
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 592–596,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised
end-to-end entity and relation extraction

Waleed Ammar Matthew E. Peters Chandra Bhagavatula Russell Power
Allen Institute for Artificial Intelligence, Seattle, WA, USA

{waleeda,matthewp,chandrab,russellp}@allenai.org

Abstract

This paper describes our submission for
the ScienceIE shared task (SemEval-
2017 Task 10) on entity and relation
extraction from scientific papers. Our
model is based on the end-to-end rela-
tion extraction model of Miwa and Bansal
(2016) with several enhancements such as
semi-supervised learning via neural lan-
guage models, character-level encoding,
gazetteers extracted from existing knowl-
edge bases, and model ensembles. Our of-
ficial submission ranked first in end-to-end
entity and relation extraction (scenario 1),
and second in the relation-only extraction
(scenario 3).

1 Task overview

The ScienceIE shared task (Augenstein et al.,
2017) focuses on information extraction from
scientific papers. In the end-to-end evalua-
tion scenario, participants were provided with
a paragraph and asked to extract typed entities
(Task, Material or Process) and relations
(Hyponym-of or Synonym-of) in different
scientific domains.

Running example. Consider the following in-
put sentence: “Here, we consider a radical pair
in which the first electron spin is devoid of hyper-
fine interactions, while the second electron spin in-
teracts isotropically with one spin-1 nucleus, e.g.
nitrogen.” The provided human labeled entity
annotations for this sentence include: “electron
spin” of type Process, “spin-1 nucleus” of type
Material, and “nitrogen” of type Material.
The only positive relation annotation labeled
for this sentence is: Hyponym-of(“nitrogen”,
“spin-1 nucleus”). We will use this example

throughout the paper to illustrate various parts of
our system (see Fig. 1).

2 System description

In this section, we describe the components in our
system.

Text preprocessing. We process the input text
using spaCy1 which provides sentence segmenta-
tion, tokenization, part-of-speech (POS) tagging
and labeled dependency parsing.

Label encoding. We use the BILOU tagging
scheme to encode the annotations for each of the
three entity types. For a given entity type, each
token in a sentence is labeled with: O if it does
not belong to any entity, U if it belongs to a single-
token entity, B if it is the beginning of a multi-word
entity, L if it is the end of a multi-word entity, and
I if it is inside a multi-word entity. In order to al-
low the same token to participate in multiple enti-
ties of different types, each token is assigned three
labels (one for each entity type).2

The labeled data specify two kinds of rela-
tions: a directional relation (Hyponym-of) and
an undirectional relation (Synonym-of).
In our system, we automatically convert
Hyponym-of(e2,e1) into a new label
Hypernym-of(e1,e2) when e2 follows
e1 in the sentence. We generate the label
No-relation(e1,e2) as needed in order
to have a label for each pair (e1, e2) where
e1 precedes e2 in a sentence. This encoding
allows us to only consider entity pairs in the order
in which they appear in the sentence. In other

1https://spacy.io/
2In a small number of cases, the human labels specified

at the character level did not coincide with our tokenization.
In these cases we used the human annotations to override the
tokenization. When two entity annotations of the same entity
type overlap, we only keep the longer one.

592

nucleus nitrogen nucleus ,																					e.g.,											nitrogen

nitrogen

e1

n-i-t-r-o-g-e-n
CNN

LSTM LSTMLSTM

LSTM LSTMLSTM

CRF CRFCRF

neural	language	model

token	representation
in	the	entity	model

…	 spin-1	 nucleus , e.g.,									nitrogen .

to
ke
n=

ni
tr
og
en

e4

LSTM LSTMLSTM

e5 e6

po
s=
no

un

de
pr
el
=p

ar
at
ax
is

LSTM

predict	entity	mentions

dropout

token	representation	
in	the	relation	model

LSTM LSTM

relation’s	syntactic	path

relation’s	sequential	path

right	entity	=
nitrogen

left	entity =	
spin-1	nucleus

dropout e7

et
yp
e=
m
a
t
e
r
i
a
l

dropout e7

tanh

softmax

relation
gazetteer	bitmap

tanh

001100

LSTMLSTM

LSTMLSTM

CRFCRF

LSTM

LSTM

CRF

Material: B L O O U O
Task: O O O O O O
Process: O O O O O O

e2 e2e2

LSTM LSTMLSTM

...							spin-1	 nucleus ,																	e.g.,									nitrogen											.

e2e2

LSTMLSTM

e2

LSTM

ENTITY	MODEL

RELATION	MODEL

et
yp
e=
m
a
t
e
r
i
a
l

Hypernym (spin-1	nucleus,	nitrogen)

h[nucleus] h[nitrogen]

h[nitrogen]

h[nucleus] h[nitrogen]

100

100

21

50

2x350

2x350

20 25

2x1002x100

20

50

20 20

1024

Figure 1: Schematic diagram of the end-to-end model for entity and relation extraction. Bottom part:
the main components of the entity model (see §2.1 for details). Top part: the main components of the
relation model (see §2.2 for details).

words, all relations (including No-relation
are modeled as directional relations. In a post-
processing step, Hypernym-of(e1,e2)
relations are deterministically converted to
Hyponym-of(e2,e1) relations.

2.1 Entity model
In this section, we describe the entity model,
which is illustrated in the bottom part of Fig.
1. Given the token sequence (t1, t2, . . . , tN), this
model predicts a sequence of BILOU labels for
each entity type.

Token representation. We first form a token
representation, xk = [ck;wk], by concatenating
a character based representation ck with a token

embedding wk. The character representation, ck,
is parameterized as a convolutional neutral net-
work (CNN) with a filter width of 3 characters.3

The token embeddings, wk, are initialized using
pre-trained GloVe word embeddings (Pennington
et al., 2014) and fine tuned during training. This
component is illustrated at the bottom of Fig. 1.

Neural language model. In addition to using
unlabeled data to learn feature representations of
individual word types, we also learn feature repre-
sentations of words in a particular context using
neural language models. Following Józefowicz

3The filter width was decided based on preliminary exper-
iments on the development set.

593

et al. (2016), we feed the output of the embed-
ding layer through one or two layers of LSTMs
(Hochreiter and Schmidhuber, 1997) to embed the
history (t1, t2, . . . , tk) into a fixed dimensional
vector

−→
h LM

k , the forward LM embedding of the
token at position k. While training the parameters
of the language model, a softmax layer over words
in the vocabulary is used to predict the probability
of token tk+1.

In order to capture future context in the LM
embeddings, we also use a backward LM embed-
ding
←−
h LM

k which predicts the previous token tk−1

given the following tokens (tk, tk+1, . . . , tN). In
our formulation, the forward and backward LMs
are independent, without any shared parameters.

In our final system, after pre-training the for-
ward and backward LMs separately, we remove
the top layer softmax and concatenate the for-
ward and backward LM embeddings to form
bidirectional LM embeddings, i.e., hLM

k =
[
−→
h LM

k ;
←−
h LM

k], and use it in the sequence tagging
model, which is explained next. This component
is illustrated at the bottom right corner of Fig. 1.

Sequence tagging model. We employ two lay-
ers of bidirectional LSTMs, followed by a condi-
tional random field (CRF) layer to predict entity
mentions of each type (see Fig. 1). For each to-
ken position, k, the hidden state of the first bidi-
rectional LSTM layer is formed by concatenating
the hidden states from the forward and backward
LSTMs. We also concatenate the LM embeddings
hLM with the output from the first LSTM layer
before feeding it into the second LSTM layer.

The output of the second LSTM layer hk is used
to predict a score for each possible tag. To predict
token tags from hk we use a dense layer for each
entity type and compute the conditional random
field (CRF) loss (Lafferty et al., 2001) using the
forward-backward algorithm at training time, and
using the Viterbi algorithm to find the most likely
tag sequence at test time, similar to Collobert et al.
(2011). In this layer, we use different parameters
for each entity type in order to allow for overlap-
ping entities of different types.

Entity gazetteer features. We use lists of sci-
entific terms collected from the web4 and several
topics from freebase,5 and add them as features in

4We thank Peter Turney for providing this list.
5The freebase topics we used are ‘dissertation’, ‘mate-

rial’, ‘scholarly work’, ‘task’, ‘chemical element’, ‘com-

the sequence tagging model. Given an input to-
ken sequence, we found all phrases which match
one or more of the gazetteers. We encode this in-
formation at the token level using a binary feature
for each gazetteer (i.e., the number of binary fea-
tures = N× the number of gazetteers). The binary
features for each token feeds into a dense tanh
layer which is concatenated to the output of the top
LSTM layer. This component was omitted from
Fig. 1 to simplify the exposition.

2.2 Relation model
In this subsection, we describe the relation model,
which is illustrated in the top part of Fig. 1. Given
a pair of entity mention spans and their entity
types, this model predicts the relation between the
two mentions by feeding a context-sensitive rep-
resentation of the relation into a dense tanh layer,
followed by a softmax layer to predict the label.

Left and right entities. We represent each of the
left and right entities by concatenating an embed-
ding of its entity type with a hidden representation
based on the sequence tagging model.

Since many entity mentions consist of multiple
tokens, we need to compress their representations
to obtain a fixed size encoding. First, we use the
dependency tree to identify the syntactic head of
the each entity mention. If none of the words in
the entity mention qualifies as a direct or indirect
head of all other words in the entity mention, we
use the last word in the mention, which is often
the head in English. For example, ‘nucleus’ is the
head of the entity mention “spin-1 nucleus” in our
running example, because there is a direct depen-
dency where ‘nucleus’ is the head of ‘spin-1’ with
relation type ‘compound’. After identifying the
head word in an entity mention, we then use the
input to the CRF layer from the sequence tagging
model at this position, feed it into a dropout layer,
and concatenate it with the entity type embedding.
This component is second to the left in the top part
of Fig. 1.

Syntactic and sequential path. We use a bidi-
rectional LSTM layer to encode the shortest path
in a dependency tree between the heads of the left
and right entities. The input to the LSTM layer
at each node in the dependency path concatenates
four components: a context-sensitive embedding

petitive space’, ‘invention’, ‘drug’, ‘project focus’, ‘litera-
ture subject’, ‘patent’, ‘project’, ‘field of study’ and ‘indus-
try’.

594

of the word (the input to the CRF layer followed
by a dropout layer), a context-insensitive embed-
ding of the word, an embedding of the POS tag,
and an embedding of the dependency relation be-
tween this node and its direct head.

In addition to encoding the dependency path
between the two entities, we also found it useful
to encode the sequential path (i.e., the tokens be-
tween the two heads in the sentence). We again
use a bidirectional LSTM layer and use the same
four components to represent the LSTM input at
each position in the sequential path. The hidden
states at both ends of the syntactic and sequential
path are then concatenated (simple concatenation)
with the left and right entity representations. This
component is illustrated in the right most three
boxes in the top part of Fig. 1.

Relation gazetteer features. We use two pub-
licly available knowledge bases (Wikipedia and
freebase) to derive gazetteer-like features in the re-
lation model. We also encode three features as im-
plicit gazetteers to indicate whether one of the two
entities is an acronym, a suffix, or an exact copy
of the other. For a given entity pair, we compute
input binary features which indicate whether the
entity pair matches each gazetteer. The input bi-
nary features feed into a dense layer as illustrated
in the left-most box in the top part of Fig. 1.

2.3 Training

Although we combine the entity model and the re-
lation model at test time, each model is trained
separately.6 Joint training adds some practical
complexities, but may result in better results.

Hyperparameters. We use performance on de-
velopment set to guide our selection of hyperpa-
rameters. The numbers on the arrows in Fig. 1
correspond to the size of the hidden layers (or the
number of filters in the CNN module) in the best
performing single model.

We initialize the word embeddings using GloVe
(Pennington et al., 2014). For the pre-trained lan-
guage models, we use the single best forward
model from Józefowicz et al. (2016) with two
LSTM layers, and a backward LM with one LSTM
layer with 2048 hidden units and a 512 dimension
projection. These models have test set perplex-

6All parameters (including word and character embed-
dings) in each model are trained. None of the parameters
are fixed.

ity of 30.0 and 47.7 on the 1B Word Benchmark
(Chelba et al., 2014), respectively.

We use the Adam optimizer (Kingma and Ba,
2014) with learning rate of 0.001 and 0.0003 and
gradient norms clipped at 5.0 and 1.0 for the entity
and relation models, respectively. We use early
stopping by monitoring development set perfor-
mance.

Model F1

Our best model without language model 49.9
Our best model with language model 54.1
Our 15-model ensemble 55.2

Table 1: Development set entity only F1 compari-
son.

Team End-to-end Entities Relations
Ours 0.43 0.55 0.28
Team 24 0.42 0.56 -
Team 21 0.38 0.50 0.21
Team 19 0.37 0.51 0.19
Team 14 0.33 0.47 0.20

Table 2: Final test set F1 for top five teams in Sce-
nario 1, end-to-end extraction.

Ensembles. While tuning the hyperparameters
of the models, we save the models with the best re-
sults on a development set and use them to create
an ensemble. The entity model ensemble averages
the label predictions at each position, while the re-
lation model ensemble only predicts a positive re-
lation if 50% of the individual models predict the
same relation. Our final submission uses an en-
semble of 15 entity models and 8 relation models.

Differences between Scenario 1 and Scenario 3.
While training the relation model in Scenario 1,
we use both the gold entities and the entities pre-
dicted by the entity model to generate candidate
relations. In Scenario 3, only gold entities are used
to generate candidate relations for training.

To make predictions on the test set, only entities
predicted by the entity model were used to gener-
ate candidate relations in Scenario 1. In Scenario
3, only gold entities were used to generate candi-
date relations for the test set.

595

3 Results

We compare three variants of our entity extraction
model on the development set in Table 1. Adding
a bidirectional LM to our sequence tagging model
amounts to an improvement of 4.2 F1, while using
an ensemble of 15 models amounts to a further im-
provement of 1.1 F1.

In Scenario 1, our submission ranked first with
F1 of 0.43%, second in the entity only subtask
(0.55% F1) and first in the relation only subtask
for end-to-end extraction (0.28% F1), as shown in
Table 2. In Scenario 3, our submission ranked sec-
ond with 0.54% F1.

Acknowledgements

We thank the shared task organizers for their ef-
forts and the anonymous reviewers for their help-
ful comments.

References
Isabelle Augenstein, Mrinal Kanti Das, Sebastian

Riedel, Lakshmi Nair Vikraman, and Andrew Mc-
Callum. 2017. SemEval 2017 Task 10: ScienceIE -
Extracting Keyphrases and Relations from Scientific
Publications. In Proceedings of the International
Workshop on Semantic Evaluation. Association for
Computational Linguistics, Vancouver, Canada.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2014. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR abs/1312.3005.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. In JMLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9:1735–
1780.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR abs/1602.02410.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In ACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

596

