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Abstract

This paper reports the STS-UHH par-
ticipation in the SemEval 2017 shared
Task 1 of Semantic Textual Similarity
(STS). Overall, we submitted 3 runs cov-
ering monolingual and cross-lingual STS
tracks. Our participation involves two ap-
proaches: unsupervised approach, which
estimates a word alignment-based sim-
ilarity score, and supervised approach,
which combines dependency graph sim-
ilarity and coverage features with lexi-
cal similarity measures using regression
methods. We also present a way on ensem-
bling both models. Out of 84 submitted
runs, our team best multi-lingual run has
been ranked 12th in overall performance
with correlation of 0.61, 7th among 31 par-
ticipating teams.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree of semantic equivalence between a pair of
sentences. Accurate estimation of semantic simi-
larity would benefit many Natural Language Pro-
cessing (NLP) applications such as textual entail-
ment, information retrieval, paraphrase identifica-
tion and plagiarism detection (Agirre et al., 2016).
In an attempt to support the research efforts in
STS, the SemEval STS shared Task (Agirre et al.,
2017) offers an opportunity for developing cre-
ative new sentence-level semantic similarity ap-
proaches and to evaluate them on benchmark
datasets. Given a pair of sentences, the task is to
provide a similarity score on a scale of 0..5 ac-
cording to the extent to which the two sentences
are considered semantically similar, with 0 in-
dicating that the semantics of the sentences are
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completely unrelated and 5 signifying semantic
equivalence. Final performance is measured by
computing the Pearson’s correlation (ρ) between
machine-assigned semantic similarity scores and
gold standard scores provided by human annota-
tors. Since last year, the STS task have been ex-
tended to involve additional subtasks for cross-
lingual STS. Similar to the monolingual STS task,
the cross-lingual task requires the semantic sim-
ilarity measurement for two snippets of text that
are written in different languages. In contrast
to last year’s edition (Agirre et al., 2016), the
task is organized into 6 sub-tracks and a primary
track, which is the average of all of the secondary
sub-tracks results. Secondary sub-tracks involve
scoring similarity for monolingual sentence pairs
in one language (Arabic, English, Spanish), and
cross-lingual sentence pairs from the combina-
tion of two different languages (Arabic-English,
Spanish-English, Turkish-English).
Our paper proposes both supervised and unsuper-
vised systems to automatically scoring semantic
similarity between monolingual and cross-lingual
short sentences. The two systems are then com-
bined with an average ensemble to strengthen the
similarity scoring performance. Out of 84 submis-
sions, our system is placed 12th with an overall
primary score of 0.61.

2 Related Work

Since 2012 (Agirre et al., 2012), the STS shared
task has been one of the official shared tasks in
SemEval and has attracted many researchers from
the computational linguistics community (Agirre
et al., 2017). Most of the state-of-the-art ap-
proaches often focus on training regression mod-
els on traditional lexical surface overlap features.
Recently, deep learning models have achieved
very promising results in semantic textual sim-
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ilarity. The top three best performing systems
from STS 2016 used sophisticated deep learning
based models (Rychalska et al., 2016; Brychcı́n
and Svoboda, 2016; Afzal et al., 2016). The high-
est correlation score was obtained by Rychalska
et al. (2016). They proposed a textual similar-
ity model that combines recursive auto-encoders
(RAE) from deep learning with WordNet award
penalty, which helps to adjusts the Euclidean dis-
tance between word vectors.

3 System Description

Our contribution in the STS shared task includes
three different systems: supervised, unsupervised
and supervised-unsupervised ensemble. Our mod-
els are mainly developed to measure semantic
similarity between monolingual sentences in En-
glish. For the cross-lingual tracks, we leverage
the Google translate API to automatically translate
other languages into English. In the following sub-
sections, we describe our data preprocessing and
present our three systems.

3.1 Data Preprocessing

We use all the previously released datasets since
2012 to train and evaluate our models. The fi-
nal total number of training examples is 14 619.
We use StanfordCoreNLP1 pipeline to tokenize,
lemmatize, dependency parse, and annotate the
dataset for lemmas, part-of-speech (POS) tags,
and named entities (NE). Stopwords are removed
for the purpose of topic modeling and TfIdf com-
putation.

3.2 Unsupervised Model

Inspired by (Sultan et al., 2015; Brychcı́n and Svo-
boda, 2016), our unsupervised solution calculates
a similarity score based on the alignment of the
input pair of sentences. As presented in Figure
1, given a pair of sentences S1, S2, the align-
ment task builds a set of matched pair of words
match(wi, wj) wherewi is a word in sentence S1,
and wj is a word in sentence S2. Each matched
pair has a score on the scale [0-1]. This matching
score indicates the strength of the semantic sim-
ilarity between the aligned pair of words, with 1
representing the highest similarity match.

As shown in Figure 2, after preprocessing, the
system starts with matching exact similar words

1http://stanfordnlp.github.io/CoreNLP/

Figure 1: Unsupervised sentence alignment

Figure 2: Unsupervised solution overview

(lemmas), and words that share similar Word-
Net hierarchy (synonyms, hyponyms, and hyper-
nyms). We consider these two types of aligning as
exact match with score 1.
As a last step of the alignment process, we handle

the words that have not been matched in the pre-
ceding steps. The solution uses Glove word em-
beddings (Pennington et al., 2014) to calculate the
matching score. Glove (840B tokens, 2.2M vo-
cab) represent the word embeddings in 300d vec-
tor. We calculate the cosine distance between the
unmatched words and all the words in the other
sentence. Using a greedy strategy, we pick up the
best match of each word.
The global similarity is calculated using a
weighted matches scores as shown in equation (1).

Score =
∑
TfIdf(wi) ∗match(wi, wj)∑

TfIdf(S1, S2)
(1)

For all wi in S1 or S2, and match(wi, wj) is the
best match score for Wi with word Wj from the
other sentence. TfIdf(S1, S2) is the sum of the
term frequency inverse document frequency of the
words in S1, S2. The final alignment score is [0-
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1], so we scale it into the [0-5] range.

3.3 Supervised Model

To generate our supervised model, we extract the
following features:

I Bag-of-Words: for each sentence a |V|-
dimension vector is generated, where V in-
cludes the unique vocabulary from both sen-
tences. Entries in single vectors correspond
to the frequency of the word in the respective
sentence. Cosine similarity between these
vectors serves as a feature.

II Distributional Thesaurus (DTs) Expansion
Feature: Each non-stopword is expanded to
its most similar top 10 words using the API
for the Distributional Thesaurus (DTs) by
Biemann and Riedl (2013).

III POS Tags Longest Common Subsequence:
We measure the length of the longest com-
mon subsequence of POS tags between sen-
tence pairs. Additionally, we also average this
length by dividing it by the total number of to-
kens in each sentence separately.

IV Topic Similarity Feature: To model the topi-
cal similarity between two documents, we use
Latent Dirichlet Allocation (LDA, (Blei et al.,
2003))2 model trained on a recent Wikipedia
dump. To guarantee topic distribution stabil-
ity, we run LDA for 100 repeated inferences.
Then for each token, we assign the most fre-
quent topic ID (Riedl and Biemann, 2012).

V Dependency-Graph Features: Following
Kohail (2015), each sentence S is converted
into a graph using dependency relations ob-
tained from the parser. We define the de-
pendency graph GS = {VS , ES}, where the
graph vertices VS = {w1, w2, . . . , wn} repre-
sent the tokens in a sentence, and ES is a set
of edges. Each edge eiy represents a directed
dependency relation between wi and wy. We
calculate TfIdf on three levels and weight our
dependency graph using the following condi-
tions:
Word TfIdf: Considering only those words
that satisfy the condition: TfIdf (wi) > α1

Pair TfIdf: Word pair are filtered based on
2The implementation was used in this work is available

at: http://gibbslda.sourceforge.net/

the condition: TfIdf (wi, wy) > α2

Triplet TfIdf: Considering only those triples
(word, pair and relation), which satisfies the
condition: TfIdf (wi, wy, eiy) > α3

Similarities are then measured on three lev-
els by representing each sentence as a vec-
tor of words, pairs and triples, where each
entry in one vector is weighted using TfIdf.
We used New York Times articles within the
years 2004-2006, as a background corpus for
TfIdf calculation.

VI Coverage Features: As a text gets longer,
term frequency factors increase, and thus hav-
ing a high similarity score is likelier for
longer than for shorter texts. Coverage fea-
tures measures the number of one-to-one to-
kens, edges and relations correspondence be-
tween the dependency graphs of a pair sen-
tences as described in (Kohail and Biemann,
2017).

VII NE Similarity: We measure similarity based
on the shared named entities between the pair
of text.

VIII Unsupervised Dependency Alignment
score: Using a Glove word embedding, we
include the score of the cosine similarity
between the syntactic heads of the matched
words aligned in the unsupervised model
(Sec. 3.2), as presented in equation (2).

score =
∑
TfIdf(ŵi) ∗ Cos sim(ŵi, ŵj)∑

TfIdf(S1, S2)
(2)

For all wi in S1 or S2, we calculate the
weighted cosine similarity between its syn-
tactic dependency head: ŵi and the syntactic
head of the matched word: ŵj .

These features are fed into three different regres-
sion methods3: Multilayer Perceptron (MLP)4

neural network, Linear Regression (LR) and Re-
gression Support Vector Machine (RegSVM). To
evaluate our preliminary pre-testing models, we
perform 10-fold cross-validation.

3We used the WEKA (Witten et al., 2016) implementation
with default parameters, if not mentioned otherwise

4Hidden layers = 2, Learning rate = 0.4, momentum = 0.2
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System Primary
Track 1
AR-AR

Track 2
AR-EN

Track 3
SP-SP

Track 4a
SP-EN

Track 4b
SP-EN

Track 5
EN-EN

Track 6
EN-TR

Run1 0.57 0.61 0.59 0.72 0.63 0.12 0.73 0.60
Run2 0.61 0.68 0.63 0.77 0.72 0.05 0.80 0.59
Run3 - - - - - - 0.81 -
Ens.* 0.63 0.68 0.66 0.80 0.73 0.11 0.82 0.63
Basel. - 0.60 - 0.71 - - 0.73 -
Top 0.73 0.75 0.75 0.85 0.83 0.34 0.85 0.77

Table 1: Results obtained in terms of Pearson correlation over three runs for all the six sub-tracks in
comparison with the baseline and the top obtained correlation in each track. The primary score represents
the weighted mean correlation. Ens.* represents the results after adding the expansion and topic modeling
features.

3.4 Ensembling Supervised and
Unsupervised models

We create an ensemble model by by averaging the
supervised and unsupervised models predictions.

4 Experimental Results

We report our results in Table 1. Overall we sub-
mitted 3 runs: Run1 uses the unsupervised ap-
proach discussed earlier in Sec. 3.2, Run2 uses
a supervised MLP neural network trained as de-
scribed in Sec. 3.3, and Run3 uses the ensem-
ble average system described in Sec. 3.4. Due to
time constraints and technical issues, only evalua-
tion for English monolingual track was given. Ad-
ditionally, we were not able to compute the topic
modeling and expansion features. We included the
missing features later after the task deadline. Final
ensemble results are given under Ens.*. Accord-
ing to the results, we can make following observa-
tions:

• Our results significantly outperform the base-
line provided by the task organizers for
monolingual tracks by a large margin.

• The ensemble outperforms the individual en-
semble members.

• Results obtained in monolingual, especially
English, are markedly higher than in cross-
lingual tracks. This might be due to noise in-
troduced by the automatic translation.

• Results of track 4b appears to be significantly
worse compared to other tracks results. In
addition to the machine translation accuracy
challenge, the difficulty of this track lies in

providing longer sentences with less infor-
mative surface overlap between the sentences
compared to other tracks.

5 Conclusion

We have presented and discussed our results on
the task of Semantic Textual Similarity (STS). We
have shown that combining supervised and un-
supervised models in an ensemble provides bet-
ter results than when each is used in isolation.
31 teams participated in the task with 84 runs.
Our best system achieves an overall mean Pear-
son’s correlation of 0.61, ranking 7th among all
teams, 12th among all submissions. Future work
includes building a real multi-lingual model by
projecting phrases from different languages into
the same embedding space. In the current solution,
we consider hyponyms/hypernyms as synonyms.
The system gives an exact match score for these
word pairs. In the future, we tackle finding a way
to give calculated dynamic scores for such kind
of alignment to do not equalize them with exact
matches.
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