
Proceedings of Recent Advances in Natural Language Processing, pages 495–502,
Hissar, Bulgaria, 12-14 September 2011.

A Mechanism to Restrict the Scope of Clause-Bounded

Quantifiers in ‘Continuation’ Semantics

Anca Dinu

Faculty of Foreign Languages and

Literatures, University of Bucharest

anca_d_dinu@yahoo.com

Abstract

This paper presents a formal mechanism to

properly constrain the scope of negation and of

certain quantificational determiners to their

minimal clause in continuation semantics

framework introduced in Barker and Shan

(2008) and which was subsequently extended

from sentential level to discourse level in Dinu

(2011). In these works, type shifting is

employed to account for side effects such as

pronominal anaphora binding or quantifier

scope. However, allowing arbitrary type

shifting will result in overgenerating

interpretations impossible in natural language.

To filter out some of these impossible

interpretations, once the negation or the

quantifiers reach their maximal scope limits

(that is their minimal clause), one should force

their scope closing by applying a standard type

shifter Lower. But the actual mechanism that

forces the scope closing was left

underspecified in previous work on

continuation semantics. We propose here such

a mechanism, designed to ensure that no

lexical entries having the scope bounded to

their minimal clause (such as not, no, every,

each, any, etc) will ever take scope outside.

1 Introduction

The starting point of this paper is the

continuation semantics introduced in Barker and

Shan (2008) and extended from sentential level

to discourse level in Dinu (2011). In this

framework, type shifting is used to account for

side effects such as pronominal anaphora binding

or quantifier scope. However, allowing arbitrary

type shifting will result in overgenerating

interpretations impossible in natural language.

To filter out these impossible interpretations, we

first need to understand the scope behavior of

each scope-taking lexical entry: its maximal

scope limits and the scope precedence

preferences w.r.t. other lexical entries. Second,

we should force the scope closing of the

quantifiers by applying a standard type shifter

Lower (which is equivalent to identity function

application), once their scope limits were

reached. But the actual mechanism that ensures

the scope closing was left underspecified in

previous work on continuation semantics.

In what follows, we propose such a

mechanism, designed to ensure that no lexical

entry having the scope bounded to its minimal

clause (such as not, no, every, each, any, etc) will

ever take scope outside, thus getting right

discourse truth conditions.

The programming language concept of

continuations was successfully used by Barker

and Shan in a series of articles (Barker 2002,

Barker 2004, Shan 2005, Shan and Barker 2006,

Barker and Shan 2008) to analyze intra-sentential

linguistic phenomena (focus fronting, donkey

anaphora, presupposition, crossover, superiority,

etc). Moreover, (de Groote, 2006) proposed an

elegant discourse semantics based on

continuations. Continuations are a standard tool

in computer science, used to control side effects

of computation. They are a notoriously hard to

understand notion. Actually, understanding what

a continuation is per se is not so hard. What is

more difficult is to understand how a grammar

based on continuations (a „continuized‟

grammar) works. The basic idea of continuizing

a grammar is to provide subexpressions with

direct access to their own continuations (future

context), so subexpressions are modified to take

a continuation as an argument. A continuized

grammar is said to be written in continuation

495

passing style. Continuation passing style is in

fact a restricted (typed) form of λ-calculus.

Historically, the first continuation operators

were undelimited (e.g., call/cc or J). An

undelimited continuation of an expression

represents “the entire (default) future for the

computation” of that expression. Felleisen (1988)

introduced delimited continuations (sometimes

called „composable‟ continuations) such as

control („C‟) and prompt („%‟). Delimited

continuations represent the future of the

computation of the expression up to a certain

boundary. Interestingly, the natural-language

phenomena discussed here make use only of

delimited continuations.

For instance, if we take the local context to be

restricted to the sentence, when computing the

meaning of the sentence John saw Mary., the

default future of the value denoted by the subject

is that it is destined to have the property of

seeing Mary predicated of it. In symbols, the

continuation of the subject denotation j is the

function 𝜆𝑥. 𝑠𝑎𝑤 𝒎 𝑥. Similarly, the default

future of the object denotation m is the property

of being seen by John, the function 𝜆𝑦. 𝒔𝒂𝒘 𝑦 𝑗;
the continuation of the transitive verb denotation

saw is the function 𝜆𝑅. 𝑅 𝑚 𝑗; and the

continuation of the verb phrase saw Mary is the

function 𝜆𝑃. 𝑃 𝑗. This simple example illustrates

two important aspects of continuations:

(1) every meaningful subexpression has a

continuation;

(2) the continuation of an expression is

always relative to some larger expression

containing it.

Thus, when John occurs in the sentence John

left yesterday., its continuation is the property

𝜆𝑥. 𝒚𝒆𝒔𝒕𝒆𝒓𝒅𝒂𝒚 𝒍𝒆𝒇𝒕 𝑥; when it occurs in Mary

thought John left., its continuation is the property

𝜆𝑥. 𝒕𝒉𝒐𝒖𝒈𝒉𝒕 (𝒍𝒆𝒇𝒕 𝑥) 𝑚 and when it occurs in

the sentence Mary or John left., its continuation

is 𝜆𝑥. (𝒍𝒆𝒇𝒕 𝒎) ∨ (𝒍𝒆𝒇𝒕 𝑥) and so on.

It is worth mentioning that some results of

traditional semantic theories are particular cases

of results in continuation semantics:

 The generalized quantifier type from

Montague grammar (Montague, 1970)

<<<e,t>,t>,t> is exactly the type of

quantificational determiners in continuation-

based semantics;

 The <<t,t>,t> type of sentences in

dynamic semantics is exactly the type of

sentences in continuation-based semantics. In

fact, dynamic interpretation constitutes a partial

continuization in which only the category S has

been continuized.

This is by no means a coincidence, MG only

continuizes the noun phrase meanings and

dynamic semantics only continuizes the sentence

meanings, rather than continuizing uniformly

throughout the grammar as it is done in

continuation semantics.

2 Preliminaries

We use Barker and Shan‟s (2008) tower notation

for a given expression, which consists of three

levels: the top level specifies the syntactic

category of the expression couched in categorial

grammar, the middle level is the expression itself

and the bottom level is the semantic value:

𝑠𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

The syntactic categories are written
𝐶|𝐵

𝐴
 ,

where A, B and C can be any categories. We read

this counter clockwise as “the expression

functions as a category A in local context, takes

scope at an expression of category B to form an

expression of category C.”

The semantic value in linear notation

𝜆𝑘. 𝑓[𝑘(𝑥)] is equivalently written vertically as
𝑓[]

𝑥
 omitting the future context (continuation) k.

Here, x can be any expression, and f[] can be

any expression with a gap []. Free variables in x

can be bound by binders in f []. This vertical

(layered) notational convention is meant to make

the combination process of two expressions

easier (more visual) then in linear notation. Here

there are the two possible modes of combination

(Barker and Shan 2008):

𝐶|𝐷

𝐴/𝐵

𝐷|𝐸

𝐵
𝑙𝑒𝑓𝑡 − 𝑒𝑥𝑝 𝑟𝑖𝑔𝑡 − 𝑒𝑥𝑝

𝑔[]

𝑓

[]

𝑥

=

𝐶|𝐸

𝐴
𝑙𝑒𝑓𝑡 − 𝑒𝑥𝑝 𝑟𝑖𝑔𝑡 − 𝑒𝑥𝑝

𝑔[]

𝑓(𝑥)

𝐶|𝐷

𝐵

𝐷|𝐸

𝐵\𝐴
𝑙𝑒𝑓𝑡 − 𝑒𝑥𝑝 𝑟𝑖𝑔𝑡 − 𝑒𝑥𝑝

𝑔[]

𝑥

[]

𝑓

=

𝐶|𝐸

𝐴
𝑙𝑒𝑓𝑡 − 𝑒𝑥𝑝 𝑟𝑖𝑔𝑡 − 𝑒𝑥𝑝

𝑔[]

𝑓(𝑥)

Below the horizontal lines, combination

proceeds simply as in combinatory categorial

grammar: in the syntax, B combines with A/B or

B\A to form A; in the semantics, x combines with

f to form f(x). Above the lines is where the

496

combination machinery for continuations kicks

in. The syntax combines the two pairs of

categories by a kind of cancellation: the D on the

left cancels with the D on the right. The

semantics combines the two expressions with

gaps by a kind of composition: we plug h[] to

the right into the gap of g[] to the left, to form

g[h[]]. The expression with a gap on the left, g[

], always surrounds the expression with a gap on

the right, h[], no matter which side supplies the

function and which side supplies the argument

below the lines. This fact expresses the

generalization that the default order of semantic

evaluation is left-to-right.

When there is no quantification or anaphora

involved, a simple sentence like John came. is

derived as follows:

𝐷𝑃 𝐷𝑃\𝑆

𝐽𝑜𝑛 𝑐𝑎𝑚𝑒
𝑗 𝑐𝑎𝑚𝑒

 =
𝑆

𝐽𝑜𝑛 𝑐𝑎𝑚𝑒
𝑐𝑎𝑚𝑒 𝑗

In the syntactic layer, as usual in categorical

grammar, the category under slash (here DP)

cancels with the category of the argument

expression; the semantics is function application.

Quantificational expressions have extra layers

on top of their syntactic category and on top of

their semantic value, making essential use of the

powerful mechanism of continuations in ways

proper names or definite descriptions do not. For

instance, below is the derivation of A man came.:

𝑆|𝑆

𝐷𝑃
/𝑁

𝑎

𝜆𝑃.
∃𝑥. 𝑃 𝑥

𝑥

𝑁

𝑚𝑎𝑛
𝑚𝑎𝑛

𝑆|𝑆

𝐷𝑃\𝑆
𝑐𝑎𝑚𝑒

𝒄𝒂𝒎𝒆

 =

𝑆|𝑆

𝑆
𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒

∃𝑥. 𝑚𝑎𝑛 𝑥

𝒄𝒂𝒎𝒆 𝑥

Comparing the analysis above of John came

with that of A man came reveals that came has

been given two distinct values. The first, simpler

value is the basic lexical entry, the more complex

value being derived through the standard type-

shifter Lift, proposed by Partee and Rooth

(1983), Jacobson (1999), Steedman (2000), and

many others:

𝐴

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑥

𝐿𝑖𝑓𝑡

𝐵|𝐵

𝐴
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

[]

𝑥

Syntactically, Lift adds a layer with arbitrary

(but matching!) syntactic categories.

Semantically, it adds a layer with empty

brackets. In linear notation we have:

𝑥
𝐿𝑖𝑓𝑡
 𝜆𝑘. 𝑘(𝑥).

To derive the syntactic category and a

semantic value with no horizontal line, Barker

and Shan (2008) introduce the type-shifter

Lower. In general, for any category A, any value

x, and any semantic expression f[] with a gap,

the following type-shifter is available:

𝐴|𝑆

𝑆
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓[]

𝑥

 𝐿𝑜𝑤𝑒𝑟

𝐴
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓[𝑥]

Syntactically, Lower cancels an S above the

line to the right with an S below the line.

Semantically, Lower collapses a two-level

meaning into a single level by plugging the value

x below the line into the gap [] in the expression

f[] above the line. Lower is equivalent to

identity function application.

The third and the last type shifter we need is

one that accounts for binding. We adopt the idea

(in line with Barker and Shan (2008)) that the

mechanism of binding is the same as the

mechanism of scope taking. Binding is a term

used both in logics and in linguistics with analog

(but not identical) meaning. In logics, a variable

is said to be bound by an operator (as the

universal or existential operators) if the variable

is inside the scope of the operator. If a variable is

not in the scope of any operator, than the variable

is said to be free. In linguistics, a binder may be

a constituent such as a proper name (John), an

indefinite common noun (a book), an event or a

situation, etc. Anaphoric expressions such as

pronouns (he, she, it, him, himself, etc), definite

common nouns (the book, the book that John

read), demonstrative pronouns (like this, that),

etc. act as variables that take the value of (are

bind by) a previous binder.

 In order to give a proper account of

anaphoric relations in discourse, we need to

formulate an explicit semantics for both the

binder and the anaphoric expressions to be

bound. Any determiner phrase (DP) may act as a

binder, as the Bind rule from Barker and Shan

(2008) explicitly states:

𝐴|𝐵

𝐷𝑃
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓[]

𝑥

𝐵𝑖𝑛𝑑

𝐴|𝐷𝑃 ⊳ 𝐵

𝐷𝑃
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓([]𝑥)

𝑥

At the syntactic level, the Bind rule says that

an expression that functions in local context as a

DP may offer to bind an anaphoric expression to

497

the right ((Barker and Shan 2008) encode that by

the sign ⊳). At the semantic level, the expression

transmits (copies) the value of the variable x. In

linear notation, the semantic part of the Bind rule

looks like this: 𝜆𝑘. 𝑓[𝑘(𝑥)]
𝐵𝑖𝑛𝑑
 𝜆𝑘. 𝑓(𝑘 𝑥 𝑥)

As for the elements that may be bound,

(Barker and Shan 2008) give the following

lexical entry for the singular pronoun he:

𝐷𝑃 ⊳ 𝑆|𝑆

𝐷𝑃
𝑒

𝜆𝑦. []

𝑦

To account for multiple anaphoric expressions

(and their binders) or for inverse scope of

multiple quantifiers, each binder can occupy a

different scope-taking level in the compositional

tower. With access to multiple levels, it is easy to

handle multiple binders. Analyzing pronouns as

two-level rules is the same thing as claiming that

pronouns take scope (see Dowty (2007), who

also advocates treating pronouns as scope-

takers). Then, a pronoun or another anaphoric

expression chooses its binder by choosing where

to take scope. So, distinct scope-taking levels

correspond to different binders, layers playing

the role of indices: a binder and the pronoun it

binds must take effect at the same layer in the

compositional tower. A superior level takes

scope at inferior levels and left expressions take

scope at right expressions, to account for left-to-

right natural language order of processing.

Dinu (2011) extends the formalism from

sentence level to discourse level, giving the

sentence connectors such as the dot the following

semantics:

𝑆\(𝑆/𝑆)

.
𝜆𝑝𝜆𝑞. 𝑝 𝑞

that is, the dot is a function that takes two

sentence denotations and returns a sentence

denotation (the conjunction of original sentence

denotation).

For two affirmative sentences with no

anaphoric relations and no quantifiers, such as

John came. Mary left., the derivation trivially

proceeds as follows:

𝑆

𝐽𝑜𝑛 𝑐𝑎𝑚𝑒
𝒄𝒂𝒎𝒆 𝒋

𝑆\(𝑆/𝑆)
.

𝜆𝑝𝜆𝑞. 𝑝 𝑞

𝑆
𝑀𝑎𝑟𝑦 𝑙𝑒𝑓𝑡

𝒍𝒆𝒇𝒕 𝒎
=

𝑆
𝐽𝑜𝑛 𝑐𝑎𝑚𝑒. 𝑀𝑎𝑟𝑦 𝑙𝑒𝑓𝑡

𝒄𝒂𝒎𝒆 𝒋 𝒍𝒆𝒇𝒕 𝒎

As one sees above, there is no need in this

simple case to resort to type shifting at all.

Nevertheless, type shifting and the powerful

mechanism of continuations are employed when

dealing with linguistic side effects such

quantifier scope or binding. For instance, to

derive the denotation of A man came. He

whistled., type lifting, type lowering and Bound

rule become necessary:

𝑆|𝑆

𝐷𝑃
/𝑁

𝑎

𝜆𝑃.
∃𝑥. 𝑃 𝑥

𝑥

𝑁

𝑚𝑎𝑛
𝒎𝒂𝒏

=

𝑆|𝑆

𝐷𝑃
𝑎 𝑚𝑎𝑛

∃𝑥. 𝒎𝒂𝒏 𝑥

𝑥

𝐵𝑖𝑛𝑑

𝑆|𝐷𝑃 ⊳ 𝑆

𝐷𝑃
𝑎 𝑚𝑎𝑛

∃𝑥. 𝒎𝒂𝒏 𝑥 (𝑥)

𝑥

𝑆|𝐷𝑃 ⊳ 𝑆

𝐷𝑃
𝑎 𝑚𝑎𝑛

∃𝑥. 𝒎𝒂𝒏 𝑥 𝑥

𝑥

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝐷𝑃\𝑆
𝑐𝑎𝑚𝑒

𝒄𝒂𝒎𝒆

=

𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒

∃𝑥. 𝒎𝒂𝒏 𝑥 (𝑥)

𝒄𝒂𝒎𝒆 𝑥

𝐷𝑃 ⊳ 𝑆|𝑆

𝐷𝑃

𝑆|𝑆

𝐷𝑃\𝑆
𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑

𝜆𝑦. []

𝑦

𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅

 =

𝐷𝑃 ⊳ 𝑆|𝑆

𝑆
𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑

𝜆𝑦. []

𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅 𝑦

𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒

∃𝑥. 𝒎𝒂𝒏 𝑥 𝑥

𝒄𝒂𝒎𝒆 𝑥

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆\(𝑆/𝑆)
.

𝜆𝑝𝜆𝑞. 𝑝 𝑞

𝐷𝑃 ⊳ 𝑆|𝑆

𝑆
𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑

𝜆𝑦.

𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅 𝑦

=

𝑆|𝑆

𝑆
𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒. 𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑

∃𝑥. 𝒎𝒂𝒏 𝑥 (𝜆𝑦. 𝑥)

𝒄𝒂𝒎𝒆 𝑥 𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅 𝑦

𝐿𝑜𝑤𝑒𝑟

𝑆

𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒. 𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑
∃𝑥. 𝒎𝒂𝒏 𝑥 𝜆𝑦. 𝒄𝒂𝒎𝒆 𝑥 𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅 𝑦 𝑥

=
𝑆

𝑎 𝑚𝑎𝑛 𝑐𝑎𝑚𝑒. 𝑒 𝑤𝑖𝑠𝑡𝑙𝑒𝑑
∃𝑥. 𝒎𝒂𝒏 𝑥 (𝒄𝒂𝒎𝒆 𝑥 𝒘𝒉𝒊𝒔𝒕𝒍𝒆𝒅 𝑥)

Note that the denotations of came and

whistled were also lifted so as to match the ones

of a and he, both being scope-takers. The last

equality sign is due to routine lambda

conversion.

498

3 Restricting the Scope of Clause-

Bounded Lexical Entries

A first proposal for the lexical entry for the

negation could look like this:

𝑆|𝑆

(𝐷𝑃\𝑆)/(𝐷𝑃\𝑆)
𝑛𝑜𝑡
¬[]

[]

meaning that negation functions in local context

as a verb modifier and takes scope at a sentence

to give a sentence.

Using this denotation for not, the piece of

discourse John does not own a car. is interpreted

as (ignoring the auxiliary does for simplicity):

𝑆|𝑆

𝐷𝑃
𝐽𝑜𝑛

𝒋

𝑆|𝑆

(𝐷𝑃\𝑆)/(𝐷𝑃\𝑆)
𝑛𝑜𝑡
¬

𝑆|𝑆

(𝐷𝑃\𝑆)/𝐷𝑃
𝑜𝑤𝑛

𝒐𝒘𝒏

𝑆|𝑆

𝐷𝑃
𝑎 𝑐𝑎𝑟

∃𝑥. 𝒄𝒂𝒓 𝑥

𝑥

=

𝑆|𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥)

 𝒐𝒘𝒏 𝑥 𝒋

𝐿𝑜𝑤𝑒𝑟

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋)

meaning that there is no car that John owns, a

fair approximation of the intended meaning.

It is generally accepted that negation cannot

take scope outside its minimal clause. But, if we

do not restrict the possible scope of negation,

continuing the discourse with the sentence *It is

red., could result in the following derivation:

𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝑥)

 𝒐𝒘𝒏 𝑥 𝒋

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆\(𝑆/𝑆)
.

𝜆𝑝𝜆𝑞. 𝑝 𝑞

𝐷𝑃 ⊳ 𝑆|𝑆

𝑆
𝐼𝑡 𝑖𝑠 𝑟𝑒𝑑
𝜆𝑦.

𝒊𝒔 𝒓𝒆𝒅 𝑦

=

𝑆|𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟. 𝐼𝑡 𝑖𝑠 𝑟𝑒𝑑

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝜆𝑦. 𝑥)

 𝒐𝒘𝒏 𝑥 𝒋 𝒊𝒔 𝒓𝒆𝒅 𝑦

𝐿𝑜𝑤𝑒𝑟

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟. 𝐼𝑡 𝑖𝑠 𝑟𝑒𝑑

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝜆𝑦. 𝒐𝒘𝒏 𝑥 𝒋 𝒔 𝒓𝒆𝒅 𝑦 𝑥)

 =

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟. 𝐼𝑡 𝑖𝑠 𝑟𝑒𝑑

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋 𝒊𝒔 𝒓𝒆𝒅 𝑥)

which would incorrectly assert that there is no

car which is owned by John and which is red.

Moreover, it would wrongly refer back to a car.

In fact, if we do not restrict the possible scope of

negation, any following sentence may be

wrongly interpreted inside the scope of negation.

In order to block such interpretations, we

could adopt a similar strategy with the one

proposed in Barker and Shan (2008): to force the

scope closing of not immediately after the

interpretation of its minimal clause, by applying

Lower. This also closes the scope of any other

DP inside the scope of negation, so it becomes

impossible for it to bind subsequent anaphoric

expressions. But this strategy leaves the actual

mechanis that insures the scope closing

unspecified. As Barker and Shan put it, when

referring to the scope closing of every, “Like

most leading accounts of donkey anaphora, we

provide no formal mechanism here that bounds

the scope-taking of universals”.

In what follows, we propose such a

mechanism within the continuation semantics

framework. The mechanism is designed to

ensure that no lexical entries having the scope

bounded to their minimal clause (such as not, no,

every, each, any, etc) will ever take scope

outside.

We introduce a new category for clauses: C,

of the same semantic type as the category S,

namely t. C is the minimal discourse unit,

whereas S is contains at least one such unit.

We constrain by definition the lexical entries

with clause-bounded scope to take scope only at

clauses. For instance, here there are the lexical

entries for not, no and every:

C|C

(DP\C)/(DP\C)
not
¬[]

[]

C|C

DP
/N

no

λP.
¬∃x. (P(x) ∧)

x

C|C

C|C
DP

/N

every
∀x. []

λP.
P x ⟶ []

x

After the full interpretation of the minimal

clause which they appear in, the category C has

to be converted to category S. Specifically, one

can use the following silent lexical entry:

S/C
Φ

λp. p([])

499

This step ensures that clauses (of category C)

can be further processed as pieces of discourse

(of category S), because all discourse connectors

(such as the dot or if) are allowed to take only

expressions of category S as arguments.

We modify the Lower rule such that category

C may also be lowered similarly to category S:

𝐴|𝐶

𝐶
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓[]

𝑥

 𝐿𝑜𝑤𝑒𝑟

𝐴
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑓[𝑥]

With this clause-restricting mechanism, the

derivation of John does not own a car. becomes:

𝐶|𝐶

𝐷𝑃
𝐽𝑜𝑛

𝒋

𝐶|𝐶

(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)
𝑛𝑜𝑡
¬

𝐶|𝐶

(𝐷𝑃\𝐶)/𝐷𝑃
𝑜𝑤𝑛

𝑜𝑤𝑛

𝐶|𝐶

𝐷𝑃
𝑎 𝑐𝑎𝑟

∃𝑥. 𝒄𝒂𝒓 𝑥

𝑥

=

𝐶|𝐶

𝐶
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥)

 𝒐𝒘𝒏 𝑥 𝒋

𝐿𝑜𝑤𝑒𝑟

𝐶
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋)

Now that the scope of negation is closed, it is

obviously impossible for it to stretch over the

following discourse. We only have to change the

category C into S in order to connect it to the

discourse:

𝑆/𝐶
𝛷

𝜆𝑝. 𝑝([])

𝐶
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋)

=

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

𝜆𝑝. 𝑝([¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋)])

=

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

¬(∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒋)]

What about the binding capabilities of the

expressions in a clause whose scope has been

closed? The subject, for instance, should be able

to bind subsequent anaphora. It can do so by

lifting over the negation and being available to

bind from that position:

𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛
 𝒋

𝒋

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)

𝑛𝑜𝑡

¬

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
(𝐷𝑃\𝐶)/𝐷𝑃

𝑜𝑤𝑛

𝒐𝒘𝒏

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
𝐷𝑃

𝑎 𝑐𝑎𝑟
[]

∃𝑥. 𝒄𝒂𝒓 𝑥
𝑥

=

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
𝐶

𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟
[]𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥
𝒐𝒘𝒏 𝑥

𝐿𝑜𝑤𝑒𝑟

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

[]𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥

𝑆|𝑆

𝑆/𝐶
𝛷
[]

𝜆𝑝. 𝑝([])

𝑆|𝐷𝑃 ⊳ 𝑆

𝐶
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

[]𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥

=

 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

[]𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥

 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟

[]𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥

𝐷𝑃 ⊳ 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆\(𝑆/𝑆)
.

𝜆𝑝𝜆𝑞. 𝑝 𝑞

𝐷𝑃 ⊳ 𝑆|𝑆

𝑆
𝐻𝑒 𝑐𝑎𝑚𝑒 𝑏𝑦 𝑓𝑜𝑜𝑡

𝜆𝑦.

𝒄𝒂𝒎𝒆 𝒃𝒚 𝒇𝒐𝒐𝒕 𝑦

=

𝑆|𝑆

𝑆
𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟. 𝐻𝑒 𝑐𝑎𝑚𝑒 𝑏𝑦 𝑓𝑜𝑜𝑡

𝜆𝑦. 𝒋

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒄𝒂𝒎𝒆 𝒃𝒚 𝒇𝒐𝒐𝒕 𝑦

𝐿𝑜𝑤𝑒𝑟

𝑆

𝐽𝑜𝑛 𝑛𝑜𝑡 𝑜𝑤𝑛 𝑎 𝑐𝑎𝑟. 𝐻𝑒 𝑐𝑎𝑚𝑒 𝑏𝑦 𝑓𝑜𝑜𝑡

¬∃𝑥. 𝒄𝒂𝒓 𝑥 𝒐𝒘𝒏 𝑥 𝒄𝒂𝒎𝒆 𝒃𝒚 𝒇𝒐𝒐𝒕 𝒋

It is conceivable that an indefinite in direct

object position may also rise from its minimal

negated clause to give the inverse scope

interpretation. This interpretation may sometimes

be ruled out on pragmatic grounds as being too

uninformative (for instance, there is a car that

John does not own is not a valid interpretation

for John does not own a car.) or may be the

preferred interpretation (there is a certain

colleague Mary does not like is the preferred

interpretation of Mary does not like a

colleague.). Also, there are lexical entries such as

negative polarity items (for instance, any) or

definite descriptions (such as John, the man, the

man who entered) that, when in direct object

position of a negated verb phrase, take wide

scope over negation and thus bind subsequent

anaphora. For instance, here it is the derivation

of Mary does not like John. He is rude.:

𝑆|𝑆

𝐶|𝐶
𝐷𝑃

𝑀𝑎𝑟𝑦

𝒎

𝑆|𝑆

𝐶|𝐶
(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)

𝑛𝑜𝑡

¬

𝑆|𝑆

𝐶|𝐶
𝐷𝑃\𝐶
𝑙𝑖𝑘𝑒

𝒍𝒊𝒌𝒆

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛
 𝒋

𝒋

=

500

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶|𝐶
𝐶

𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛
 𝒋

¬
𝒍𝒊𝒌𝒆 𝒋 𝒎

𝐿𝑜𝑤𝑒𝑟

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛

 𝒋

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎

𝑆|𝑆

𝑆/𝐶
𝛷
[]

𝜆𝑝. 𝑝([])

 𝑆|𝐷𝑃 ⊳ 𝑆

𝐶
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛

 𝒋

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎

=

 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛

 𝒋

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎

 𝑆|𝐷𝑃 ⊳ 𝑆

𝑆
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛

 𝒋

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎

𝑆|𝑆

𝑆\(𝑆/𝑆)
.

[]

𝜆𝑝𝜆𝑞. 𝑝 𝑞

𝐷𝑃 ⊳ 𝑆|𝑆

 𝑆
𝐻𝑒 𝑖𝑠 𝑟𝑢𝑑𝑒

𝜆𝑦. []

𝒊𝒔 𝒓𝒖𝒅𝒆 𝑦

=

𝑆|𝑆

𝑆
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛. 𝐻𝑒 𝑖𝑠 𝑟𝑢𝑑𝑒

𝜆𝑦. 𝒋

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎 𝒊𝒔 𝒓𝒖𝒅𝒆 𝑦

𝐿𝑜𝑤𝑒𝑟

𝑆

𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛. 𝐻𝑒 𝑖𝑠 𝑟𝑢𝑑𝑒

𝜆𝑦. ¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎 𝒊𝒔 𝒓𝒖𝒅𝒆 𝑦 𝒋

=

𝑆
𝑀𝑎𝑟𝑦 𝑛𝑜𝑡 𝑙𝑖𝑘𝑒 𝐽𝑜𝑛. 𝐻𝑒 𝑖𝑠 𝑟𝑢𝑑𝑒

¬ 𝒍𝒊𝒌𝒆 𝒋 𝒎 𝒊𝒔 𝒓𝒖𝒅𝒆 𝒋

The scope behavior of the quantificational

determiners every and any may be accounted for

in a similar manner. Consider for instance the

following examples:

John does not know every poem. *It is nice.

John does not know any poem. *It is nice.

The interpretative difference between every

and any is made (in line with Quine and Geach

among others) by the scope behavior of the two

quantificational determiners. Any prefers to take

wide scope, whereas every rather takes narrow

scope:

𝐶|𝐶

𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛

𝒋

𝐶|𝐶

𝐶|𝐶
(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)

𝑛𝑜𝑡
¬

𝐶|𝐶

𝐶|𝐶
(𝐷𝑃\𝐶)/𝐷𝑃

𝑘𝑛𝑜𝑤

𝒌𝒏𝒐𝒘

𝐶|𝐶

𝐶|𝐶
𝐷𝑃/𝑁
𝑒𝑣𝑒𝑟𝑦

¬∃𝑥.

𝜆𝑃.
𝑃 𝑥 ∧ ¬

𝑥

𝐶|𝐶

𝑁
𝑝𝑜𝑒𝑚

𝒑𝒐𝒆𝒎

=

𝐶|𝐶

𝐶|𝐶
𝐶

𝐽𝑜𝑛 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑒𝑚

¬ ¬∃𝑥.

𝒑𝒐𝒆𝒎 𝑥 ∧ ¬
𝒌𝒏𝒐𝒘 𝑥 𝒋

𝐿𝑜𝑤𝑒𝑟 𝑡𝑤𝑜 𝑡𝑖𝑚𝑒𝑠

𝐶
𝐽𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑒𝑚

¬ ¬∃𝑥. 𝒑𝒐𝒆𝒎 𝑥 ∧ ¬ 𝒌𝒏𝒐𝒘 𝑥 𝒋

S/C
Φ

λp. p([])

C
John does not know every poem

¬ ¬∃x. 𝐩𝐨𝐞𝐦 x ∧ ¬ know x 𝐣
=

𝑆

𝐽𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑒𝑚

¬ ¬∃𝑥. 𝒑𝒐𝒆𝒎 𝑥 ∧ ¬ 𝒌𝒏𝒐𝒘 𝑥 𝒋

which means that there is (at least) one poem that

John does not know, a fare approximation of the

intended meaning. In this context, the

interpretation of It is nice. crashes, because it

cannot find a suitable antecedent into the

preceding discourse. It would have been useless

for poem to offer to bind in the first place,

because not takes scope over it and negation has

to close its scope before its minimal clause is

interpreted in discourse.

The interpretation of the quantificational

determiner any in discourse proceeds similarly:

𝐶|𝐶

𝐶|𝐶
𝐷𝑃

/𝑁

𝑎𝑛𝑦
¬∃𝑥. []

𝜆𝑃.
𝑃 𝑥 ∧ ¬[]

𝑥

𝐶|𝐶

𝑁
𝑝𝑜𝑒𝑚

[]

𝒑𝒐𝒆𝒎

=

𝐶|𝐶

𝐶|𝐶
𝐷𝑃

𝑎𝑛𝑦 𝑝𝑜𝑒𝑚
¬∃𝑥. []

𝒑𝒐𝒆𝒎 𝑥 ∧ ¬[]
𝑥

𝐿𝑖𝑓𝑡

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶
𝐷𝑃

𝑎𝑛𝑦 𝑝𝑜𝑒𝑚
¬∃𝑥. []

𝒑𝒐𝒆𝒎 𝑥 ∧ ¬[]
[]
𝑥

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛

𝒋

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶

(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)
𝑛𝑜𝑡

¬

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶

(𝐷𝑃\𝐶)/𝐷𝑃
𝑘𝑛𝑜𝑤

𝒌𝒏𝒐𝒘

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶
𝐷𝑃

𝑎𝑛𝑦 𝑝𝑜𝑒𝑚

¬∃𝑥.

𝒑𝒐𝒆𝒎 𝑥 ∧ ¬

𝑥

=

𝐶|𝐶

𝐶|𝐶
𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤 𝑎𝑛𝑦 𝑝𝑜𝑒𝑚
¬∃𝑥. []

𝒑𝒐𝒆𝒎 𝑥 ∧ ¬[]
¬[]

𝒌𝒏𝒐𝒘 𝑥 𝒋

𝐿𝑜𝑤𝑒𝑟 𝑡𝑟𝑒𝑒 𝑡𝑖𝑚𝑒𝑠

501

𝐶
𝐽𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤 𝑎𝑛𝑦 𝑝𝑜𝑒𝑚

¬∃𝑥. 𝒑𝒐𝒆𝒎 𝑥 ∧ [𝒌𝒏𝒐𝒘 𝑥 𝒋]

which means that there is no poem that John

knows, a fare approximation of the intended

meaning. It cannot be argued that it is the

negation which prevents further referring to any

poem, because any takes wide scope over

negation. Obviously, the same mechanism

prevents poem to bind subsequent anaphora both

in the case of every and of any.

Notice that there is a third intermediate

possibility of scope taking, with negation taking

scope at the second level of the compositional

tower:

𝐶|𝐶

𝐶|𝐶
𝐷𝑃

𝐽𝑜𝑛

𝒋

𝐶|𝐶

𝐶|𝐶
(𝐷𝑃\𝐶)/(𝐷𝑃\𝐶)

𝑛𝑜𝑡

¬

𝐶|𝐶

𝐶|𝐶
(𝐷𝑃\𝐶)/𝐷𝑃

𝑘𝑛𝑜𝑤

𝒌𝒏𝒐𝒘

𝐶|𝐶

𝐶|𝐶
𝐷𝑃/𝑁
𝑎𝑛𝑦

¬∃𝑥.

𝜆𝑃.
𝑃 𝑥 ∧ ¬

𝑥

𝐶|𝐶

𝑁
𝑝𝑜𝑒𝑚

𝒑𝒐𝒆𝒎

=

C|C

C|C
C

John not know any poem

¬∃x.

¬ 𝐩𝐨𝐞𝐦 x ∧ ¬
𝐤𝐧𝐨𝐰 x 𝐣

Lower two times

C
John does not know any poem

¬∃x. ¬ 𝐩𝐨𝐞𝐦 x ∧ ¬ 𝐤𝐧𝐨𝐰 x 𝐣

=

S
John does not know any poem

¬∃x. ¬𝐩𝐨𝐞𝐦 x ⋁ 𝐤𝐧𝐨𝐰 x 𝐣

This interpretation is impossible in natural

language. Thus, it may be said that any

obligatory takes wide scope over negation not

only with its general (first level) scope, but also

with its nuclear scope.

4 Conclusions

To conclude, allowing arbitrary type shifting

overgenerates interpretations impossible in

natural language. In order to filter some of them

out, we proposed a mechanism that forbids

clause bounded lexical entries to take scope

outside their minimal clause. For this natural

language fragment, the mechanism and the scope

precedence preference of the lexical entries (for

instance, not > indefinites, not > every, not <

any) ensures the right discourse truth conditions.

References

Barker, Chris. 2002. Continuations and the nature of

quantification. Natural Language Semantics 10(3).

211-242.

Barker, Chris. 2004. Continuations in natural

language. In Hayo Thielecke, editor, Proceedings

of the fourth ACM SIGPLAN workshop on

continuations, pages 55-64, 2004.

Barker, C and Shan Chung-chieh. 2008. Donkey

anaphora is in-scope binding. In Semantics and

Pragmatics Volume 1, pages 1-46.

Dowty, David. 2007. Compositionality as an

empirical problem. In Chris Barker & Pauline

Jacobson (eds.), Direct compositionality. Oxford

University Press.

Dinu, Anca. 2011. Versatility of „continuations‟ in

discourse semantics. Fundamenta Informaticae (to

appear).

de Groote, Philippe. 2006. Towards a montagovian

account of dynamics. In Semantics and Linguistic

Theory XVI.

Jacobson, Pauline. 1999. Towards a variable-free

semantics. Linguistics and Philosophy 22(2). 117-

185.

M. Felleisen. 1988. The theory and practice of first-

class prompts. In J. Ferrante and P. Mager, editors,

Proceedings of the Fifteenth Annual ACM

Symposium on Principles of Programming

Languages, pages 180-190, San Diego, California,

Jan. 1988. ACM Press.

Montague, Richard. 1970. The Proper Treatment of

Quantification in English. In R. Thomason (ed).

Formal Philosophy: Selected Papers of Richard

Montague,247-270. New Haven:Yale.

Partee, Barbara H. & Mats Rooth. 1983. Generalized

conjunction and type ambiguity. In Rainer Buerle,

Christoph Schwarze & Arnim von Stechow. (eds.),

Meaning, use, and interpretation of language, 361-

383.Walter de Gruyter and Co.

 Shan, Chung-chieh and Chris Barker. 2006.

Explaining crossover and superiority as left-to-

right evaluation. Linguistics and Philosophy

29.1:91-134.

Shan, Chung-chieh. 2005. Linguistic side effects.

Ph.D. thesis, Harvard University.

Steedman, Mark. 2000. The syntactic process. MIT

Press.

502

