive or negative label, which we 
treated just as another positive or negative word. 
We then re-counted the number of positive or 
negative words in the tweet and updated our fea-
ture vectors. Table 3 shows examples of patterns 
we found in the tweet to have changed the senti-
ment of the word. The normalization had a benefit 
of increasing the counts of rarely occurring ex  

Word 1 Word 2 Replaced with 
Go  Up  OKAY 
Go  Down NOTOKAY 
Sell Short OKAY 
Pull Back NOTOKAY 

Table 3. Example of the word couples and their 
replacements used to normalize the data (tweets). 

(See full list in Appendix B.) 

2.3 Sentiment Prediction 

Classi-
fier 

Accuracy F-score Preci-
sion 

Recall  

Random 
Forest 

91.26% 86.5% 91.3% 82.2% 

SVM 90.43% 85.4% 88.9% 82.2% 

Logistic 
Regres-
sion 

84.69% 79% 74.3% 84.3% 

Naïve 
Bayes 

83.73% 73.3% 83.3% 65.4% 

Table 4. Results of different Weka classifiers us-
ing 10-fold cross validation and default settings. 

After pre-processing our data and creating all our 
features (Tweet, Positive-Count, Negative-Count), 
we used WEKA to classify our tweets. Our feature 
vectors were the combination of document vectors 
generated by Weka’s StringToWordVector filter, 
followed by the features extracted from the data as 
explained above. Among all the classification 
methods that we used, Random Forest did give us 
the best result with accuracy of 91.2%. Table 4 
shows results from various classifiers using our 
training data. The random forest model in WEKA 
provided both a class prediction and class proba-
bility for each tweet in the training and test set. 
   Since the final float score needed to be be-
tween -1 and 1, for tweets classified as negative 
we made the sentiment score the negative of the 

class probability; for positive classifications, the 
sentiment score was simply the class probability.  

2.4 Other Experiments 

We have done several other experiments first to 
find a promising approach, and to gauge alterna-
tive methods of classification and data prepro-
cessing.  
     In our initial experiment, after pre-processing 
the tweets, we first ran the tweets on WEKA to 
classify using only the feature vector, WEKA’s 
StringToWordVector which is a term document 
matrix. Random forest and Logistic regression 
had the highest accuracy of 83.3% and 85.3% re-
spectively. This experiment shows the    impact 
of our additional features to be around 6%.   
    Before deciding on the final features of the 
model, we tried other types of features. Although 
many of them did not improve the model, we still 
thought they were worth mentioning, with de-
scription of them following: 

Bigrams: In the first experiment, bigrams were 
used. (Kouloumpis, Wilson, & Moore, 2011) 
showed that using unigrams and bigrams are ef-
fective in improving sentiment analysis. (Dave et 
al., 2003) reported that bigrams and trigrams 
worked better than unigrams for polarity classifi-
cation of product reviews. Unfortunately, bigrams 
reduced accuracy of Random Forest and Logistic 
regression to 76.7% and 73.9% respectively. We 
imagine that with a larger data set, bigrams might 
be valuable.  

Feature selection using logistic regression: In 
another experiment, we used logistic regression to 
produce a list of words with the higher odds ratio. 
We then removed other words from tweets, in an 
attempt to amplify the stronger signals. However, 
applying filtered tweets, with various ranges of 
odds ratio did not help with improving the results. 
The best result was when words only with odds 
ratio of [-5, 5] stayed in our training set; this gave 
us the accuracy of 83.5%. 

Using word embedding (GloVe vectors): 
GloVe vectors (Pennington, Socher, & Manning, 
2014) are vector representations of the words. In 
two separate experiments, we used vectors based 
on the Common Crawl (840B tokens, 2.2M vo-
cab, cased, 300 dimensions), and the pre-trained 
word vectors for Twitter (2B tweets, 27B tokens, 
1.2M vocab, 200 dimensions). We represented 
every word in each tweet by a corresponding vec-
tor. We then calculated the tweet vector, using the 
mean of word vectors of the tweet. In this expe-
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riment, McDonald’s (Loughran & McDonald, 
2011) positive and negative wordlist again were 
used. That is, we created a positive and negative 
vector using words in those lists. Comparing the 
cosine similarity of tweet vectors with positive 
and negative vector, we classified the tweets. The 
accuracy of this method was 72% and 73.8% for 
tweet and common crawl respectively.  

3 Conclusion 

The purpose of this paper was to create a classifi-
cation method for SemEval-2017 task 5, subtask 
1. In our approach after pre-processing the data, 
negation handling, and feature selection ap-
proaches, we used Weka to classify our data using 
Random Forest algorithm. Our classifier was 
ranked 7th and achieved accuracy of 91.26%. 

In the next step, we think it is important to 
capture more complex linguistic structure, irony, 
idioms, and poorly structured sentences in finan-
cial domain. To this regard, we would like to ap-
ply dependency parser trees for tweets to see if 
that would improve our results; it might also be 
necessary to capture some of the idiomatic con-
structions in this domain.  

 Also, SemEval-2017 training dataset was a 
relatively small dataset, which would prevent us 
from implementing any neural network models 
for prediction. Therefore, we think a step to create 
a better model is to increase the size of training 
dataset. 
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Appendix A. Words Added to McDonald’s 
Wordlist. 

Negative words: cult, brutal, fucked, suck, de-
cay, bubble, bounce, bounced, low, lower, 
selloff, disgust, meltdown, downtrend, bullshit, 
shit, breakup, dropping, cry, dumped, torture, 
short, shorts, shorting, fall, falling, sell, selling, 
sells, bearish, slipping, slip, sink, sinked, sinking, 
pain, shortput, nervous, damn, downtrends, cen-
sored, toppy, scam, censor, garbage, risk, steal, 
retreat, retreats, sad, dirt, flush, dump, plunge, 
crush, crushed, crying, unhappy, drop, broke, 
overbought. 

Positive words: epic, highs, recover, profit, long, up-
side, love, interesting, loved, dip, dipping, secure, 
longs, longput, rise, able, buy, buying. 

Appendix B. Full List of Word Couples to 
Detect the Semantic of a Tweet. 

Positive word couples: (go, up), (short, trap), 
(exit, short), (sell, exhaust), (didnt, stop), (short, 
cover), (close, short), (short, break), (cant, risk), 
(not, sell), (dont, fall), (sold, call), (dont, short), 
(exit, bankruptcy), (not, bad), (short, nervous), 
(dont, underestimate), (not, slowdown), (aint, 
bad). 
Negative word couples: (high, down), (lipstick, pig), 
(doesnt, well), (bounce, buy), (isnt, cheap), (fear, sell), 
(cant, down), (not, good), (wont, buy), (dont, trade), 
(buy, back), (didnt, like), (profit, exit), (go, down), 
(not, guaranteed), (not, profitable), (doesn't, upward), 
(not, dip), (pull, back), (not, optimistic).  
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