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Abstract 
Bootstrapping has been empirically proved to be a powerful 
method in learning lexico-syntactic patterns for extracting 
specific relations such as book-author and organization-
headquarters. However, it is not clear how to adapt this 
method to extract more general relations such as the 
employment-organization (EMP-ORG) relation. Relations 
like EMP-ORG are actually a set of relations which involves 
many nominals such as executive, secretary, officer, editor 
and soldier. To address this challenge, we propose a two-stage 
bootstrapping algorithm in this paper. The first stage is a 
commonly used bootstrapping framework, starting with a 
small set of seeds (entity pairs) and a large corpus to learn 
relation patterns which are further used to extract more seeds. 
We combined it with a second stage bootstrapping which 
takes as input the relation patterns learned in the first stage 
and aims to learn relation nominals and their contexts. After 
the two-stage bootstrapping learning, we incorporate features 
extracted from learned nominals and their contexts into a 
state-of-the-art SVM based relation extractor and we observe 
a 2% gain in F-measure. 
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1. Introduction 
Relation Extraction is a challenging Information Extraction 
(IE) task which needs to find instances of predefined 
relations between pairs of entities. For example, there is an 
employment-organization (EMP-ORG) relation between 
entities CEO and Microsoft in the phrase the CEO of 
Microsoft. One way to combat this challenge is by applying 
machine learning techniques to a corpus with relation 
annotations. Supervised learning systems such as 
(Kambhatla 2004), (Zhou et al., 2005) and (Zhao and 
Grishman 2005) extract diverse lexical and syntactic 
features from an annotated corpus to train their system. 
While a supervised relation extraction system could 
achieve promising results, its portability to new domains is 
limited by the availability of annotated corpora. Porting 
such systems to new domains would involve substantial 
expert manual labor. 

Another direction in addressing this challenging problem is 
using semi-supervised methods such as bootstrapping 
techniques. A bootstrapping-based system only needs a 
small set of seed examples and an unannotated corpus. 
These seeds are used to generate relation patterns, which in 

turn result in new examples being extracted from the 
corpus. For example, Brin (1998) uses bootstrapping for 
extracting pairs of book titles and authors from HTML 
documents. Agichtein and Gravano (2000) uses 
bootstrapping for extracting organization and location pairs 
which participate in the organization-headquarters relation 
from a large collection of plain texts.  This paper 
characterizes these systems as single-stage bootstrapping 
since they carry out a loop from seeds to patterns and from 
patterns to seeds. 

Previous research in using single-stage bootstrapping for 
relation extraction has been focusing on relations which are 
specific and do not seem to contain subtypes of relations. 
However, there are many other relations which are really a 
set of relations. Take EMP-ORG for example; it contains at 
least 3 different types of relations, executive-organization, 
staff-organization and other-organization (where the 
contexts are not sufficient enough to determine whether a 
person holds a managerial or general staff position in the 
organization). One can imagine that, compared to the 
organization-headquarters relation, there are more diverse 
ways of stating employment than headquarters of 
organizations. In particular, relation patterns for EMP-
ORG involve more relation nominals including executive, 
head, manager, programmer, editor and many others. 
Suppose we start with the seed Bill Gates and Microsoft; a 
simple question for single-stage bootstrapping is how could 
we learn nominal patterns with economist or editor, 
involving words other than synonyms of the position of 
Bill Gates such as CEO, chairman or head? 
To address this problem, we propose here a novel 
bootstrapping algorithm which we call two-stage 
bootstrapping1. The first stage is a commonly used single-
stage bootstrapping learning framework, i.e. it starts with 
seeds to learn patterns and uses learned patterns to extract 
more seeds. The second stage bootstrapping takes as input 
the relation patterns learned from the first stage. It first 
picks out informative nominal patterns which are then used 
to generate queries for learning new nominals.  For 

                                                                 
1 Two-stage bootstrapping framework is different from the multi-

level bootstrapping used in (Riloff and Jones 1999) which uses 
a Meta-bootstrapping stage for evaluating learned seeds (NPs) 
and extracting the most reliable ones to restart an iteration of 
bootstrapping. 
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example, suppose we could learn a relation pattern 
PERSON, former chairman of ORGANIZATION in the first 
stage which is then selected by our algorithm as an 
informative nominal pattern; we generate a query PERSON, 
former * of ORGANIZATION to search for new nominals 
which could replace the wildcard.  Newly learned nominals 
would be evaluated and high-confidence ones will be 
instantiated back into the patterns and passed to the first 
stage for extracting more seeds.  
The next section first gives an overview of our two-stage 
bootstrapping learning framework, and then it briefly 
describes the Snowball system which serves as the basis for 
most of the components in our first stage bootstrapping. It 
also shows the details of our second stage bootstrapping, 
mainly explaining how to choose informative nominal 
patterns and how to evaluate new nominals. Section 3 will 
show our experiments using two-stage bootstrapping for 
learning relation nominals and contexts. In section 4, we 
extract features from learned nominals and contexts and 
incorporate them to improve a state-of-the-art SVM-based 
relation extraction system. Section 5 draws our conclusion 
and points out our future work.  

2. A Two-stage Bootstrapping Algorithm 
for Relation Extraction 
2.1 The Two-stage Bootstrapping Framework 
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Figure 1. A two-stage bootstrapping framework 
 

Figure 1 shows the main components of our two-stage 
bootstrapping learning framework. We will briefly describe 
the algorithm in the domain of EMP-ORG. However, it’s 

worthy pointing out that this is a general learning 
framework and can be adapted to other relations. As long 
as a relation has a second type of evidence (relation 
nominals in EMP-ORG) which is associated with and could 
be derived and harvested from the first type of evidence in 
the first stage (relation patterns in EMP-ORG), the 
algorithm should be ready to be ported to that relation. 

The two-stage bootstrapping algorithm works as follows 
(where the second stage is shown in italics): 

1. Start from seeds (Person and organization pairs). 

2. Search corpus for sentences containing both names. 

3. Extract relation patterns from sentences. 

4. Evaluate patterns: 

a. Evaluate relation patterns and select high 
confidence ones; 

b. Select informative nominal patterns and 
“translate” them to relation nominal queries, e.g. 
PERSON, former head of ORG  PERSON, former *NN* 
of ORG. 

5. Search for new nominals using nominal queries. 

6. Evaluate new nominals, extract high-confidence ones 
and transform queries back to relation patterns, e.g. 
PERSON, former *NN* of ORG  PERSON, former editor 
of ORG (if we learned editor as a high-confidence nominal).  

7. Use relation patterns both from 4.a and 6 to search for 
new name pairs. 

8. Evaluate extracted new name pairs and add the most 
reliable ones to the seed set. 

9. If the algorithm has not reached stopping criteria, go to 2. 

2.2 The First-stage Bootstrapping Framework 
Our first-stage bootstrapping learning adopts most of the 
major components of the Snowball system (Agichtein and 
Gravano 2000).  

Snowball starts with a seed set containing some initial valid 
seeds in the form of <o, l> such as <Microsoft, Redmond> 
meaning that Microsoft is an organization whose 
headquarters are located in Redmond. It then searches for 
segments of text in the text collection where o and l occur 
close to each other and generates patterns. A pattern in 
Snowball is a 5-tuple <left, tag1, middle, tag2, right>, 
where tag1 and tag2 are named-entity tags, and left, middle, 
and right are vectors associating weights with terms. For 
example, it generates a 5-tuple < {<the, 0.2>}, LOCATION, 
{<-, 0.5>, <based, 0.5>}, ORGANIZATION, {} > for the 
Redmond-based Microsoft. The confidence of a pattern P is 
then estimated by the following formula. Good patterns 
should match more positive seeds than negative ones. 
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Top ranked patterns are then used to generate more seeds. 
A seed will have high confidence if it is generated by 
multiple high-confidence patterns. Good seeds are then 
used to start a new iteration of the bootstrapping learning. 

( ) 1 (1 ( iConf seed Conf P= − −∏ ))

                                                                

 

We adopt Snowball’s confidence measures for evaluating 
patterns and seeds in our first-stage bootstrapping. We 
represent a pattern by a 4-tuple <order, tag1, middle, tag2>, 
where in the domain of EMP-ORG, order means either 
PERSON-ORG or ORG-PERSON, tag1 and tag2 are 
named-entity tags, middle is the middle tokens between the 
two named-entities. For example, our system generates a 4-
tuple <PERSON-ORG, PERSON, {, former chairman of}, 
ORG> for Bill Gates, former chairman of Microsoft. 

2.3  The Second-stage Bootstrapping 
Framework 
In this stage, bootstrapping first picks out nominal patterns 
from all the patterns returned by the first stage, then it 
selects informative nominal patterns for constructing 
relation nominal queries2. Queries are used to search for 
new nominals which will be evaluated and the top ranked 
ones will instantiate the queries to relation patterns. Those 
patterns are then used together with good patterns selected 
in the first stage to search for new name pairs. 

2.3.1 Pick Out Nominal Patterns 
We use a simple heuristic procedure to pick out nominal 
patterns. One thing we should mention is that we use all the 
relation patterns learned in the first stage as input to our 
procedure. The reason for including patterns which are not 
selected as good patterns in the first stage is that 
bootstrapping usually expands the pattern set in a very 
cautious way to guarantee learning quality. A good 
bootstrapping algorithm only adds the most reliable ones to 
grow its pattern set. However, patterns not being selected 
might be good nominal patterns. We will let the second 
stage decide the usefulness of these patterns.  

The procedure first tokenizes and tags the middle part of 
each relation pattern with a HMM POS tagger. If a pattern 

 
2 These are queries not to an IR or Web search engine but rather 

to a text search engine which searches for sequences of tokens 
with wildcards. The queries are generated by replacing the 
nominal in a pattern with a wildcard and used to search for 
other nominals which could replace the wildcard in the pattern. 
For example, we generate a query PERSON, former * of 
ORGANIZATION based on pattern PERSON, former chairman 
of ORGANIZATION. We then use it to look for nominals other 
than chairman which could replace the wildcard. 

contains tags NN or NNS, i.e. if it contains a common noun, 
then it is selected as a candidate nominal pattern. For 
example, P2 is a candidate while P1 is not. 

P1: PERSON ,/, who/WP co/VBZ -/: founded/VBD 
ORG    

P2: PERSON ,/, the/DT billionaire/NN chairman/NN 
of/IN ORG    

Then for each common noun in each candidate, the 
following two heuristics are applied. 

H1: if there is no common noun to its right, then it is 
the head. In P2, chairman is the head noun while 
billionaire is not. 

H2: if H1 is true, check if the first modifier to the left 
of head is an article (a, the) or determiner (these, etc.); If 
not, annotate the candidate with head information. Articles 
and determiners are not good selective modifiers for 
learning new nominals so we do not annotate these kinds of 
patterns with head. For example, P3 would not be 
annotated with head information. 

P3:  PERSON ,/, the/DT chairman/NN of/IN ORG   

The procedure then clusters 2 patterns together if they have 
the same head noun annotation. Finally for each cluster, if 
its size is larger than a threshold t (5 in the final 
experiment), then send it to the next procedure for selecting 
informative nominal patterns. 

2.3.2  Select Informative Nominal Patterns 
To estimate a pattern’s selectivity, we compute Bigram 
Mutual Information (BMI) and Dice statistics between 
the head nominal and its direct modifier (the first modifier 
to its left). For example, we only consider BMI/Dice 
between executive and director in PERSON, chief executive 
director of ORG. 

BMI, MI(x;y), compares the probability of observing x and 
y together (the joint probability) with the probabilities of 
seeing x and y independently. 

2
( , )( ; ) log

( ) ( )
P x yMI x y

P x P y
=  

Table 1 shows an example for the bigram senior chairman. 

Table 1. Contingency table for x=senior y=chairman 

 y -y  
x N11 = 98 N12 = 329,653 N1+ = 329,751 
-x N21 = 

337,308 
N22 = 

1,836,348,898 
N2+ = 

1,836,686,206 
 N+1 = 

337,406 
N+2 = 

1,836,678,551 
N++ = 

1,837,015,957 
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We compute all these statistics in an 86-year news corpus 
with 1.9 billion tokens and 1,837,015,957 bigrams not 
crossing sentence boundaries. N11 is the total number of 
times of observing the bigram xy; N12 is the number of 
times x occurs in bigrams to the left of words other than y; 
N21 is the number of times y occurs in bigrams after words 
other than x; and N22 is the number of bigrams containing 
neither x nor y.  The probabilities can be approximated by3: 
P(x) = N+1/N++, P(y) = N1+/N++, P(x,y) = N11/ N++. Then 
BMI can be computed as: 

11
2

1 1
( ; ) log N NMI x y

N N
+ +

+ +
=  

Similarly, we can approximate Dice(x,y) by:  

11

1 1

2 ( , ) 2( , )
( ) ( )

P x y NDice x y
P x P y N N+ +

= =
+ +

 

We compute BMI/Dice for each pattern in each cluster of 
nominal patterns and add the top ranked ones to a pattern 
set S. After the computation, we use the top ranked patterns 
in S to construct nominal queries. 

2.3.3 Evaluate New Nominals 
A Good nominal should be able to cross several patterns, 
i.e. it should match several queries. Basing a nominal’s 
quality on one query is error-prone. So we assign a 
confidence score to a new nominal in the following way: 

1
( ) #

t

i
Conf nom Q

=

= ∑  

where i is the index of iterations, t is the maximum number 
of iterations during the experiment and #Q is the number of 
queries that nom matched during the ith iteration. A 
nominal’s confidence is updated crossing different 
iterations for the reason that a “loser” in the current 
iteration might become a “winner” in later ones. Selected 
new nominals are used to instantiate queries to relation 
patterns which will be passed to the first stage to participate 
in finding new name pairs. 

3. Experiments for Discovering Relation 
Nominals 
We conducted 2 experiments, one uses single-stage 
bootstrapping for learning relation nominals and the other 
one uses two-stage bootstrapping. Common parameters and 
tools used are summarized in Table 2.  

                                                                 
3 The reason for using N+1 instead of the count of x in the corpus 

in computing P(x) is that we do not count bigrams which cross 
sentence boundaries. Please refer to Inkpen and Hirst (2002) for 
a detailed description of all these statistics. 

The single-stage bootstrapping extracts all nominals from 
nominal patterns being picked out by the procedure 
described in section 2.3.1. It only learned 24 nominals, 
{chairman, company, executive, founder, leader, president, 
office, year, director, officer, head, billionaire, giant, 
investor, group, coach, member, owner, chief, network, 
general, investment, opposition, minister}. One could 
easily judge based on common knowledge that the bold 
ones are correct nominals for EMP-ORG relation. All other 
nominals are either wrong or need context to decide. 

Table 2. Common parameters and tools used  

Seeds <Bill Gates ; Microsoft> 
<Louis Gerstner ; IBM> 

Corpus [7] 
Search engine [7] 

POS and NE tagger Jet4

Maximum length of middle 
context 

7 tokens 

Maximum iteration 10 
 

In two-stage bootstrapping, each nominal has a set of 
patterns matching it and each such pattern might match it 
several times. We assign a score to each learned nominal 
according to these two factors and only keep a nominal 
whose score is larger than 2, i.e. there are patterns/pattern 
matching it at least 3 times. In this way, BMI discovered 
958 relation nominals and Dice 1096 nominals.  

We then face the challenging problem of evaluating what 
we learned in the second stage. It is difficult to evaluate the 
results in stage two in isolation. Also, it is not feasible to 
directly use the ideal metric evaluation methodology 
suggested by Snowball since for one thing there is no 
perfect list of relation nominals available and most of the 
time we not only need to look at the nominal but also need 
to refer to the contexts to judge. Sampling evaluation 
normally picks the top ranked outputs or randomly picks 
some of the outputs to estimate the learning quality. 
However, we learned hundreds of nominals and thousands 
of contexts and we believe sampling is the not the best way 
to reflect the overall learning quality of our system.  

We then decide to incorporate the learned lists of nominals 
and contexts as features into a SVM-based relation 
extraction system to see if its performance can be boosted 
or not. 

                                                                 
4  Please refer to Grishman et al. (2005) and 
http://cs.nyu.edu/grishman/jet/license.html
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4. Using Relation Nominals to Improve 
Supervised Relation Extraction 
We first build a SVM-based relation extraction system as 
our baseline system trained on the annotated data from the 
2004 ACE (Automatic Content Extraction) evaluation 5 , 
which is commonly used by researchers to report and 
compare system performance. We then extract three types 
of features (to be explained in section 4.3) from nominal 
lists learned by two-stage bootstrapping and incorporate 
them into the baseline. 
4.1 ACE Terminology 
In ACE vocabulary, entities are objects and mentions are 
references to them. Entities can be of 5 types: person, 
organization, location, facility, and geo-political entity. 
Mentions have levels: name, pronoun or nominal. 
The ACE Relation Detection and Characterization (RDC) 
task detects relations between entities. As in Example 1, 
there is an EMP-ORG relation between analyst and the 
Council on Foreign Relations, where analyst is a mention 
and referenced to the entity Lawrence Korb. 
Example 1: Lawrence Korb, an analyst at the Council on 
Foreign Relations who was assistant defense secretary 
under former President Ronald Reagan. 

4.2 Baseline System 
Our baseline system is a duplicated system of (Zhou et al., 
2005). We adopt most of their features except the personal 
relative trigger word list since it is not relevant to our 
EMP-ORG scenario. 
Features can be characterized into 5 categories: lexical, 
base phrase chunking, dependency tree, parse tree and 
semantic resources such as country name list. Each 
category contains several subtypes of features. There are 41 
subtypes of features in our system (the only two subtypes 
features we are not adapting are extracted from the 
personal relative trigger word list). Please refer to (Zhou et 
al., 2005) for a detailed description of features. 
It’s important to point out that we train our system on 
relation type EMP-ORG not its subtypes. We decode 
positive and negative instances in the following way: if 2 
mentions have an EMP-ORG relation annotation in the 
ACE key file, we then build a positive instance; any 2 
mentions within a sentence which do not have EMP-ORG 
relation will be built as a negative instance. 
We use the official ACE 2004 training and evaluation data 
from LDC for experiment. We exclude the 8 fisher 
transcript files from training data. So we use in total 635 
files and there are 2,874/773,412 positive/negative 
instances.  

                                                                 
5 http://www.itl.nist.gov/iad/mig//tests/ace/  

We use the SVM-light6 package as our machine learning 
method. We use a linear kernel and do 10-fold cross-
validation in our baseline and all the other experiments. 

4.3 Features Extracted from Nominal Lists 
We extract three types of features from our two-stage 
bootstrapping learned nominal lists. 

4.3.1 InNomList 
This is a binary feature which checks whether the head of 
mention 1 is in our learned list or not. We combine it with 
the entity types of both mentions to prevent the feature 
from being too general. In Example 1, the head of mention 
1 is analyst and it is in our learned nominal list. So for 
Example 1, we construct the following feature: 
InNomList=PERSON-ORG-true 

4.3.2 ContextNomList 
For each learned nominal in our lists, we assume it is the 
head of mention 1 in a learned pattern. We then generate a 
list L of words between this nominal and the head of 
mention 2 which is an ORG in our pattern. For example, L 
= {at, of, for} for nominal analyst and its associated 
patterns { PERSON, an *NN* at ORG; PERSON , chief 
*NN* of ORG; PERSON , managing *NN* at ORG; 
PERSON , chief financial *NN* for ORG } 
Given a positive/negative instance, we first extract the 
words between the heads of both mentions; Then we check 
if the words are in L or not. In Example 1, at is the word 
between analyst and the Council and is in L, so we 
construct the following feature: 
ContextNomList=PERSON--ORG--at (combined with 
entity types) 

4.3.3 ModNomList 
For each learned nominal, we generate a list L of its 
modifiers from its associated patterns. L = { an, chief, 
managing, financial } for the analyst example. Given an 
instance, we extract the words before the head of mention 1 
and check if they are in our modifier list or not. We 
generate the following feature for Example 1: 
ModNomList=an-PERSON (combined with entity type of 
mention 1) 

4.4 Experiments and Results 
We conducted 4 experiments. In the rest of this paper, we 
will refer to the system which added to Baseline features 
from BMI learned nominal list as System BMI, the system 
which added features from Dice learned list as System Dice 
and the system which added features from the merged list 
of BMI and Dice as System Combined. 

                                                                 
6 http://svmlight.joachims.org/  
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Figure 2, 3 and 4 show Precision, Recall and F-measure of 
our experiments, where 1/2/3/4 mean System 
Baseline/BMI/Dice/Combined.  
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Figure 2. Precison 
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Figure 3. Recall 
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Figure 4. F-measure 

 
We first notice that our baseline achieves similar results as 
reported in (Yong and Su 2008) whose baseline is also a 
duplicated system of (Zhou et al., 2005) 7 . Though, we 
                                                                 
7 Zhou et al. (2005) reported result for ACE 2003 data, not 

ACE 2004 data. 

should point out that we achieve a slightly higher precision 
and a lower recall than (Yong and Su 2008). This is first 
because we use different experiment settings. Also, it is 
probably caused by different tools used for generating 
features. We use the same Perl script8 used in (Zhou et al., 
2005) to derive base phrase chunk information from full 
parse tree. But we use Jet for tokenization and the Charniak 
parser for full parsing. 
The results show that: 

 Both MI and Dice improves the Baseline while MI 
achieves slightly higher precision than Dice and Dice 
achieves slightly better recall than MI. When we 
check our nominal list, we found that MI is more 
cautious than Dice in expanding patterns for a 
nominal.  Table 3 shows the top 10 ranked nominals 
and the number of associated patterns for both MI and 
Dice. It may be that Dice achieves better recall in part 
because there are more patterns being used for 
generating features. However, Dice would sacrifice 
precision a little bit because it might also include 
some bad patterns and thus some bad nominals which 
are generated by these bad patterns.  

 The merged list gives the best recall and F-measure. 
There are 200 nominals from the merged list which 
are used during feature decoding while there are 
152/156 nominals from MI/Dice being used. We can 
also imagine that the merged list uses more patterns 
for feature decoding.  

 
Table 3. Top 10 ranked nominals and number of associated 

patterns 
Nominal

(MI) 
Number of 

patterns (MI)
Nominal 
(Dice) 

Number of 
patterns 
(Dice) 

executive 109 executive 126 
scientist 32 economist 66 

economist 28 analyst 58 
editor 24 editor 46 

architect 24 officer 43 
minister 23 scientist 40 
justice 20 engineer 37 
counsel 20 architect 36 
judge 20 investigator 35  

designer 20 counsel 34 
Total: 320  521 

 

                                                                 
8 http://ilk.uvt.nl/team/sabine/chunklink/README.html  
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 Although there are some differences between the MI 
list and Dice list, they give similar improvements and 
the combined list gives even more improvements. 
This suggests that MI and Dice lists are 
complementary to each other and both of them are 
reliable. 
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Using bootstrapping to extract relations which are normally 
general and contain subtypes of relations is challenging. 
This paper proposes a two-stage bootstrapping learning 
algorithm for addressing this problem. We show a case 
study in EMP-ORG and observe 2% F-measure 
improvement when we incorporate features extracted from 
two-stage bootstrapping learned nominals and context into 
a supervised relation extraction system. 
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Our immediate future work involves testing this method on 
more relation types. Our current system relies on tokens 
between name pairs. Incorporating parsing information into 
two-stage bootstrapping would be challenging yet 
interesting future work. 
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