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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Expanding the Range of Tractable Scope-Underspecified Semantic
Representations

Mehdi Manshadi and James Allen
Department of Computer Science

University of Rochester
Rochester, NY 14627

{mehdih,james}@cs.rochester.edu

Abstract
Over the past decade, several underspec-
ification frameworks have been proposed
that efficiently solve a big subset of scope-
underspecified semantic representations
within the realm of the most popular
constraint-based formalisms. However, there
exists a family of coherent natural language
sentences whose underspecified representa-
tion does not belong to this subset. It has
remained an open question whether there ex-
ists a tractable superset of these frameworks,
covering this family. In this paper, we show
that the answer to this question is yes. We
define a superset of the previous frameworks,
which is solvable by similar algorithms with
the same time and space complexity.

1 Introduction

Scope ambiguity is a major source of ambiguity in
semantic representation. For example, the sentence

1. Every politician has a website.
has at least two possible interpretations, one in

which each politician may have a different website
(i.e., Every has wide scope) and one in which there
is a unique website for all the politicians (i.e., Every
has narrow scope). Since finding the most preferred
reading automatically is very hard, the most widely
adopted solution is to use an Underspecified Rep-
resentation (UR), that is to encode the ambiguity in
the semantic representation and leave scoping un-
derspecified.

In an early effort, Woods (1986) developed an un-
scoped logical form where the above sentence is rep-
resented (roughly) as the formula:

2. Has(〈Every x Politician〉, 〈A y Website〉)

To obtain a fully scoped formula, the quantifiers
are pulled out one by one and wrapped around the
formula. If we pull out Every first, we produce the
fully-scoped formula:

3. A(y, Website(y),
Every(x, Politician(x), Has(x, y))

If we had pulled out A first, we would have had
the other reading, with Every having wide scope.

Hobbs and Shieber (1987) extend this formalism
to support operators (such as not) and present an
enumeration algorithm that is more efficient than the
naive wrapping approach.

Since the introduction of Quasi Logical Form (Al-
shawi and Crouch, 1992), there has been a lot of
work on designing constraint-based underspecifica-
tion formalisms where the readings of a UR are not
defined in a constructive fashion as shown above, but
rather by a set of constraints. A fully-scoped struc-
ture is a reading iff it satisfies all the constraints. The
advantage of these frameworks is that as the pro-
cessing goes deeper, new (say pragmatically-driven)
constraints can be added to the representation in or-
der to filter out unwanted readings. Hole Seman-
tics (Bos, 1996; Bos, 2002), Constraint Language
for Lambda Structures (CLLS) (Egg et al., 2001),
and Minimal Recursion Semantics (MRS) (Copes-
take et al., 2001) are among these frameworks.

In an effort to bridge the gap between the above
formalisms, a graph theoretic model of scope under-
specification was defined by Bodirsky et al. (2004),
called Weakly Normal Dominance Graphs. This
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Figure 1: UG for Every child of a politician runs.

framework and its ancestor, Dominance Con-
straints (Althaus et al., 2003), are broad frameworks
for solving constrained tree structures in general.
When it comes to scope underspecification, some of
the terminology becomes counter-intuitive. There-
fore, here we first define (scope) Underspecifica-
tion Graphs (UG), a notational variant of weakly
normal dominance graphs, solely defined to model
scope underspecification.1 Figure 1 shows a UG for
the following sentence.

4. Every child of a politician runs.

The big circles and the dot nodes are usually re-
ferred to as the hole nodes (or simply holes) and the
label nodes (or simply labels) respectively. The left
and the right holes of each quantifier are placehold-
ers for the restriction and the body of the quanti-
fier. A fully scoped structure is built by plugging
labels into holes, as shown in Figure 2(a). The dot-
ted edges represent the constraints. For example,
the constraint from the restriction hole of Every(x)
to the node Politician(x) states that this label node
must be within the scope of the restriction of Ev-
ery(x) in every reading of the sentence. The con-
straint edge from Every(x) to Run(x) forces the bind-
ing constraint for variable x; that is variable x in
Run(x) must be within the scope of its quantifier.
Figure 2(b) represents the other possible reading of
the sentence. Now consider the sentence:

5. Every politician, whom I know a child of, prob-
ably runs.

with its UG shown in Figure 3. This sentence con-
tains a scopal adverbial (a.k.a. fixed-scopal; cf.
Copestake et al. (2005)), the word Probably. Since
in general, quantifiers can move inside or outside a

1The main difference is in the concept of solution in the two
frameworks. See Section 4.3 for details.

Figure 2: Solutions of the UG in Figure 1.

scopal operator, the scope of Probably is left under-
specified, and hence represented by a hole. It is easy
to verify that the corresponding UG has five possible
readings, two of which are shown in Figure 4.

There are at least two major algorithmic problems
that need to be solved for any given UG U : the sat-
isfiability problem; that is whether there exists any
reading satisfying all the constraints in U , and the
enumeration problem; that is enumerating all the
possible readings of a satisfiable U . Unfortunately,
both problems are NP-complete for UG in its gen-
eral form (Althaus et al., 2003). This proves that
Hole Semantics and Minimal Recursion Semantics
are also intractable in their general form (Thater,
2007). In the last decade, there has been a se-
ries of interesting work on finding a tractable subset
of those frameworks, broad enough to cover most
structures occurring in practice. Those efforts re-
sulted in two closely related tractable frameworks:
(dominance) net and weak (dominance) net. Intu-
itively, the net condition requires the following prop-
erty. Given a UG U , for every label node in U with
n holes, if the node together with all its holes is re-
moved from U , the remaining part is composed of at
most n (weakly) connected components. A differ-
ence between net and weak net is that in nets, label-

Figure 3: UG for the sentence in (5).
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Figure 4: Two of the solutions to the UG in Figure 3.

to-label constraints (e.g. the constraint between Ev-
ery(x) and Run(x) in Figure 1) are not allowed.

Using a sample grammar for CLLS, Koller et al.
(2003) conjecture that the syntax/semantics inter-
face of CLLS only generates underspecified repre-
sentations that follow the definition of net and hence
can be solved in polynomial time. They also prove
that the same efficient algorithms can be used to
solve the underspecification structures of Hole Se-
mantics which satisfy the net condition.

Unlike Hole Semantics and CLLS, MRS implic-
itly carries label-to-label constraints; hence the con-
cept of net could not be applied to MRS. In order
to address this, Niehren and Thater (2003) define
the notion of weak net and conjecture that it cov-
ers all semantically complete MRS structures occur-
ring in practice. Fuchss et al. (2004) supported the
claim by investigating MRS structures in the Red-
woods corpus (Oepen et al., 2002). Later coherent
sentences were found in other corpora or suggested
by other researchers (see Section 6.2.2 in Thater
(2007)), whose UR violates the net condition, inval-
idating the conjecture. However, violating the net
condition occurs in a similar way in those examples,
suggesting a family of non-net structures, character-
ized in Section 4.2. Since then, it has been an open
question whether there exists a tractable superset of
weak nets, covering this family of non-net UGs.

In the rest of this paper, we answer this ques-
tion. We modify the definition of weak net to de-
fine a superset of it, which we call super net. Super
net covers the above mentioned family of non-net
structures, yet is solvable by (almost) the same al-
gorithms as those solving weak nets with the same
time and space complexity.

The structure of the paper is as follows. We de-
fine our framework in Section 2 and present the

polynomial-time algorithms for its satisfiability and
enumeration problems in Section 3. In Section 4,
we compare our framework with nets and weak nets.
Section 5 discusses the related work, and Section 6
summarizes this work and discusses future work.

2 Super net

We first give a formal definition of underspecifica-
tion graph (UG). We then define super net as a sub-
set of UG. In the following definitions, we openly
borrow the terminology from Hole Semantics, Dom-
inance Constraints, and MRS, in order to avoid in-
venting new terms to name old concepts.

Definition 1 (Fragments). Consider L a set of la-
bels, H a set of holes, and S a set of directed solid
edges from labels to holes, such thatF = (L]H,S)
is a forest of ordered trees of depth at most 1, whose
root and only the root is a label node. Each of these
trees is called a fragment.

Following this definition, the number of trees in
F (including single-node trees) equals the number
of labels. For example, if we remove all the dotted
edges in Figure 1, we obtain a forest of 5 fragments.

Definition 2 (Underspecification Graph). Let F =
(L ] H,S) be a forest of fragments and C be a set
of directed dotted edges from L]H to L, called the
set of constraints.2 U = (L ] H,S ] C) is called
an underspecification graph or UG.

Figures 1 and 3 each represent a UG.

Definition 3 (Plugging). (Bos, 1996)
Given a UG U = (L ]H,S ] C), a plugging P is

a total one-to-one function from H to L.

In Figure 1, if lA, lE , lP , lC , and lR represent
the nodes labeled by A(y), Every(x), Politician(y),
Child(x,y), and Run(x) respectively and hr

A (hb
A) and

hr
E (hb

E) represent the restriction (body) hole of A
and Every respectively, then P in (6) is a plugging.

6. P = {(hr
A, lP ), (hb

A, lC), (hr
E , lA), (hb

E , lR)}
We use TU,P to refer to the graph, formed from U

by removing all the constraints and plugging P (h)
into h for every hole h. For example if U is the UG
in Figure 1 and P is the plugging in (6), then TU,P

is the graph shown in Figure 2(a).
2We assume that there is no constraint edge between two

nodes of the same fragment.
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Definition 4 (Permissibility/Solution). TU,P satis-
fies the constraint (u,v) in U , iff u dominates3 v in
TU,P .4 A plugging P is permissible, iff TU,P is a for-
est satisfying all the constraints in U . TU,P is called
a solution of U iff P is a permissible plugging. In
informal contexts, solutions are sometimes referred
to as readings.

It is easy to see that the plugging in (6) is a per-
missible plugging for the UG in Figure 1, and hence
Figure 2(a) is a solution of this UG. Similarly, Fig-
ures 4(a,b) represent two solutions of the UG in Fig-
ure 3. The solutions in Figures 2 and 4 are all tree
structures. This is because UGs in Figures 1 and 3
are weakly connected.5 Lemma 2 proves that this
holds in general, that is:

Proposition 1. Every solution of a weakly con-
nected UG is a tree.

Throughout the rest of this paper, unless other-
wise specified, UGs are assumed to be weakly con-
nected, hence solutions are tree structures.6

Lemma 2. (Bodirsky et al., 2004)
Given a UG U and a solution T of U , if the nodes u
and v in U are connected using an undirected path
p, there exists a node w on p such that w dominates
both u and v in T.

This Lemma is proved using induction on the
length of p. As mentioned before, satisfiability and
enumeration are two fundamental problems to be
solved for a UG. A straightforward approach is de-
picted in Figure 5. We pick a label l; remove it from
U ; recursively solve each of the resulting weakly
connected components (WCCs; cf. footnote 2) and

3u dominates v in the directed graph G, iff u reaches v in G
by a directed path.

4Here, we are referring to the nodes in TU,P by calling the
nodes u and v in U . This is a sound strategy, as every node in
U is mapped into a unique node in TU,P . The inverse is not true
though, as every node (except the root) in TU,P corresponds to
one hole and one label in U . Addressing TU,P ’s nodes in this
way is convenient, so we practice that throughout the paper.

5Given a directed graph G and the nodes u and v in G, u is
said to be weakly connected to v (and vice versa), iff u and v are
connected in the underlying undirected graph of G. A weakly
connected graph is a graph in which every two nodes are weakly
connected. Since weak connectedness is an equivalence rela-
tion, it partitions a directed graph into equivalent classes each
of which is called a weakly connected component or WCC.

6Since fragments are ordered trees, solutions are ordered
trees as well.

Figure 5: Recursively solving UGs.

plug the root of the returned trees into the corre-
sponding holes of l. A problem to be addressed
though is whether there exists any solution rooted
at l. This leads us to the following definition.

Definition 5 (Freeness). (Bodirsky et al., 2004)
A label l in U is called a free node, iff there exists

some solution of U rooted at l. The fragment rooted
at l is called a free fragment.

The following proposition states the necessary
conditions for a label (or fragment) to be free.7

Proposition 3. Let l in U be the root of a fragment
F with m holes. l is a free node of U , only if
P3a. l has no incoming (constraint) edge;
P3b. Every distinct hole of F lies in a distinct WCC

in U−l;
P3c. U−F consists of at least m WCCs.

Proof. The first condition is trivial. To see why
the second condition must hold, let T be a solution
rooted at l, and assume to the contrary that h1 and
h2 lie in the same WCC in U− l. From Lemma 2,
all the nodes in this WCC must be in the scope of
both h1 and h2. But this is not possible, because T
is a tree. The third condition is proved similarly. As-
sume to the contrary that U−F has m − 1 WCCs.
From Lemma 2, all the nodes in a WCC must be in
the scope of a single hole of F . But there are m
holes and only m − 1 WCCs. It means that one of
the holes in T is left unplugged. Contradiction!

The motivation behind defining super nets is to
find a subset of UG for which these conditions are
also sufficient. The following concept from Althaus
et al. (2003) plays an important role.

7Necessary conditions of freeness in a UG are not exactly
the same as the ones in a weakly normal dominance graph, as
depicted in Bodirsky et al. (2004), because the definition of so-
lution is different for the two frameworks (c.f. Section 4.3).
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Figure 6: UG for Illustration of hypernormal path.

Definition 6 (Hypernormal Connectedness). Given
a UG U , a hypernormal path is an undirected path8

with no two consecutive constraint edges emanating
from the same node. Node u is hypernormally con-
nected to node v iff there is at least one hypernormal
path between the two. U is called hypernormally
connected iff every pair of nodes in U are hypernor-
mally connected.

For example, in Figure 2, p2 is a hypernormal
path, but p1 is not. In spite of that, the whole graph
is hypernormally connected.9 The following simple
notion will also come handy.

Definition 7 (Openness). (Thater, 2007)
A node u of a fragment F is called an open node iff
it has no outgoing constraint edge.

For example, l in Figure 5(a) is an open label
node. In Figure 2(b), h2 is an open hole. We are
finally ready to define super net.

Definition 8 (Super net). A UG U is called a super
net if for every fragment F rooted at l:

D8a. F has at most one open node.
D8b. If l1 and l2 are two dominance children of a

hole h of F, then l1 and l2 are hypernormally
connected in U−h.

D8c. • Case 1: F has no open hole.
Every dominance child10 of l is hypernor-
mally connected to some hole of F in U−l.
• Case 2: F has an open hole.

All dominance children of l, not hypernor-
mally connected to a hole of F in U−l, are
hypernormally connected together.

8Throughout this paper, by path we always mean a simple
path, that is no node may be visited more than once on a path.

9Note that even though p1 is not a hypernormal path, there
is another hypernormal path connecting the same two nodes

10v is a dominance child of u in a UG U , if (u, v) is a con-
straint edge in U .

Figure 7: Illustration of super net conditions.

Definition 9 (Types of fragment). Following Defini-
tion 8, super net allows for three possible types of
fragment:
D9a. Open-root: Only the root is open (Figure 5a)
D9b. Open-hole: Only a hole is open (Figure 2b)
D9c. Closed: F There is no open node. (Figure 2a)

Definition 8 guarantees the following property.

Lemma 4. For a super net U and a fragment F of
U with m holes, which satisfies the conditions in
Proposition 3, U−F consists of exactly m WCCs,
each of which is a super net.

Proof sketch. The detailed proof of this Lemma is
long. Therefore, we sketch the proof here and leave
the details for a longer paper. First, we show that
U−F consists of exactly m WCCs. Following con-
ditions (D8b) and (D8c), no matter what structure F
has, U−F consists of at most m WCCs. On the other
hand, based on condition (P3c), U−F has at least m
WCCs. Therefore, U−F has exactly m WCCs. To
prove that each WCC in U−F is a super net, all we
need to prove is that if two nodes u and v, which do
not belong to F , are hypernormally connected in U ,
they are also hypernormally connected in U−F . This
is proved by showing that there is no hypernormal
path between u and v in U that visits some node of
F . Suppose that F is an open-hole fragment rooted
at l, as in Figure 2(b) (the two other cases are proved
similarly) and assume to the contrary that there is a
hypernormal path p between u and v that visits some
node of F . One of the following three cases holds.

i. p visits exactly one node of F .
ii. p visits (at least) two holes of F .

iii. p visits l and exactly one hole of F .

All the three cases results in a contradiction: (i)
proves that p is not hypernormal; (ii) proves that F
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Figure 8: Proof of Proposition 5

is not a free fragment because it violates condition
(P3b); and (iii) proves that U is not a super net be-
cause F violates condition (D8c).
Proposition 5. If U is a satisfiable super net, the
necessary freeness conditions in Proposition 3 are
also sufficient.

Proof sketch. Let F rooted at l be a fragment satis-
fying the three conditions in Proposition 3. Among
all the solutions of U , we pick a solution T in which
the depth d of l is minimal. Using proof by con-
tradiction, we show that d = 0, which proves l is
the root of T . If d > 0, there is some node u that
outscopes l (Figure 8(a)). Lemma 2 and 4 guarantee
that at least one of the trees in Figures 8(b,c) is a so-
lution of U . So U has a solution in which, the depth
of l is smaller than d. Contradiction!

3 SAT and ENUM algorithms

Following Lemma 4 and Proposition 5, Table 1 gives
the algorithms for the satisfiability (SAT), and the
enumeration (ENUM) of super nets.

Theorem 6. ENUM and SAT are correct.

Proof sketch. Using Lemma 4 and induction on the
depth of the recursion, it is easy to see that if ENUM
or SAT returns a tree T , T is a solution of U . This
proves that ENUM and SAT are sound. An induc-
tive proof is used to prove the completeness as well.
Consider a solution T of depth n of U (Figure 5). It
can be shown that T1 and T2 must be the solutions
to U1 and U2. Therefore based on the induction as-
sumption they are generated by Solve(G), hence T
is also generated by Solve(G).

Let U = (L ] H,S ] C). The running time of
the algorithms depends on the depth of the recursion
which is equal to the number of fragments/labels,
|L|. At each depth it takes O(|U |) to find the
set of free fragments (Bodirsky et al., 2004) and
also to compute U −F for some free fragment F .

Solve(U)
1. If U contains a single (label) node, return U .
2. Pick a free fragment F with m holes

rooted at l, otherwise fail.
// For SAT: pick arbitrarily.
// For ENUM: pick non-deterministically.

3. Let U1, U2, · · · , Um be WCCs of U−F .
4. Let Ti = Solve(Ui) for i = 1 · · ·m.
5. Let hi be the hole of F connected to

Ui in U−l, for i = 1 · · ·m.
(If for some k, Uk is not connected to any hole

of F in U−l, let hk be the open hole of F .)
6. Build T by plugging the root of Ti into hi,

for i = 1 · · ·m.
7. Return T .

Table 1: ENUM and SAT algorithms

(|U | =def |V | + |E|, where |V | =def |L| + |H|,
and |E| =def |S| + |C|). Therefore SAT (and each
branch of ENUM) run(s) in O(|L|.|U |) step. There-
fore the worst-case time complexity of SAT and each
branch of ENUM is quadratic in the size of U .

4 Super net versus weak net

Although net is a subset of weak net, to better un-
derstand the three frameworks, we first define net.

4.1 Net

Net was first defined by Koller et al. (2003), in or-
der to find a subset of Hole Semantics that can be
solved in polynomial-time. Nets do not contain any
label-to-label constraints. In fact, out of the three
possible structures that super net allows for a frag-
ment F (Definition 9), net only allows for the first
one, that is open-root.

Definition 10 (Net). (Thater, 2007)
Let U be a UG with no label-to-label constraints. U
is called a net iff for every fragment F :

D10a. F has no open hole.
D10b. If l1, l2 are two dominance children of a hole

h of F , then l1 and l2 are hypernormally
connected in U−h.

The root of F is open, therefore (D8a) subsumes
(D10a). Condition (D10b) is exactly the same as
(D8b). Therefore, super net is a superset of net.
Strictness of the superset relationship is trivial.
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4.2 Weak net

Weak net was first introduced by Niehren and Thater
(2003), in order to find a tractable subset of MRS. In
order to model MRS, weak net allows for label-to-
label constraints, but to stay a tractable framework it
forces the following restrictions.

Definition 11 (Weak net). (Thater, 2007)
A UG U is a weak net iff for every fragment F :

D11a. F has exactly one open node.

D11b. If l1, l2 are two dominance children of a
node u of F , then l1 and l2 are hypernor-
mally connected in U−u.

Weak nets suffer from two limitations with re-
spect to super nets.

First, out of the three possible types of frag-
ment allowed by super net (Definition 9), weak net
only allows for the first two; open-root and open-
hole. In practice this becomes an issue only if
new constraints are to be added to a UG after syn-
tax/semantic interface. Since weak net requires one
node of every fragment to be open, a constraint can-
not be added if it violates this condition.11

Second, open-hole fragments in weak nets are
more restricted than open-hole fragments in super
nets. This is the Achilles’ heel of weak nets (D11b).
To see why, consider the UG in Figure 3 for the sen-
tence Every politician, whom I know a child of, runs
which we presented in Section 1. If F is the frag-
ment for the quantifier Every and l is the root of F ,
the two dominance children of l are not (hypernor-
mally) connected in U − l. Therefore, U is not a
weak net. All the non-net examples we have found
so far behave similarly. That is, there is a quanti-
fier with more than one outgoing dominance edge.
Once you remove the quantifier node, the dominance
children are no longer weakly (and hence hypernor-
mally) connected, violating condition (D11b). In
super net, however, we define case 2 of condition
(D8c) such that it does not force dominance chil-
dren of l to be (hypernormally) connected, allowing
for non-net structures such as the one in Figure 3.12

11As discussed in Section 5, by defining the notion of down-
ward connectedness, Koller and Thater (2007) address this issue
of weak nets, at the expense of cubic time complexity.

12For simplicity, throughout this paper we have used the term
non-net to refer to non-(weak net) UGs.

Proposition 7. Weak net is a strict subset of super
net.

Proof. Consider an arbitrary weak net U , and let F
be an arbitrary fragment of U rooted at l.

(i). F has exactly one open node, so it satisfies con-
dition (D8a).

(ii). For every two holes of F , condition (D11b)
guarantees that condition (D8b) holds.

(iii). • Case 1) F has no open hole:
Based on condition (D11a) the root of F is
open, hence it has no dominance children.
(D8c) trivially holds in this case.
• Case 2) F has an open hole:

Based on condition (D11b) every two dom-
inance children of l are hypernormally con-
nected, so (D8c) holds in this case too.

Therefore, every fragment F satisfies all the con-
ditions in Definition 8, hence U is a super net. This
and the fact that Figure 3 is a super net but not a
weak net complete the proof.

4.3 Underspecification graph vs. weakly
normal dominance graph

Dominance graphs and their ancestor, dominance
constraints, are designed for solving constrained tree
structures in general. Therefore, some of the ter-
minology of dominance graph may seem counter-
intuitive when dealing with scope underspecifica-
tion. For example the notion of solution in that for-
malism is broader than what is known as solution
in scope underspecification formalisms. As defined
there (but translated into our terminology), a solu-
tion may contain unplugged holes, or holes plugged
with more than one label. This broad notion of so-
lution is computationally less expensive such that an
algorithm very similar to the one in Table 1 can be
used to solve every weakly normal dominance graph
(Bodirsky et al., 2004). Solution, as defined in this
paper (Definition 4), corresponds to the notion of
simple leaf-labeled solved forms (a.k.a. configu-
ration) in dominance graphs. Although solutions
of a weakly normal dominance graph can be found
in polynomial time, finding configurations is NP-
complete. Solvability of underspecification graphs
is equivalent to configurability of weakly normal
dominance graphs, and hence NP-complete.

148



5 Related work

We already compared our model with nets and weak
nets. Koller and Thater (2007) present another ex-
tension of weak nets, downward connected nets.
They show that if a dominance graph has a subgraph
which is a weak net, it can be solved in polynomial
time. This addresses the first limitation of weak nets,
discussed in Section 4.2, but it does not solve the
second one, because the graph in Figure 3 neither is
a weak net, nor has a weak-net subgraph.

Downward connected dominance graph, in its
general form, goes beyond weakly normal domi-
nance graph (and hence UG), incorporating label-to-
hole constraints. It remains for future work to inves-
tigate whether allowing for label-to-hole constraints
adds any value to the framework within the context
of scope underspecified semantics, or whether it is
possible to model the same effect using hole-to-label
and label-to-label constraints. In any case, the same
extension can be applied to super nets as well, defin-
ing downward connected super nets, a strict super
set of downward connected nets, solvable using sim-
ilar algorithms with the same time/space complexity.

Another tractable framework presented in the past
is our own framework, Canonical Form Under-
specified Representation (CF-UR) (Manshadi et al.,
2009), motivated by Minimal Recursion Semantics.
CF-UR is defined to characterize the set of all MRS
structures generated by the MRS semantic composi-
tion process (Manshadi et al., 2008). CF-UR in its
general form is not tractable. Therefore, we define
a notion of coherence called heart-connectedness
and show that all heart-connected CF-UR struc-
tures can be solved efficiently. We also show that
heart-connected CF-UR covers the family of non-net
structures, so CF-UR is in fact the first framework to
address the non-net structures. In spite of that, CF-
UR is quite restricted and does not allow for adding
new constraints after semantic composition.

In recent work, Koller et al. (2008) suggest us-
ing Regular Tree Grammars for scope underspeci-
fication, a probabilistic version of which could be
used to find the best reading. The framework goes
beyond the formalisms discussed in this paper and
is expressively complete in Ebert (2005)’s sense of
completeness, i.e. it is able to describe any subset
of the readings of a UR. However, this power comes

at the cost of exponential complexity. In practice,
RTG is built on top of weak nets, benefiting from the
compactness of this framework to remain tractable.
Being a super set of weak net, super net provides a
more powerful core for RTG.

Koller and Thater (2010) address the problem of
finding the weakest readings of a UR, which are
those entailed by some reading(s), but not entailing
any other reading of the UR. By only considering
the weakest readings, the space of solutions will be
dramatically reduced. Note that entailment using the
weakest readings is sound but not complete.

6 Summary and Future work

Weakly normal dominance graph brings many cur-
rent constraint-based formalisms under a uniform
framework, but its configurability is intractable in its
general form. In this paper, we present a tractable
subset of this framework. We prove that this sub-
set, called super net, is a strict superset of weak net,
a previously known tractable subset of the frame-
work, and that it covers a family of coherent natural
language sentences whose underspecified represen-
tation are known not to belong to weak nets.

As mentioned in Section 5, another extension of
weak nets, downward connected nets, has been pro-
posed by Koller and Thater (2007), which addresses
some of the limitations of weak nets, yet is unable
to solve the known family of non-net structures. A
thorough comparison between super nets and down-
ward connected nets remains for future work.

Another interesting property of super nets to be
explored is how they compare to heart-connected
graphs. Heart-connectedness has been introduced
as a mathematical criterion for verifying the coher-
ence of an underspecified representation within the
framework of underspecification graph (Manshadi et
al., 2009). Our early investigation shows that super
nets may contain all heart-connected UGs. If this
conjecture is true, super net would be broad enough
to cover every coherent natural language sentence
(under this notion of coherence). We leave a detailed
investigation of this conjecture for the future.
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