
Student Research Workshop, RANLP 2009 - Borovets, Bulgaria, pages 76–82

A Two-stage Bootstrapping Algorithm for Relation Extraction
 Ang Sun

Department of Computer Science
New York University

New York, NY, 10003, USA
asun@cs.nyu.edu

Abstract
Bootstrapping has been empirically proved to be a powerful
method in learning lexico-syntactic patterns for extracting
specific relations such as book-author and organization-
headquarters. However, it is not clear how to adapt this
method to extract more general relations such as the
employment-organization (EMP-ORG) relation. Relations
like EMP-ORG are actually a set of relations which involves
many nominals such as executive, secretary, officer, editor
and soldier. To address this challenge, we propose a two-stage
bootstrapping algorithm in this paper. The first stage is a
commonly used bootstrapping framework, starting with a
small set of seeds (entity pairs) and a large corpus to learn
relation patterns which are further used to extract more seeds.
We combined it with a second stage bootstrapping which
takes as input the relation patterns learned in the first stage
and aims to learn relation nominals and their contexts. After
the two-stage bootstrapping learning, we incorporate features
extracted from learned nominals and their contexts into a
state-of-the-art SVM based relation extractor and we observe
a 2% gain in F-measure.

Keywords
Information Extraction; Relation Extraction; Two-stage
Bootstrapping

1. Introduction
Relation Extraction is a challenging Information Extraction
(IE) task which needs to find instances of predefined
relations between pairs of entities. For example, there is an
employment-organization (EMP-ORG) relation between
entities CEO and Microsoft in the phrase the CEO of
Microsoft. One way to combat this challenge is by applying
machine learning techniques to a corpus with relation
annotations. Supervised learning systems such as
(Kambhatla 2004), (Zhou et al., 2005) and (Zhao and
Grishman 2005) extract diverse lexical and syntactic
features from an annotated corpus to train their system.
While a supervised relation extraction system could
achieve promising results, its portability to new domains is
limited by the availability of annotated corpora. Porting
such systems to new domains would involve substantial
expert manual labor.

Another direction in addressing this challenging problem is
using semi-supervised methods such as bootstrapping
techniques. A bootstrapping-based system only needs a
small set of seed examples and an unannotated corpus.
These seeds are used to generate relation patterns, which in

turn result in new examples being extracted from the
corpus. For example, Brin (1998) uses bootstrapping for
extracting pairs of book titles and authors from HTML
documents. Agichtein and Gravano (2000) uses
bootstrapping for extracting organization and location pairs
which participate in the organization-headquarters relation
from a large collection of plain texts. This paper
characterizes these systems as single-stage bootstrapping
since they carry out a loop from seeds to patterns and from
patterns to seeds.

Previous research in using single-stage bootstrapping for
relation extraction has been focusing on relations which are
specific and do not seem to contain subtypes of relations.
However, there are many other relations which are really a
set of relations. Take EMP-ORG for example; it contains at
least 3 different types of relations, executive-organization,
staff-organization and other-organization (where the
contexts are not sufficient enough to determine whether a
person holds a managerial or general staff position in the
organization). One can imagine that, compared to the
organization-headquarters relation, there are more diverse
ways of stating employment than headquarters of
organizations. In particular, relation patterns for EMP-
ORG involve more relation nominals including executive,
head, manager, programmer, editor and many others.
Suppose we start with the seed Bill Gates and Microsoft; a
simple question for single-stage bootstrapping is how could
we learn nominal patterns with economist or editor,
involving words other than synonyms of the position of
Bill Gates such as CEO, chairman or head?
To address this problem, we propose here a novel
bootstrapping algorithm which we call two-stage
bootstrapping1. The first stage is a commonly used single-
stage bootstrapping learning framework, i.e. it starts with
seeds to learn patterns and uses learned patterns to extract
more seeds. The second stage bootstrapping takes as input
the relation patterns learned from the first stage. It first
picks out informative nominal patterns which are then used
to generate queries for learning new nominals. For

1 Two-stage bootstrapping framework is different from the multi-

level bootstrapping used in (Riloff and Jones 1999) which uses
a Meta-bootstrapping stage for evaluating learned seeds (NPs)
and extracting the most reliable ones to restart an iteration of
bootstrapping.

76

example, suppose we could learn a relation pattern
PERSON, former chairman of ORGANIZATION in the first
stage which is then selected by our algorithm as an
informative nominal pattern; we generate a query PERSON,
former * of ORGANIZATION to search for new nominals
which could replace the wildcard. Newly learned nominals
would be evaluated and high-confidence ones will be
instantiated back into the patterns and passed to the first
stage for extracting more seeds.
The next section first gives an overview of our two-stage
bootstrapping learning framework, and then it briefly
describes the Snowball system which serves as the basis for
most of the components in our first stage bootstrapping. It
also shows the details of our second stage bootstrapping,
mainly explaining how to choose informative nominal
patterns and how to evaluate new nominals. Section 3 will
show our experiments using two-stage bootstrapping for
learning relation nominals and contexts. In section 4, we
extract features from learned nominals and contexts and
incorporate them to improve a state-of-the-art SVM-based
relation extraction system. Section 5 draws our conclusion
and points out our future work.

2. A Two-stage Bootstrapping Algorithm
for Relation Extraction
2.1 The Two-stage Bootstrapping Framework

Seeds

Corpus

Good Pattern?
Selected
Relation
Patterns

Good
New

Seeds

Evaluate
Seeds

Other
Relation
Patterns

Informative
Nominal Pattern?

Informative
Nominal
Patterns

Corpus Good Relation
Nominal?

Good
Relation
Patterns

Figure 1. A two-stage bootstrapping framework

Figure 1 shows the main components of our two-stage
bootstrapping learning framework. We will briefly describe
the algorithm in the domain of EMP-ORG. However, it’s

worthy pointing out that this is a general learning
framework and can be adapted to other relations. As long
as a relation has a second type of evidence (relation
nominals in EMP-ORG) which is associated with and could
be derived and harvested from the first type of evidence in
the first stage (relation patterns in EMP-ORG), the
algorithm should be ready to be ported to that relation.

The two-stage bootstrapping algorithm works as follows
(where the second stage is shown in italics):

1. Start from seeds (Person and organization pairs).

2. Search corpus for sentences containing both names.

3. Extract relation patterns from sentences.

4. Evaluate patterns:

a. Evaluate relation patterns and select high
confidence ones;

b. Select informative nominal patterns and
“translate” them to relation nominal queries, e.g.
PERSON, former head of ORG PERSON, former *NN*
of ORG.

5. Search for new nominals using nominal queries.

6. Evaluate new nominals, extract high-confidence ones
and transform queries back to relation patterns, e.g.
PERSON, former *NN* of ORG PERSON, former editor
of ORG (if we learned editor as a high-confidence nominal).

7. Use relation patterns both from 4.a and 6 to search for
new name pairs.

8. Evaluate extracted new name pairs and add the most
reliable ones to the seed set.

9. If the algorithm has not reached stopping criteria, go to 2.

2.2 The First-stage Bootstrapping Framework
Our first-stage bootstrapping learning adopts most of the
major components of the Snowball system (Agichtein and
Gravano 2000).

Snowball starts with a seed set containing some initial valid
seeds in the form of <o, l> such as <Microsoft, Redmond>
meaning that Microsoft is an organization whose
headquarters are located in Redmond. It then searches for
segments of text in the text collection where o and l occur
close to each other and generates patterns. A pattern in
Snowball is a 5-tuple <left, tag1, middle, tag2, right>,
where tag1 and tag2 are named-entity tags, and left, middle,
and right are vectors associating weights with terms. For
example, it generates a 5-tuple < {<the, 0.2>}, LOCATION,
{<-, 0.5>, <based, 0.5>}, ORGANIZATION, {} > for the
Redmond-based Microsoft. The confidence of a pattern P is
then estimated by the following formula. Good patterns
should match more positive seeds than negative ones.

77

.()
(. .)

P positiveConf P
P positive P negative

=
+

Top ranked patterns are then used to generate more seeds.
A seed will have high confidence if it is generated by
multiple high-confidence patterns. Good seeds are then
used to start a new iteration of the bootstrapping learning.

() 1 (1 (iConf seed Conf P= − −∏))

We adopt Snowball’s confidence measures for evaluating
patterns and seeds in our first-stage bootstrapping. We
represent a pattern by a 4-tuple <order, tag1, middle, tag2>,
where in the domain of EMP-ORG, order means either
PERSON-ORG or ORG-PERSON, tag1 and tag2 are
named-entity tags, middle is the middle tokens between the
two named-entities. For example, our system generates a 4-
tuple <PERSON-ORG, PERSON, {, former chairman of},
ORG> for Bill Gates, former chairman of Microsoft.

2.3 The Second-stage Bootstrapping
Framework
In this stage, bootstrapping first picks out nominal patterns
from all the patterns returned by the first stage, then it
selects informative nominal patterns for constructing
relation nominal queries2. Queries are used to search for
new nominals which will be evaluated and the top ranked
ones will instantiate the queries to relation patterns. Those
patterns are then used together with good patterns selected
in the first stage to search for new name pairs.

2.3.1 Pick Out Nominal Patterns
We use a simple heuristic procedure to pick out nominal
patterns. One thing we should mention is that we use all the
relation patterns learned in the first stage as input to our
procedure. The reason for including patterns which are not
selected as good patterns in the first stage is that
bootstrapping usually expands the pattern set in a very
cautious way to guarantee learning quality. A good
bootstrapping algorithm only adds the most reliable ones to
grow its pattern set. However, patterns not being selected
might be good nominal patterns. We will let the second
stage decide the usefulness of these patterns.

The procedure first tokenizes and tags the middle part of
each relation pattern with a HMM POS tagger. If a pattern

2 These are queries not to an IR or Web search engine but rather

to a text search engine which searches for sequences of tokens
with wildcards. The queries are generated by replacing the
nominal in a pattern with a wildcard and used to search for
other nominals which could replace the wildcard in the pattern.
For example, we generate a query PERSON, former * of
ORGANIZATION based on pattern PERSON, former chairman
of ORGANIZATION. We then use it to look for nominals other
than chairman which could replace the wildcard.

contains tags NN or NNS, i.e. if it contains a common noun,
then it is selected as a candidate nominal pattern. For
example, P2 is a candidate while P1 is not.

P1: PERSON ,/, who/WP co/VBZ -/: founded/VBD
ORG

P2: PERSON ,/, the/DT billionaire/NN chairman/NN
of/IN ORG

Then for each common noun in each candidate, the
following two heuristics are applied.

H1: if there is no common noun to its right, then it is
the head. In P2, chairman is the head noun while
billionaire is not.

H2: if H1 is true, check if the first modifier to the left
of head is an article (a, the) or determiner (these, etc.); If
not, annotate the candidate with head information. Articles
and determiners are not good selective modifiers for
learning new nominals so we do not annotate these kinds of
patterns with head. For example, P3 would not be
annotated with head information.

P3: PERSON ,/, the/DT chairman/NN of/IN ORG

The procedure then clusters 2 patterns together if they have
the same head noun annotation. Finally for each cluster, if
its size is larger than a threshold t (5 in the final
experiment), then send it to the next procedure for selecting
informative nominal patterns.

2.3.2 Select Informative Nominal Patterns
To estimate a pattern’s selectivity, we compute Bigram
Mutual Information (BMI) and Dice statistics between
the head nominal and its direct modifier (the first modifier
to its left). For example, we only consider BMI/Dice
between executive and director in PERSON, chief executive
director of ORG.

BMI, MI(x;y), compares the probability of observing x and
y together (the joint probability) with the probabilities of
seeing x and y independently.

2
(,)(;) log

() ()
P x yMI x y

P x P y
=

Table 1 shows an example for the bigram senior chairman.

Table 1. Contingency table for x=senior y=chairman

 y -y
x N11 = 98 N12 = 329,653 N1+ = 329,751
-x N21 =

337,308
N22 =

1,836,348,898
N2+ =

1,836,686,206
 N+1 =

337,406
N+2 =

1,836,678,551
N++ =

1,837,015,957

78

We compute all these statistics in an 86-year news corpus
with 1.9 billion tokens and 1,837,015,957 bigrams not
crossing sentence boundaries. N11 is the total number of
times of observing the bigram xy; N12 is the number of
times x occurs in bigrams to the left of words other than y;
N21 is the number of times y occurs in bigrams after words
other than x; and N22 is the number of bigrams containing
neither x nor y. The probabilities can be approximated by3:
P(x) = N+1/N++, P(y) = N1+/N++, P(x,y) = N11/ N++. Then
BMI can be computed as:

11
2

1 1
(;) log N NMI x y

N N
+ +

+ +
=

Similarly, we can approximate Dice(x,y) by:

11

1 1

2 (,) 2(,)
() ()

P x y NDice x y
P x P y N N+ +

= =
+ +

We compute BMI/Dice for each pattern in each cluster of
nominal patterns and add the top ranked ones to a pattern
set S. After the computation, we use the top ranked patterns
in S to construct nominal queries.

2.3.3 Evaluate New Nominals
A Good nominal should be able to cross several patterns,
i.e. it should match several queries. Basing a nominal’s
quality on one query is error-prone. So we assign a
confidence score to a new nominal in the following way:

1
() #

t

i
Conf nom Q

=

= ∑

where i is the index of iterations, t is the maximum number
of iterations during the experiment and #Q is the number of
queries that nom matched during the ith iteration. A
nominal’s confidence is updated crossing different
iterations for the reason that a “loser” in the current
iteration might become a “winner” in later ones. Selected
new nominals are used to instantiate queries to relation
patterns which will be passed to the first stage to participate
in finding new name pairs.

3. Experiments for Discovering Relation
Nominals
We conducted 2 experiments, one uses single-stage
bootstrapping for learning relation nominals and the other
one uses two-stage bootstrapping. Common parameters and
tools used are summarized in Table 2.

3 The reason for using N+1 instead of the count of x in the corpus

in computing P(x) is that we do not count bigrams which cross
sentence boundaries. Please refer to Inkpen and Hirst (2002) for
a detailed description of all these statistics.

The single-stage bootstrapping extracts all nominals from
nominal patterns being picked out by the procedure
described in section 2.3.1. It only learned 24 nominals,
{chairman, company, executive, founder, leader, president,
office, year, director, officer, head, billionaire, giant,
investor, group, coach, member, owner, chief, network,
general, investment, opposition, minister}. One could
easily judge based on common knowledge that the bold
ones are correct nominals for EMP-ORG relation. All other
nominals are either wrong or need context to decide.

Table 2. Common parameters and tools used

Seeds <Bill Gates ; Microsoft>
<Louis Gerstner ; IBM>

Corpus [7]
Search engine [7]

POS and NE tagger Jet4

Maximum length of middle
context

7 tokens

Maximum iteration 10

In two-stage bootstrapping, each nominal has a set of
patterns matching it and each such pattern might match it
several times. We assign a score to each learned nominal
according to these two factors and only keep a nominal
whose score is larger than 2, i.e. there are patterns/pattern
matching it at least 3 times. In this way, BMI discovered
958 relation nominals and Dice 1096 nominals.

We then face the challenging problem of evaluating what
we learned in the second stage. It is difficult to evaluate the
results in stage two in isolation. Also, it is not feasible to
directly use the ideal metric evaluation methodology
suggested by Snowball since for one thing there is no
perfect list of relation nominals available and most of the
time we not only need to look at the nominal but also need
to refer to the contexts to judge. Sampling evaluation
normally picks the top ranked outputs or randomly picks
some of the outputs to estimate the learning quality.
However, we learned hundreds of nominals and thousands
of contexts and we believe sampling is the not the best way
to reflect the overall learning quality of our system.

We then decide to incorporate the learned lists of nominals
and contexts as features into a SVM-based relation
extraction system to see if its performance can be boosted
or not.

4 Please refer to Grishman et al. (2005) and
http://cs.nyu.edu/grishman/jet/license.html

79

4. Using Relation Nominals to Improve
Supervised Relation Extraction
We first build a SVM-based relation extraction system as
our baseline system trained on the annotated data from the
2004 ACE (Automatic Content Extraction) evaluation 5 ,
which is commonly used by researchers to report and
compare system performance. We then extract three types
of features (to be explained in section 4.3) from nominal
lists learned by two-stage bootstrapping and incorporate
them into the baseline.
4.1 ACE Terminology
In ACE vocabulary, entities are objects and mentions are
references to them. Entities can be of 5 types: person,
organization, location, facility, and geo-political entity.
Mentions have levels: name, pronoun or nominal.
The ACE Relation Detection and Characterization (RDC)
task detects relations between entities. As in Example 1,
there is an EMP-ORG relation between analyst and the
Council on Foreign Relations, where analyst is a mention
and referenced to the entity Lawrence Korb.
Example 1: Lawrence Korb, an analyst at the Council on
Foreign Relations who was assistant defense secretary
under former President Ronald Reagan.

4.2 Baseline System
Our baseline system is a duplicated system of (Zhou et al.,
2005). We adopt most of their features except the personal
relative trigger word list since it is not relevant to our
EMP-ORG scenario.
Features can be characterized into 5 categories: lexical,
base phrase chunking, dependency tree, parse tree and
semantic resources such as country name list. Each
category contains several subtypes of features. There are 41
subtypes of features in our system (the only two subtypes
features we are not adapting are extracted from the
personal relative trigger word list). Please refer to (Zhou et
al., 2005) for a detailed description of features.
It’s important to point out that we train our system on
relation type EMP-ORG not its subtypes. We decode
positive and negative instances in the following way: if 2
mentions have an EMP-ORG relation annotation in the
ACE key file, we then build a positive instance; any 2
mentions within a sentence which do not have EMP-ORG
relation will be built as a negative instance.
We use the official ACE 2004 training and evaluation data
from LDC for experiment. We exclude the 8 fisher
transcript files from training data. So we use in total 635
files and there are 2,874/773,412 positive/negative
instances.

5 http://www.itl.nist.gov/iad/mig//tests/ace/

We use the SVM-light6 package as our machine learning
method. We use a linear kernel and do 10-fold cross-
validation in our baseline and all the other experiments.

4.3 Features Extracted from Nominal Lists
We extract three types of features from our two-stage
bootstrapping learned nominal lists.

4.3.1 InNomList
This is a binary feature which checks whether the head of
mention 1 is in our learned list or not. We combine it with
the entity types of both mentions to prevent the feature
from being too general. In Example 1, the head of mention
1 is analyst and it is in our learned nominal list. So for
Example 1, we construct the following feature:
InNomList=PERSON-ORG-true

4.3.2 ContextNomList
For each learned nominal in our lists, we assume it is the
head of mention 1 in a learned pattern. We then generate a
list L of words between this nominal and the head of
mention 2 which is an ORG in our pattern. For example, L
= {at, of, for} for nominal analyst and its associated
patterns { PERSON, an *NN* at ORG; PERSON , chief
NN of ORG; PERSON , managing *NN* at ORG;
PERSON , chief financial *NN* for ORG }
Given a positive/negative instance, we first extract the
words between the heads of both mentions; Then we check
if the words are in L or not. In Example 1, at is the word
between analyst and the Council and is in L, so we
construct the following feature:
ContextNomList=PERSON--ORG--at (combined with
entity types)

4.3.3 ModNomList
For each learned nominal, we generate a list L of its
modifiers from its associated patterns. L = { an, chief,
managing, financial } for the analyst example. Given an
instance, we extract the words before the head of mention 1
and check if they are in our modifier list or not. We
generate the following feature for Example 1:
ModNomList=an-PERSON (combined with entity type of
mention 1)

4.4 Experiments and Results
We conducted 4 experiments. In the rest of this paper, we
will refer to the system which added to Baseline features
from BMI learned nominal list as System BMI, the system
which added features from Dice learned list as System Dice
and the system which added features from the merged list
of BMI and Dice as System Combined.

6 http://svmlight.joachims.org/

80

Figure 2, 3 and 4 show Precision, Recall and F-measure of
our experiments, where 1/2/3/4 mean System
Baseline/BMI/Dice/Combined.

Precision

83.5

84

84.5

85

85.5

86

86.5

87

1 2 3 4

Precision

Figure 2. Precison

Recall

62

62.5

63

63.5

64

64.5

65

65.5

66

1 2 3 4

Recall

Figure 3. Recall

F-measure

71.5

72

72.5

73

73.5

74

74.5

75

1 2 3 4

F-measure

Figure 4. F-measure

We first notice that our baseline achieves similar results as
reported in (Yong and Su 2008) whose baseline is also a
duplicated system of (Zhou et al., 2005) 7 . Though, we

7 Zhou et al. (2005) reported result for ACE 2003 data, not

ACE 2004 data.

should point out that we achieve a slightly higher precision
and a lower recall than (Yong and Su 2008). This is first
because we use different experiment settings. Also, it is
probably caused by different tools used for generating
features. We use the same Perl script8 used in (Zhou et al.,
2005) to derive base phrase chunk information from full
parse tree. But we use Jet for tokenization and the Charniak
parser for full parsing.
The results show that:

 Both MI and Dice improves the Baseline while MI
achieves slightly higher precision than Dice and Dice
achieves slightly better recall than MI. When we
check our nominal list, we found that MI is more
cautious than Dice in expanding patterns for a
nominal. Table 3 shows the top 10 ranked nominals
and the number of associated patterns for both MI and
Dice. It may be that Dice achieves better recall in part
because there are more patterns being used for
generating features. However, Dice would sacrifice
precision a little bit because it might also include
some bad patterns and thus some bad nominals which
are generated by these bad patterns.

 The merged list gives the best recall and F-measure.
There are 200 nominals from the merged list which
are used during feature decoding while there are
152/156 nominals from MI/Dice being used. We can
also imagine that the merged list uses more patterns
for feature decoding.

Table 3. Top 10 ranked nominals and number of associated

patterns
Nominal

(MI)
Number of

patterns (MI)
Nominal
(Dice)

Number of
patterns
(Dice)

executive 109 executive 126
scientist 32 economist 66

economist 28 analyst 58
editor 24 editor 46

architect 24 officer 43
minister 23 scientist 40
justice 20 engineer 37
counsel 20 architect 36
judge 20 investigator 35

designer 20 counsel 34
Total: 320 521

8 http://ilk.uvt.nl/team/sabine/chunklink/README.html

81

 Although there are some differences between the MI
list and Dice list, they give similar improvements and
the combined list gives even more improvements.
This suggests that MI and Dice lists are
complementary to each other and both of them are
reliable.

[2] S. Brin. Extracting patterns and relations from the World-
Wide Web. In Proceedings of the 1998 International
Workshop on the Web and Databases (WebDB’98), March
1998.

[3] R. Grishman, D. Westbrook and A. Meyers. 2005. NYU’s
English ACE 2005 System Description. ACE 2005 PI
Workshop. Washington, US.

5. Conclusions and Future Work [4] DZ. Inkpen and G. Hirst. 2002. Acquiring collocations for
lexical choice between near synonyms. In Unsupervised
Lexical Acquisition: Proceedings of the Workshop of the
ACL Special Interest Group on the Lexicon (SIGLEX), pp.
67–76, Philadelphia, Pennsylvania.

Using bootstrapping to extract relations which are normally
general and contain subtypes of relations is challenging.
This paper proposes a two-stage bootstrapping learning
algorithm for addressing this problem. We show a case
study in EMP-ORG and observe 2% F-measure
improvement when we incorporate features extracted from
two-stage bootstrapping learned nominals and context into
a supervised relation extraction system.

[5] N. Kambhatla. 2004. Combining Lexical, Syntactic, and
Semantic Features with Maximum Entropy Models for
Extracting Relations. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics.

[6] E. Riloff and R. Jones. 1999. Learning Dictionaries for
Information Extraction by Multi-Level Bootstrapping. In
Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-99).

Our immediate future work involves testing this method on
more relation types. Our current system relies on tokens
between name pairs. Incorporating parsing information into
two-stage bootstrapping would be challenging yet
interesting future work.

[7] S. Sekine. 2008. A Linguistic Knowledge Discovery Tool:
Very Large Ngram Database Search with Arbitrary
Wildcards. In proceedings of the 22nd International
Conference on Computational Linguistics, Manchester,
England.

6. Acknowledgements
This research was supported by the National Science
Foundation under Grant IIS-00325657. This paper does not
necessarily reflect the position of the U.S. Government. We
would like to thank Prof. Ralph Grishman for his research
guidance. We would also like to thank Prof. Satoshi Sekine,
Prof. Adam Meyers and Prof. Heng Ji for their useful
suggestions.

[8] SWK Yong and J. Su. An Effective Method of Using Web
Based Information for Relation Extraction. In proceedings of
3rd International Joint Conference of Natural Language
Processing (IJCNLP2008), P350-357, Hyderabad, India.

[9] S. Zhao and R. Grishman. 2005. Extracting relations with
integrated information using kernel methods. In Proceedings
of ACL.

7. References [10] G. Zhou, J. Su, J. Zhang and M. Zhang. 2005. Exploring
Various Knowledge in Relation Extraction. In proceedings of
43th Annual Meeting of the Association for Computational
Linguistics. USA.

[1] E. Agichtein and L. Gravano. Snowball: Extracting relations
from large plain text collections. In Proceedings of the 5th
ACM International Conference on Digital Libraries, 2000.

82

