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Abstract

This paper describes the second of two sys-
tems submitted from the University of Oslo
(UiO) to the 2012 *SEM Shared Task on re-
solving negation. The system combines SVM
cue classification with CRF sequence labeling
of events and scopes. Models for scopes and
events are created using lexical and syntactic
features, together with a fine-grained set of la-
bels that capture the scopal behavior of certain
tokens. Following labeling, negated tokens are
assigned to their respective cues using simple
post-processing heuristics. The system was
ranked first in the open track and third in the
closed track, and was one of the top perform-
ers in the scope resolution sub-task overall.

1 Introduction

Negation Resolution (NR) is the task of determin-
ing, for a given sentence, which tokens are affected
by a negation cue. The data set most prominently
used for the development of systems for automatic
NR is the BioScope Corpus (Vincze et al., 2008), a
collection of clinical reports and papers in the bio-
medical domain annotated with negation and specu-
lation cues and their scopes. The data sets released
in conjunction with the 2012 shared task on NR
hosted by The First Joint Conference on Lexical and
Computational Semantics (*SEM 2012) are com-
prised of the following negation annotated stories of
Conan Doyle (CD): a training set of 3644 sentences
drawn from The Hound of the Baskervilles (CDT), a
development set of 787 sentences taken from Wis-
teria Lodge (CDD; we will refer to the combina-
tion of CDT and CDD as CDTD), and a held-out

test set of 1089 sentences from The Cardboard Box
and The Red Circle (CDE). In these sets, the con-
cept of negation scope extends on the one adopted
in the BioScope corpus in several aspects: Nega-
tion cues are not part of the scope, morphological
(affixal) cues are annotated and scopes can be dis-
continuous. Moreover, in-scope states or events are
marked as negated if they are factual and presented
as events that did not happen (Morante and Daele-
mans, 2012). Examples (1) and (2) below are exam-
ples of affixal negation and discontinuous scope re-
spectively: The cues are bold, the tokens contained
within their scopes are underlined and the negated
event is italicized.

(1) Since we have been so unfortunate as to miss him [. . . ]

(2) If he was in the hospital and yet not on the staff he could
only have been a house-surgeon or a house-physician: lit-
tle more than a senior student.

Example (2) has no negated events because the sen-
tence is non-factual.

The *SEM shared task thus comprises three sub-
tasks: cue identification, scope resolution and event
detection. It is furthermore divided into two separate
tracks: one closed track, where only the data sup-
plied by the organizers (word form, lemma, PoS-tag
and syntactic constituent for each token) may be em-
ployed, and an open track, where participants may
employ any additional tools or resources.

Pragmatically speaking, a token can be either out
of scope or assigned to one or more of the three re-
maining classes: negation cue, in scope and negated
event. Additionally, in-scope tokens and negated
events are paired to the cues they are negated by.
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Our system achieves this by remodeling the task as a
sequence labeling task. With annotations converted
to sequences of labels, we train a Conditional Ran-
dom Field (CRF) classifier with a range of different
feature types, including features defined over depen-
dency graphs. This article presents two submissions
for the *SEM shared task, differing only with re-
spect to how these dependency graphs were derived.
For our open track submission, the dependency rep-
resentations are produced by a state-of-the-art de-
pendency parser, whereas the closed track submis-
sion employs dependencies derived from the con-
stituent analyses supplied with the shared task data
sets through a process of constituent-to-dependency
conversion. In both systems, labeling of test data is
performed in two stages. First, cues are detected us-
ing a token classifier,1 and secondly, scope and event
resolution is achieved by post-processing the output
of the sequence labeler.

The two systems described in this paper have been
developed using CDT for training and CDD for test-
ing, and differ only with regard to the source of syn-
tactic information. All reported scores are generated
using an evaluation script provided by the task or-
ganizers. In addition to providing a full end-to-end
evaluation, the script breaks down results with re-
spect to identification of cues, events, scope tokens,
and two variants of scope-level exact match; one re-
quiring exact match also of cues and another only
partial cue match. For our system these two scope-
level scores are identical and so are not duplicated
in our reporting. Additionally we chose not to opti-
mize for the scope tokens measure, and hence this is
also not reported as a development result.

Note also that the official evaluation actually in-
cludes two different variants of the metrics men-
tioned above; a set of primary measures with pre-
cision computed as P=TP/(TP+FP) and a set of B
measures where precision is rather computed as
P=TP/SYS, where SYS is the total number of pre-
dictions made by the system. The reason why SYS is
not identical with TP+FP is that partial matches are

1Note that the cue classifier applied in the current paper is
the same as that used in the other shared task submission from
the University of Oslo (Read et al., 2012), and the two system
descriptions will therefore have much overlap on this particular
point. For all other components the architectures of the two
system are completely different, however.

only counted as FNs (and not FPs) in order to avoid
double penalties. We do not report the B measures
for development testing as they were introduced for
the final evaluation and hence were not considered
in our system optimization. We note though, that the
relative-ranking of participating systems for the pri-
mary and B measures is identical, and that the cor-
relation between the paired lists of scores is nearly
perfect (r=0.997).

The rest of the paper is structured as follows.
First, the cue classifier, its features and results are
described in Section 2. Section 3 presents the sys-
tem for scope and event resolution and details differ-
ent features, the model-internal representation used
for sequence-labeling, as well as the post-processing
component. Error analyses for the cue, scope and
event components are provided in the respective sec-
tions. Section 4 and 5 provide developmental and
held-out results, respectively. Finally, we provide
conclusions and some reflections regarding future
work in Section 6.

2 Cue detection

Identification of negation cues is based on the light-
weight classification scheme presented by Velldal et
al. (2012). By treating the set of cue words as a
closed class, Velldal et al. (2012) showed that one
could greatly reduce the number of examples pre-
sented to the learner, and correspondingly the num-
ber of features, while at the same time improving
performance. This means that the classifier only at-
tempts to “disambiguate” known cue words while
ignoring any words not observed as cues in the train-
ing data.

The classifier applied in the current submission
is extended to also handle affixal negation cues,
such as the prefix cue in impatience, the infix in
carelessness, and the suffix of colourless. The types
of negation affixes observed in CDTD are; the pre-
fixes un, dis, ir, im, and in; the infix less (we inter-
nally treat this as the suffixes lessly and lessness);
and the suffix less. Of the total number of 1157 cues
in the training and development set, 192 are affixal.
There are, however, a total of 1127 tokens matching
one of the affix patterns above, and while we main-
tain the closed class assumption also for the affixes,
the classifier will need to consider its status as a cue
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or non-cue when attaching to any such token, like
for instance image, recklessness, and bless.

2.1 Features
In the initial formulation of Velldal (2011), an SVM
classifier was trained using simple n-gram features
over words, both full forms and lemmas, to the left
and right of the candidate cues. In addition to these
token-level features, the classifier we apply here in-
cludes some features specifically targeting morpho-
logical or affixal cues. The first such feature records
character n-grams from both the beginning and end
of the base that an affix attaches to (up to five po-
sitions). For a context like impossible we would
record n-grams such {possi, poss, pos, . . .} and
{sible, ible, ble, . . .}, and combine this with infor-
mation about the affix itself (im) and the token part-
of-speech (“JJ”).

For the second feature type targeting affix cues
we try to emulate the effect of a lexicon look-up
of the remaining substring that an affix attaches to,
checking its status as an independent base form and
its part-of-speech. In order to take advantage of
such information while staying within the confines
of the closed track, we automatically generate a lex-
icon from the training data, counting the instances
of each PoS tagged lemma in addition to n-grams
of word-initial characters (again recording up to five
positions). For a given match of an affix pattern, a
feature will then record the counts from this lexicon
for the substring it attaches to. The rationale for this
feature is that the occurrence of a substring such as
un in a token such as underlying should be consid-
ered more unlikely to be a cue given that the first
part of the remaining string (e.g., derly) would be an
unlikely way to begin a word.

Note that, it is also possible for a negation cue
to span multiple tokens, such as the (discontinuous)
pair neither / nor or fixed expressions like on the
contrary. There are, however, only 16 instances of
such multiword cues (MWCs) in the entire CDTD.
Rather than letting the classifier be sensitive to these
corner cases, we cover such MWC patterns using
a small set of simple post-processing heuristics. A
small stop-list is used for filtering out the relevant
words from the examples presented to the classifier
(on, the, etc.).

Data set Model Prec Prec F1

CDD
Baseline 90.68 84.39 87.42
Classifier 93.75 95.38 94.56

CDE
Baseline 87.10 92.05 89.51
Classifier 89.17 93.56 91.31

Table 1: Cue classification results for the final classifier
and the majority-usage baseline, showing test scores for
the development set (training on CDT) and the final held-
out set (training on CDTD).

2.2 Results
Table 1 presents results for the cue classifier. While
the classifier configuration was optimized against
CDD, the model used for the final held-out testing
is trained on the entire CDTD, which (given our
closed-class treatment of cues) provides a total of
1162 positive and 1100 negative training examples.
As an informed baseline, we also tried classifying
each word based on its most frequent use as cue
or non-cue in the training data. (Affixal cue oc-
currences are counted by looking at both the affix-
pattern and the base it attaches to, basically treating
the entire token as a cue. Tokens that end up be-
ing classified as cues are then matched against the
affix patterns observed during training in order to
correctly delimit the annotation of the cue.) This
simple majority-usage approach actually provides a
fairly strong baseline, yielding an F1 of 87.42 on
CDD (P=90.68, R=84.39). Compare this to the F1 of
94.56 obtained by the classifier on the same data set
(P=93.75, R=95.38). However, when applying the
models to the held-out set, with models estimated
over the entire CDTD, the baseline seems to able
to make good use of the additional data and proves
to be even more competitive: While our final cue
classifier achieves F1=91.31, the baseline achieves
F1=89.51, almost two percentage points higher than
its score on the development data, and even outper-
forms four of the ten cue detection systems submit-
ted for the shared task (three of the 12 shared task
submissions use the same classifier).

When inspecting the predictions of our final cue
classifier on CDD, comprising a total of 173 gold
annotated cues, we find that our system mislabels
11 false positives (FPs) and 7 false negatives (FNs).
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Of the FPs, we find five so-called false negation cues
(Morante et al., 2011), including three instances of
none in the fixed expression none the less. The
others are affixal cues, of which two are clearly
wrong (underworked, universal) while others might
arguably be due to annotation errors (insuperable,
unhappily, endless, listlessly). Among the FNs, two
are due to MWCs not covered by our heuristics (e.g.,
no more), while the remaining errors concern af-
fixes, including one in an interesting context of dou-
ble negation; not dissatisfied.

3 Scope and event resolution

In this work, we model negation scope resolution
as a special instance of the classical IOB (Inside,
Outside, Begin) sequence labeling problem, where
negation cues are labeled to be sequence starters and
scopes and events as two different kinds of chunks.
CRFs allow the computation of p(X|Y), where X is
a sequence of labels and Y is a sequence of observa-
tions, and have already been shown to be efficient in
similar, albeit less involved, tasks of negation scope
resolution (Morante and Daelemans, 2009; Councill
et al., 2010). We employ the CRF implementation in
the Wapiti toolkit, using default settings (Lavergne
et al., 2010). A number of features were used to
create the models. In addition to the information
provided for each token in the CD corpus (lemma,
part of speech and constituent), we extracted both
left and right token distance to the closest negation
cue. Features were expanded to include forward and
backward bigrams and trigrams on both token and
PoS level, as well as lexicalized PoS unigrams and
bigrams2. Table 2 presents a complete list of fea-
tures. The more intricate, dependency-based fea-
tures are presented in Section 3.1, while the labeling
of both scopes and events is detailed in Section 3.2.

3.1 Dependency-based features
For the system submitted to the closed track, the syn-
tactic representations were converted to dependency
representations using the Stanford dependency con-
verter, which comes with the Stanford parser (de
Marneffe et al., 2006).3 These dependency represen-

2By lexicalized PoS we mean an instance of a PoS-Tag in
conjunction with the sentence token.

3Note that the converter was applied directly to the phrase-
structure trees supplied with the negation data sets, and the

General features

Token
Lemma
PoS unigram
Forward token bigram and trigram
Backward token bigram and trigram
Forward PoS trigram
Backward PoS trigram
Lexicalized PoS
Forward Lexicalized PoS bigram
Backward Lexicalized PoS bigram
Constituent
Dependency relation
First order head PoS
Second order head PoS
Lexicalized dependency relation
PoS-disambiguated dependency relation

Cue-dependent features

Token distance
Directed dependency distance
Bidirectional dependency distance
Dependency path
Lexicalized dependency path

Table 2: List of features used to train the CRF models.

tations result from a conversion of Penn Treebank-
style phrase structure trees, combining ‘classic’ head
finding rules with rules that target specific linguistic
constructions, such as passives or attributive adjec-
tives. The so-called basic format provides a depen-
dency graph which is a directed tree, see Figure 1
for an example.

For the open track submission we used Maltparser
(Nivre et al., 2006) with its pre-trained parse model
for English.4 The parse model has been trained on a
conversion of sections 2-21 of the Wall Street Jour-
nal section of the Penn Treebank to Stanford depen-
dencies, augmented with data from Question Bank.
The parser was applied to the negation data, using
the word tokens and supplied parts-of-speech as in-
put to the parser.

The features extracted via the dependency graphs
aim at modeling the syntactic relationship between
each token and the closest negation cue. Token dis-
tance was therefore complemented with two variants
of dependency distance from each token to the lexi-

Stanford parser was not used to parse the data.
4The pre-trained model is available from maltparser.org
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we   have  never  gone  out  without  keeping  a  sharp  watch  ,  and  no  one  could  have  escaped  our  notice  .  "

nsubj

aux

neg

conj

cc
punct

prep

part

pcomp dobj
det
amod

dep

nsubj
aux

aux

punct
punct

dobj
poss

root

ann. 1:
ann. 2:
ann. 3:

cue
cue

cue
labels: CUE CUE CUEN N E E N N N N E N N N NS O S ON

Figure 1: A sentence from the CD corpus showing a dependency graph and the annotation-to-label conversion.

cally closest cue, Directed Distance (DD) and Bidi-
rectional Distance (BD). DD is extracted by follow-
ing the reversed, directed edges from token X to the
cue. If there is no such path, the value of the feature
is -1. BD uses the Dijkstra shortest path algorithm
on an undirected representation of the graph. The
latter feature proved to be more effective than the
former when not used together; using them in con-
junction seemed to confuse the model, thus the fi-
nal model utilizes only BD. We furthermore use the
Dependency Graph Path (DGP) as a feature. This
feature was inspired by the Parse Tree Path feature
presented in Gildea and Jurafsky (2002) in the con-
text of Semantic Role Labeling. It represents the
path traversed from each token to the cue, encod-
ing both the dependency relations and the direction
of the arc that is traversed: for instance, the rela-
tion between our and no in Figure 1 is described as
� poss � dobj � nsubj � det. Like Councill et
al. (2010), we also encode the PoS of the first and
second order syntactic head of each token. For the
token no in Figure 1, for instance, we record the PoS
of one and escaped, respectively.

3.2 Model-internal representation
The token-wise annotations in the CD corpus con-
tain multiple layers of information. Tokens may or
may not be negation cues and they can be either in
or out of scope; in-scope tokens may or may not
be negated events, and are associated with each of
the cues they are negated by. Moreover, scopes may
be (partially) overlapping, as in Figure 1, where the

PoS # S PoS # MCUE PoS # CUE

punctuation 1492 JJ 268 RB 1026
CC 52 RB 28 DT 296

IN + TO 46 NN 16 NN 146
RB 38 NN 4 UH 118
PRP 32 IN 2 IN 64
rest 118 rest ˜ rest 38

Table 3: Frequency distribution of parts of speech over
the S, MCUE and CUE labels in CDTD.

scope of without is contained within the scope of
never. We convert this representation internally by
assigning one of six labels to each token: O, CUE,
MCUE, N, E and S, for out-of-scope, cue, mor-
phological (affixal) cue, in-scope, event and nega-
tion stop respectively. The CUE, O, N and E la-
bels parallel the IOB chunking paradigm and are
eventually translated in the final annotations by our
post-processing component. MCUE and S extend
the label set to account for the specific behavior of
the tokens they are associated with. The rationale
behind the separation of cues in two classes is the
pronounced differences between the PoS frequency
distributions of standard versus morphological cues.
Table 3 presents the frequency distribution of PoS-
tags over the different cue types in CDTD and shows
that, unsurprisingly, the majority class for morpho-
logical cues is adjectives, which typically generate
different scope patterns compared to the majority
class for standard cues. The S label, a special in-
stance of an out-of-scope token, is defined as the
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first non-cue, out-of-scope token to the right of one
labeled with N, and targets mostly punctuation.

After some experimentation with joint labeling of
scopes and events, we opted for separation of the
two models, hence training separate models for the
two tasks of scope resolution and event detection.
In the model for scopes, all E labels are switched
to N; conversely, Ns become Os in the event model.
Given the nature of the annotations, the predictions
provided by the model for events serve a double pur-
pose: finding the negated token in a sentence and
deciding whether a sentence is factual or not. The
outputs of the two classifiers are merged during post-
processing.

3.3 Post-processing
A simple, heuristics-based algorithm was applied
to the output of the labelers in order to pair each
in-scope token to its negation cue(s) and determine
overlaps. Our algorithm works by first determining
the overlaps among negation cues. Cue A negates
cue B if the following conditions are met:

• B is to the right of A.

• There are no tokens labeled with S between A
and B.

• Token distance between A and B does not ex-
ceed 10.

In the example in Figure 1, the overlapping condi-
tion holds for never and without but not for without
and no, because of the punctuation between them.
The token distance threshold of 10 was determined
empirically on CDT. In order to assign in-scope to-
kens to their respective cue, tokens labeled with N
are treated as follows:

• Assign each token T to the closest negation cue
A with no S-labeled tokens or punctuation sep-
arating it from T.

• If A was found to be negated by cue B, assign
T to B as well.

• If T is labeled with E by the event classifier,
mark it as an event.

F1

Configuration Closed Open

(A) O, N, CUE, MCUE, E, S 64.85 66.41Dependency Features

(B) O, N, CUE, MCUE, E, S 59.35 59.35No Dependency Features

(C) O, N, CUE, E 62.69 63.24Dependency Features

(D) O, N, CUE, E 56.44 56.44No Dependency Features

Table 4: Full negation results on CDD with gold cues.

This algorithm yields the correct annotations for
the example in Figure 1; when applied to label se-
quences originating from the gold scopes in CDD,
the reported F1 is 95%. We note that this loss of in-
formation could have been avoided by presenting the
CRF with a version of a sentence for each negation
cue. Then, when labeling new sentences, the model
could be applied repeatedly (based on the number of
cues provided by the cue detection system). How-
ever, training with multiple instances of the same
sentence could result in a dilution of the evidence
needed for scope labeling; this remains to be inves-
tigated in future work.

4 Development results

To investigate the effects of the augmented set of la-
bels and that of dependency features comparatively,
we present four different configurations of our sys-
tem in Table 4, using F1 for the stricter score that
counts perfect-match negation resolution for each
negation cue. Comparing (B) and (D), we observe
that explicitly encoding significant tokens with extra
labels does improve the performance of the classi-
fier. Comparing (A) to (B) and (C) to (B) shows the
effect of the dependency features with and without
the augmented set of labels. With (A) being our top
performing system and (D) a kind of internal base-
line, we observe that the combined effects of the la-
bels and dependency features is beneficial, with a
margin of about 8 and 10 percentage points for our
closed and open track systems respectively.

Table 5 presents the results for scope resolution on
CDD with gold cues. Interestingly, the constituent
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Closed Open

Prec Rec F1 Prec Rec F1

Scopes 100.00 70.24 82.52 100.00 66.67 80.00
Scope Tokens 94.69 82.16 87.98 90.64 81.36 85.75
Negated 82.47 72.07 76.92 83.65 77.68 80.55
Full negation 100.00 47.98 64.85 100.00 49.71 66.41

Table 5: Results for scope resolution on CDD with gold cues.

trees converted to Stanford dependencies used in the
closed track outperform the open system employing
Maltparser on scopes, while for negated events the
latter is over 5 percentage points better than the for-
mer, as shown in Table 5.

4.1 Error analysis
We performed a manual error analysis of the scope
resolution on the development data using gold cue
information. Since our system does not deal specifi-
cally with discontinuous scopes, and seeing that we
are employing a sequence classifier with a fairly lo-
cal window, we are not surprised to find that a sub-
stantial portion of the errors are caused by discon-
tinuous scopes. In fact, in our closed track system,
these errors amount to 34% of the total number of
errors. Discontinuous scopes, as in (3) below, ac-
count for 9.3% of all scopes in CDD and the closed
task system does not analyze any of these correctly,
whereas the open system correctly analyzes one dis-
continuous scope.

(3) I therefore spent the day at my club and did not
return to Baker Street until evening.

A similar analysis with respect to event detection
on gold scope information indicated that errors are
mostly due to either predicting an event for a non-
factual context (false positive) or not predicting an
event for a factual context (false negative), i.e., there
are relatively few instances of predicting the wrong
token for a factual context (which result in both a
false negative and a false positive). This suggests
that the CRF has learned what tokens should be la-
beled as an event for a negation, but has not learned
so well how to determine whether the negation is
factual or non-factual. In this respect it may be that
incorporating information from a separate and dedi-
cated component for factuality detection — as in the
system of Read et al. (2012) — could yield improve-
ments for the CRF event model.

5 Held-out evaluation

Final results on held-out data for both closed and
open track submissions are reported in Table 6. For
the final run, we trained our systems on CDTD. We
observe a similar relative performance to our devel-
opment results, with the open track system outper-
forming the closed track one, albeit by a smaller
margin than what we saw in development. We are
also surprised to see that despite not addressing dis-
continuous scopes directly, our system obtained the
best score on scope resolution (according to the met-
ric dubbed “Scopes (cue match)”).

6 Conclusions and future work

This paper has provided an overview of our system
submissions for the *SEM 2012 shared task on re-
solving negation. This involves the subtasks of iden-
tifying negations cues, identifying the in-sentence
scope of these cues, as well as identifying negated
(and factual) events. While a simple SVM token
classifier is applied for the cue detection task, we ap-
ply CRF sequence classifiers for predicting scopes
and events. For the CRF models we experimented
with a fine-grained set of labels and a wide range of
feature types, drawing heavily on information from
dependency structures. We have detailed two dif-
ferent system configurations — one submitted for
the open track and another for the closed track —
and the two configurations only differ with respect
to the source used for the dependency parses: For
the closed track submission we simply converted
the constituent structures provided in the shared task
data to Stanford dependencies, while for the open
track we apply the Maltparser. For the end-to-end
evaluation, our submission was ranked first in the
open track and third in the closed track. The system
also had the best performance for each individual
sub-task in the open track, as well as being among
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Closed Open

Prec Rec F1 Prec Rec F1

Cues 89.17 93.56 91.31 89.17 93.56 91.31
Scopes 85.71 62.65 72.39 85.71 62.65 72.39
Scope Tokens 86.03 81.55 83.73 82.25 82.16 82.20
Negated 68.18 52.63 59.40 66.90 57.40 61.79
Full negation 78.26 40.91 53.73 78.72 42.05 54.82

Cues B 86.97 93.56 90.14 86.97 93.56 90.14
Scopes B 59.32 62.65 60.94 59.54 62.65 61.06
Negated B 67.16 52.63 59.01 63.82 57.40 60.44
Full negation B 38.03 40.91 39.42 39.08 42.05 40.51

Table 6: End-to-end results on the held-out data.

the top-performers on the scope resolution sub-task
across both tracks.

Due to time constraints we were not able to di-
rectly address discontinuous scopes in our system.
For future work we plan on looking for ways to
tackle this problem by taking advantage of syntac-
tic information, both in the classification and in the
post-processing steps. We are also interested in de-
veloping the CRF-internal label-set to include more
informative labels. We also want to test the sys-
tem design developed for this task on other corpora
annotated for negation (or other related phenom-
ena such as speculation), as well as perform extrin-
sic evaluation of our system as a sub-component to
other NLP tasks such as sentiment analysis or opin-
ion mining. Lastly, we would like to try training
separate classifiers for affixal and token-level cues,
given that largely separate sets of features are effec-
tive for the two cases.
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