
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 777–783,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

BUSEM at SemEval-2017 Task 4

 Sentiment Analysis with Word Embedding and Long Short Term

Memory RNN Approaches

Deger Ayata1, Murat Saraclar 1, Arzucan Ozgur2
1Electrical & Electronical Engineering Department, Bogaziçi University

2Computer Engineering Department, Bogaziçi University

Istanbul , Turkey

{deger.ayata, murat.saraclar, arzucan.ozgur}@boun.edu.tr

Abstract

1 Introduction

Sentiment analysis is extracting subjective

information from source materials, via natural

language processing, computational linguistics,

text mining and machine learning.

Classification of users’ reviews about a

concept or political view may bring different

opportunities including customer satisfaction

rating, making right recommendations to right

target, categorization of users etc. Sentiment

Analysis is often referred to as subjectivity

analysis, opinion mining and appraisal

extraction with some connections to affective

computing. Sometimes whole documents are

studied as a sentiment unit (Turney and

Littman, 2003), but it’s generally agreed that

sentiment resides in smaller linguistic units

(Pang and Lee, 2008).

This paper describes our approach for

SemEval-2017 Task 4: Sentiment Analysis in

Twitter. We have participated in Subtask A:

Message Polarity Classification subtask. We

have developed two systems. The first system

uses word embeddings for feature

representation and Support Vector Machine

(SVM), Random Forest (RF) and Naive Bayes

(NB) algorithms for classification Twitter

messages into negative, neutral and positive

polarity. The second system is based on Long

Short Term Memory Recurrent Neural

Networks (LSTM) and uses word indexes as

sequence of inputs for feature representation.

The remainder of this article is structured as

follows: Section 2 contains information about

the system description and Section 3 explains

methods, models, tools and software packages

used in this work. Test cases and datasets are

explained in Section 4. Results are given in

Section 5 with discussions. Finally, section 6

summarizes the conclusions and future work.

2 System Description

 We have developed two independent

systems. The first system is word embedding

centric and described in subsection 2.1. The

second is LSTM based and described in

subsection 2.2. Further details about both

systems are given in Section 3.

2.1 Word Embedding based System

Description

 In word embedding centric system approach,

each word in a tweet is represented with a

vector. Tweets consist of words and vectorial

values of words (word vectors) are used to

represent tweets as vectorial values. Word

Embedding system framework is shown Figure

1. Two methods are used to obtain word

vectors in this work. The first method is based

on generating word vectors via constructing a

word2vec model from semeval corpus as

depicted in Figure 1 steps 1 and 2. The second

This paper describes our approach for

SemEval-2017 Task 4: Sentiment Analysis in

Twitter. We have participated in Subtask A:

Message Polarity Classification subtask and

developed two systems. The first system

uses word embeddings for feature

representation and Support Vector Machine,

Random Forest and Naive Bayes algorithms

for the classification of Twitter messages into

negative, neutral and positive polarity. The

second system is based on Long Short Term

Memory Recurrent Neural Networks and

uses word indexes as sequence of inputs for

feature representation.

777

method is based on Google News pre-trained

word vectors model (step 3).

Generate word2vec
model

Corpus

(2)

Word vectors

(1)

Vectorize tweets in the
dataset

Vectorize each one of
the tweets in the

dataset using the word
vectors

Dataset

Tweet
vectors

Train and test a model
Train a classifier with

train data and test the
classifier with test data

(4)

(5)

(6)

(7)

(8)

Results
(9)

Use Google News
pre-trained word

vectors model

(3)

Figure 1: General framework of the system

 In the first method, a word2vec model is

construted by using the entire semeval tweet

corpus and a vector space (word2vec model)

has been created. This model contains vector

values for all unique words in the corpus.

Words which have similar contexts are

positioned closer on this space. The parameters

used in training word2vec model effect the

performance of the whole framework.

Therefore it is important to find optimal

parameter values. This work is focused on the

parameter named feature vector dimension size

and its impact on the general performance.

This parameter determines the dimensionality

of the word vectors, which are generated via

the word2vec model.

 The second method is based on Google News

pre-trained word vectors model. This method

uses the Google News pre-trained word vectors

model to obtain word vectors as shown in

Figure 1 step 3. The Google news pre-trained

model is a dictionary which contains word and

vectorial value pairs, and it is generated via a

word2vec model trained on the Google News

text corpus.

 Next stage includes using the obtained word

vectors to vectorize tweets in the dataset which

contains both training data and test data (steps

5 and 6). This stage includes also the

preprocessing of the tweets, e.g. deleting http

links and twitter user names included in the

tweets, deleting the duplicate tweets which

occur multiple times on the dataset etc. Later,

preprocessed and formatted tweets are iterated

to generate a tweet vector for each tweets by

using the words they contained. Therefore,

inputs of this stage are the dataset and the

model which includes word vectors, while its

output is a set containing tweet vectors, both

for the train and the test data.

 Outputted tweet vectors are in a numerical

format which can be given as an input to

multiple machine learning algorithms with the

purpose of classifying them into categories or

testing an existing model (step 8). At this

stage, each tweet in the dataset is represented

as a vector with multiple dimensions (step 7).

It is possible to train a new classifier model or

load a pre-trained and saved model. SVM, RF,

and NB classifier models are trained in this

work. Tweets are categorized into three classes

which are negative, neutral and positive (step

9).

2.2 LSTM Based System Description

 The pipeline of the second system consists of

many steps : reading Tweets from Semeval

datasets, preprocessing Tweets, representing

each word with an index, then representing

each Tweet with a set of word index sequence

and training a LSTM classifier with sequence

index array. The Flowchart of this system is

shown in Figure 2.

Pre-processingDataset Indexing LSTM

Figure 2: LSTM based system pipeline

3 Methods and Tools

3.1 Word Embedding

 Word embedding stands for a set of natural

language processing methods, where words or

phrases from the vocabulary are mapped to

vectorial values of real numbers (Bengio et

al.,2003). Embeddings have been shown to

boost the performance of natural language

processing tasks such as sentiment analysis

778

(Socher et al., 2013). Vector representations of

words can be used in vector operations like

addition and subtraction. Vectors generated by

word embedding can be used to represent

sentences, tweets or whole documents as

vectorial values. There are multiple methods to

generate sentence vectors using the word

vectors, a modified version of the sum

representation method which is proposed by

Blacoe is used in this work (Blacoe et al.,

2012).

 The sum representation model, in its original

state, is generated via summing the vectorial

embeddings of words which a sentence

contains. The related equations are given

below with E.1, E.2 and E.3:

𝑇𝑤𝑡: 𝑡𝑤𝑒𝑒𝑡, 𝑡𝑤𝑡𝑉𝑒𝑐: 𝑡𝑤𝑒𝑒𝑡 𝑣𝑒𝑐𝑡𝑜𝑟,
𝑤: 𝑤𝑜𝑟𝑑, 𝑤𝑑𝑉𝑒𝑐: 𝑤𝑜𝑟𝑑 𝑣𝑒𝑐𝑡𝑜𝑟,
𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡𝑤𝑒𝑒𝑡,

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖)) ∶ words in tweet

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] = ∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘

𝑘=1,…,𝑛𝑖

[𝑗] (E.1)

A modified version is used in this work. Derived

version considers the number of words. The related

equations are given below:

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖)) (E.2)

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] =
∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘𝑘=1,…,𝑛𝑖

[𝑗]

𝑛
 (E.3)

3.2 Classification Models

3.2.1 Support Vector Machine

 SVM finds a hyper plane seperating tweet

vectors according to their classes while making

the margin as large as possible. After training,

it classifies test records according to which

side of the hyperplane their positions are

(Fradkin et al, 2000). We have used SVM with

the following parameters = {Kernel =

PolyKernel, batchSize=100}

3.2.2 Random Forest

 Random forests, first proposed by Ho (Ho,

1995) and later improved by Breiman

(Breiman, 2001), operate by generating

multiple decision trees and generate the final

decision by evaluating the results of these

individual trees. The mathematical expression

is given in equation (E.4). We have used

Random Forest with the following parameters

={bagSizePercent =100, batchSize=100}

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 : 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡,

𝑦 ∗ : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠,

𝑥′ ∶ 𝑛𝑒𝑤 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦,

𝑊(𝑥𝑖 , 𝑥′)𝑦𝑖 ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖′𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,

𝑊 ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,

𝑦∗ =
1

𝑚
∑ ∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)𝑦𝑖

𝑛

𝑖=1

𝑚

𝑗=1

= ∑ (
1

𝑚
∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)

𝑚

𝑗=1

) 𝑦𝑖

𝑛

𝑖=1

(E.4)

3.2.3 Naïve Bayes

 Naïve-Bayes is a probabilistic classifier

based on Bayes’ theorem, based on

independence of features (John et al, 1995).

Mathematical expression is given in equation

(E.5).

𝑐 ∗∶ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑥 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒

ℎ𝑁𝐵: 𝑛𝑎ï𝑣𝑒 𝑏𝑎𝑦𝑒𝑠 𝑓𝑢𝑛𝑐

𝑐∗ = ℎ𝑁𝐵(𝑥)

 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1…𝑚𝑃(𝑐𝑗) ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑐𝑗) (E.5)

3.2.4 Long Short Term Memory

Recurrent Neural Nets

 LSTM networks have similiar architecture to

Recurrent Neural Nets (RNNs), except that

they use different functions and architecture to

compute the hidden state. They were

introduced by Hochreiter & Schmidhuber

(1997) to avoid the long-term dependency

problem and were refined and popularized by

many people in next studies.

 LSTMs have the form of a chain of

repeating modules of a special kind of

architecture. The memory in LSTMs are

called cells. Internally, these cells decide what

to keep in and what to erase from memory.

They then combine the previous state output,

the current memory and the input to produce

current state output. It turns out that these

types of units are very efficient at capturing

779

long-term dependencies. Before feeding the

LSTM Network, preprocessing and indexing

steps have been applied as shown in Figure 2.

 Preprocessing

 We have pre-processed the dataset before we

input it into the LSTM classifier. We used

Deeplearning4J library1 to remove

punctuations from tweets, and convert all

content into lowercase.

Indexing

 Indexing is iterating over all tweets

contained in the dataset to determine words

used in them and enumerate them. The index

values of words are combined sequentially so

that each tweet is presented as a sequence of

word index numbers.

 The program iterates through the dataset,

enumarates each word which has not been

indexed before and generates a dictionary that

contains word – index pairs. As a result, each

tweet is represented as set of sequential

indexes, each representation contains same

number of values as the tweet word count.

 Indexed tweets are in sequential structure

and they can be given as input to neural

networks directly. LSTM networks make it

possible to take the data sequentially and take

in consideration the order of words in the

training and classifying stages. Therefore, we

used LSTM upon indexed tweets. We have

used categorical crossentropy as loss function

and softmax function. Our model parameters

are given in Table 1 and the model is shown in

Figure 3.

3.3 Used Tools and Software Packages

3.3.1 Deeplearning4J

 Deeplearning4j is a commercial-grade,

open-source, distributed deep-learning library

written for Java and Scala1. There are multiple

parameters to adjust when training a deep-

learning network. Deeplearning4j is used for

generating a vectorized format of the Semeval

dataset using the Google News trained word

vectors model.

 Table 1: Parameters for classifier stage

max_features
86000 : Maximum integer value of
indexed dataset.

maxlen
25 : Indexed tweets padded into this

value.

batch_size 32

model Sequential(): sequential model

Embedding

max_features : Input dimension, size

of the vocabulary.
128 : Dimension of the dense

embedding.

dropout=0.2

LSTM

128 : dimension of the internal

projections and the final output

dropout_W=0.2 : Fraction of the
input units to drop for input gates.

dropout_U=0.2 : Fraction of the

input units to drop for recurrent

connections.

Dense 3 : Output dimensions.

Activation
‘softmax’ : Normalized exponential

function

loss ‘sparse_categorical_crossentropy’ :.

optimizer ‘adam’ : Adam optimizer.

Figure 3: Plotted diagram of the LSTM classifier

3.3.2 Keras

 Keras2, developed by Chollet et al., is a

high-level, open-source neural networks

library written in Python (Chollet, 2015). It can

use Theano or TensorFlow libraries as its

backend. It is focused on fast experimentation

with data. It includes implementations of

commonly used neural network blocks such as

layers, activation functions, etc., to enable its

users to implement various neural networks in

their work. We have used Keras library to

develop LSTM network for tweet polarity

classification.

1 Deeplearning4j, http://deeplearning4j.org (Referenced Nov

2016)
2 Keras, https://keras.io/ (Referenced February 2017)

780

3.3.3 Word2vec

 Word2vec3, is a group of models used to

generate word embeddings (Mikalov et al.,

2013). Word2vec models are based on two-

layer neural networks which takes a large

corpus of text as its input and produces a

vector space of several hundred dimensions.

Each unique word in the corpus is assigned a

corresponding vector in this space.

Embeddings are used to represent words as

vectors which are closer to each other when

words have similar meanings and far apart

when they do not. Therefore, the system can

generalize similar words.

 Representing words as vectorial values

makes it possible to treat words as vectors and

use vectorial operations on them. A properly

trained Word2vec model can calculate an

operation like [king] - [man] + [woman] and

give the approximate result of [queen].

 We have generated word2vec models in our

tests from semeval datasets. We have run

word2vec models with the parameters shown

in Table 2.

Table 2: Parameters for word2vec generation stage

minWordFreq
MIN_WORD_FREQ = 5 : Minimal

element frequency for elements

found in the training corpus.

iterations
NETWORK_ITERATION = 25/50

:How many iterations should be

done over batched sequences.

layerSize
FEATURE_VECTOR_DIMENSIO
N_SIZE = 300/600/900 : Number

of dimensions for outcome vectors.

seed
RANDOM_SEED = 42 : Sets seed
for random numbers generator.

windowSize
WINDOW_SIZE = 25 : Sets

window size for skip-Gram

3.3.4 Google News Trained Word2vec

Model

 Google news trained word vectors compose a

word vector model which has been pre-trained

on part of Google News corpus that includes

100 billion words. The model contains 300-

dimensional vectors for 3 million words and

phrases4. It is 3.39 GB in size which is

observable from the equality, 3 million words *

300 features * 4bytes/feature = ~3.39GB.

Some stop words like “a”, “and”, “of” are

excluded, but others like “the”, “also”,

“should” are included. It also includes

misspellings of words. For example, it includes

both “mispelled” and “misspelled”.

We have used Google News pre-trained word

vectors to generate vector representations of

tweets with FEATURE VECTOR DIMENSION SIZE

equals to 300 configuration.

4 Dataset and Test Cases

4.1 Dataset
 SemEval-2016 Task4 Subtask A’s twitter

train and test datasets have been used in this

work5. The given datasets are dynamic which

don’t include the tweets that are deleted by

their authors. Thus, the available data changes

dynamically as users make their tweets

available or deleted. We have used all previous

years’ tweets to construct the word embedding

and classification models.

4.2 Test Cases

 We have tested many configurations to find

the best configuration to achieve the highest

accuracy rate. We have conducted five main

test cases. In the first, second and third test

cases we have used word2vec model that has

been constructed with previous years’ semeval

tweet datasets.

 In Test 01, Test 02 and Test 03 we have

trained word2vec model with SemEval Tweet

dataset corpus. Also we have used different

vector dimension sizes including 300, 600 and

900. In test case 04 we have used google news

based(trained) word vectors. Also in each test

case classification has been done with SVM,

RF and NB. Test 05 id done with LSTM

classifier on SemEval dataset. The test cases

are listed in Table 3.

Table 3: Results obtained from tests

Test

No.

Word

Vectors
Dimension Size

S

V
M

R

F

N

B

L

S
T

M

01 SemEval 600 √ √ √

02 SemEval 300 √ √ √

03 SemEval 900 √ √ √

04

Google

News
trained

300

√ √ √

05
N/A

(index)
30

 √

3 Word2vec https://deeplearning4j.org/word2vec.html
4 Google News trained word vectors model,

https://code.google.com/archive/p/word2vec/

5 SemEval Dataset,

alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools

781

5 Results and Discussion

5.1 Tests with Word Embedding and

SVM, TF, NB

 Purpose of the first three tests was observing

the parameter feature vector dimension size’s

and classifier type impact on the general

performance. We have used SemEval training

and test datasets pertaining to 2013, 2014,

2015 and 2016 years to construct SemEval

word2vec model. The tests have been done

using this SemEval cumulative dataset. Results

obtained from the classification tests are shown

in Table 4.

Table 4: Accuracy / Results obtained from tests

Test

No.

Word

Vectors

Dim.

Size

SVM

%

RF

%

NB

%

01 Semeval 600 58.3 54.4 52.3

02 Semeval 300 57.3 45.7 51.8

03 Semeval 900 58.7 53.7 51.7

04

Google
News

trained

word
vectors

300 62.8 57.2 53.1

 For SVM, the difference is minimal, but the

value 900 worked best. For RF, the value 300

drastically reduced the overall performance

while the value 600 worked best. NB

accuracies are close to each other but it is

observed that this method has the lowest

overall accuracy values among three. With a

word2vec model which is trained on the same

dataset with the classifier, SVM method

obtained the best results.

 The fourth test has a different approach,

which is not generating a word2vec model but

obtaining the Google News pre-trained word

vectors instead. This model has the standard

value 300 for the feature vector dimension size

and resulted in better accuracies for each one

of the classification methods. It is observed

that the model has positive impact on the

overall system performance.

5.2 Tests with LSTM

 Keras library is used to train and test LSTM

Recurent Neural Net. Test 05 id done with

LSTM classifier on SemEval cumulative

dataset and 62.6% accuracy rate has been

achieved.

5.3 Results over the SemEval 2017 Test

Set

 The test dataset is used to test the system’s

capability of predicting categories for

unlabeled tweet data, and give them as an

output. The original test dataset includes

12379 records, 95 of which are confirmed to

be duplicates. These duplicate records are

deleted from the dataset. Remaining 12284

records are evaluated in this test.

 Preprocessing stage strips all punctuation

from the dataset and converts all tweets into

lower case. This means, twitter user names,

e.g. @username, are stripped from their ‘@’

symbol, but the user names themselves are

preserved.

 In SemEval 2017, the results are given with

three scores: average 𝐹1 (𝐹1 averaged across

the positives and the negatives), average R

(recall averaged across the three classes) and

accuracy. The 𝐹1 score measures test accuracy

by considering precision and recall where a 𝐹1

score reaches its worst value at 0 and best

value at 1.

 Using SemEval 2017 test data we have

achieved the following scores : Average 𝐹1 =

0.587, Average R = 0.605 and Accuracy =

0.603.

6 Conclusion and Future Work

 The best result is obtained via support vector

machine classifier, when Google News pre-

trained word vectors are used, which is 62.8%

accuracy in average when applied to previous

years’ training and test data.

 On the Semeval 2017 Test Dataset by using

same Word embedding + SVM pipeline (the

first system), we have obtained 60.3%

accuracy rate with the following scores scores :

Average 𝐹1 = 0.587, Average R = 0.605 and

Accuracy = 0.603.

 There may be many approches to create a

better system. One possible way to further

improve our system could be to transfer word

embedding features to other classifiers

(Recurrent Tensor Neural Networks,

combining LSTM and Convolutional Neural

Networks etc.). Another possible line of the

future research is the combination of hand

crafted features (bag of words, n-grams,

lexicons) with word embedding features.

782

References

B. Pang, L. Lee, S. Vaithyanathan. 2002. Thumbs

up? Sentiment Classification using Machine

Learning Techniques, Proceedings of EMNLP

2002, pp. 79–86.

B. Pang and L. Lee. 2008. Opinion mining and

sentiment analysis. Foundations and Trends in

Information Retrieval.

Turney, P. & Littman, M. 2003. Measuring praise

and Criticism: Inference of semantic orientation

from association. ACM Transactions on

Information Systems, 21(4), 315-346.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, “A

Neural Probabilistic Language Model, Journal of

Machine Learning Research 3 1137–1155, 2003

R. Socher, A. Perelygin, J. Wu, J. Chuang, C.

Manning, A. Ng, C. Potts, “Recursive Deep Models

for Semantic Compositionality Over a Sentiment

Treebank”, Conference on Empirical Methods in

Natural Language Processing, 2013

W. Blacoe, M. Lapata, “A Comparison of Vector-

based Representations for Semantic Composition”,

Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing

and Computational Natural Language Learning,

546–556, 2012

T. Mikolov, K. Chen, G. Corrado, J. Dean,

“Efficient Estimation of Word Representations in

Vector Space”, 2013

D. Fradkin, I. Muchnik, “Support Vector Machines

for Classification”, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science,

2000

T. K. Ho, “Random Decision Forests”, ICDAR '95

Proceedings of the Third International Conference

on Document Analysis and Recognition Vol.1,

1995

G. H. John, P. Langley, “Estimating Continuous

Distributions in Bayesian Classifiers”, Proceedings

of the Eleventh Conference on Uncertainty in

Artificial Intelligence, 1995

S. Hochreiter and J. Schmidhuber, "Long Short

Term Memory", Neural Computation, vol. 9, no. 8,

p. 1735–1780, 1997

F. Chollet, “Keras: Deep Learning library for

Tensor Flow and Theano”, GitHub,

https://github.com/fchollet/keras, 2015

L. Breiman, (2001). "Random Forests". Machine

Learning. 45 (1): 5-32.

doi:10.1023/A:1010933404324.

783

