
Student Research Workshop, RANLP 2009 - Borovets, Bulgaria, pages 12–17

A Study of Machine Learning Algorithms
for Recognizing Textual Entailment

Julio Javier Castillo
Faculty of Mathematic Astronomy and Physics - National University of Cordoba

Córdoba, Argentina
jotacastillo@gmail.com

Abstract
This paper presents a system that uses machine learning
algorithms and a combination of data sets for the task of
recognizing textual entailment. The chosen features quantify
lexical, syntactic and semantic level by matching between
texts and hypothesis sentences. Additionally, we created a
filter which uses a set of heuristics based on Named Entities
to detect cases where no entailment was found. We analyzed
how the different sizes of data sets and classifiers could
impact on the final overall performance of the systems.
We show that the system performs better than the baseline
and the average of the systems from the RTE on both two and
three way tasks.
We concluded that evaluating using the RTE3 test set, the
model learned using MLP from the RTE3 alone outperforms
other models that employed different ML algorithms and
additional training data from the RTE1 and RTE 2.

Keywords
Textual entailment, machine learning, rte data sets.

1. Approach

The objective of the Recognizing Textual Entailment
Challenge is determining whether the meaning of the
Hypothesis (H) can be inferred from a text (T). Recently
the RTE4 Challenge has changed to a 3-way task that
consists in distinguish among entailment, contradiction
and unknown when there is no information to accept or
reject the hypothesis. However the traditional two-way
distinction between entailment and non-entailment is still
allowed.
 In the past, RTEs Challenges machine learning
algorithms were widely used for the task of recognizing
textual entailment (Marneffe et al., Zanzotto et al.). Thus
in this paper we tested the most common classifiers that
have been used by other researchers in order to provide a
common framework of evaluation of ML algorithms
(fixing the features) and showing how the development
data set could impact over them.

We generated a feature vector with the following
components for both Text and Hypothesis:

- Levenshtein distance,
- Lexical level: a lexical distance based on

Levenshtein,
- Semantic level: a semantic similarity measure

Wordnet based,
- LCS (longest common substring) metric.

We chose only four features in order to learn the
development sets. Larger feature sets do not necessarily
lead to improving classification performance because it
could increase the risk of overfitting the training data. In
section 3 we provide a correlation analysis of these
features.

The motivation of the input features:
Levenshtein distance is motivated by the good results
obtained as a measure of similarity between two strings.
Additionally, we proposed a lexical distance which is
based on Levenshtein distance but working to sentence
level.
We created a metric based on Wordnet to try to capture the
semantic similarity between T and H to sentence level.
Longest common substring is selected because is easy to
implement and provides a good measure for word overlap.
Furthermore, the system uses a NER filter that detects
cases where no entailment relation is found. This filter
applies heuristic rules over Named Entities found in the
text and hypothesis.

The system produces feature vectors for all possible
combinations of the available development data RTE1,
RTE2 and RTE3. Weka (Witten and Frank, 2000) is used
to train classifiers on these feature vectors. We
experimented with the following five machine learning
algorithms:

- Support Vector Machine (SVM),
- AdaBoost (AB),
- BayesNet (BN),
- Multilayer Perceptron (MLP),
- Decision Trees (DT).

12

The Decision Trees are interesting because we can see
what features were selected from the top levels of the trees.
SVM, Bayes Net and AdaBoost were selected because they
are known for achieving high performances. MLP was
used because has achieved high performance in others
NLP tasks.
We experimented with various parameters (settings) for
the machine learning algorithm, such like increasing the
confidence factor in DT for more pruning of the trees,
different configuration(layers and neurons) for the neural
network, and different kernels for SVM. Thus, we tested
classifiers used by other researchers in order to provide a
common framework of evaluation.
 For two-way classification task, we used the RTE1,
RTE2, RTE3 development sets from Pascal RTE
Challenge, and BPI1 test suite.
For three-way task we used the RTE1, RTE2 and RTE3
development sets from Stanford group2.
Additionally, we generated the following development
sets: RTE1+RTE2, RTE2+RTE3, RTE1+RTE3, and
RTE1+RTE2+RTE3 in order to train with different corpus
and different sizes. In all the cases, RTE4 TAC 2008 gold
standard data set was used as test-set.
 The remainder of the paper is organized as follows:
Section 2 describes the architecture of our system, whereas
Section 3 shows the results of experimental evaluation and
discussion of them. Finally, Section 4 summarizes the
conclusions and lines for future work.

2. System description

This section provides an overview of our system that was
evaluated in Fourth Pascal RTE Challenge. The system is
based on a machine learning approach for recognizing
textual entailment.
 In Figure 1 we present a brief overview of the system.
 Using a machine learning approach we tested with
different classifiers in order to classify RTE-4 test pairs in
three classes: entailment, contradiction or unknown.
To deal with RTE4 in a two-way task, we needed to
convert this corpus only into two classes: yes and no. For
this purpose both contradiction and unknown were taken
as class no.
 There are two variants to deal with every particular text-
hypothesis pair or instance. The first way is directly using
four features: (1) the Levenshtein distance between each

1 http://www.cs.utexas.edu/users/pclark/bpi-test-suite/
2 http://www-nlp.stanford.edu/projects/contradiction/

pair, (2) lexical distance based on Levenshtein, (3) a
semantic distance based on WordNet and (4) their Longest
Common Substring. The second way, is using the “NER-
preprocessing module” to determinate whether non-
entailment is found between text-hypothesis, therefore
differing only on the treatment of Named Entities.
 The Levenshtein distance [5] is computed between the
characters in the stemmed Text and Hypothesis strings.
The others three features are detailed below.
Text-hypothesis pairs are stemmed with Porter’s stemmer
[3] and PoS tagged with the tagger in the OpenNLP3
framework.

Preprocessing
NER

Entailment
Result

SVM3

CONTRADICTIONUNKNOWNYES

Is Ti NE entailed
by Hi ?

SVM2

NoYes

TestSet RTE4

Levenshtein

Wordnet

Longest Common
Substring

Trainning Sets:
RTE 1, RTE2,

RTE3,RTE1+RTE2,
RTE2+RTE3 , and

RTE1+RTE2+RTE3.

BPI- test suite

Figure 1.General architecture of our system.

2.1 NER filter

The system applies a filter based on Named Entities. The
purpose of the filter is to identify those pairs where the

3 http://opennlp.sourceforge.net/

13

system is sure that no entailment relation occurs,
performing a two steps procedure.
Thus, in the first step the NER-preprocessing module
performs NER in text-hypothesis pairs applying several
heuristics rules to discard when an entailment relation is
not found in the pair. After that, a specialized classifier
SVM2 was trained only with contradiction and unknown
cases of RTE3 corpus and used to classify the pairs
between these two classes.
 We employed the following the heuristic rules: for each
type of Name Entity (person, organization, location, etc.),
if there is a NE of this type occurring in H that does not
occur in T, then the pair does not convey an entailment
and therefore should be classified as either contradiction
or unknown.
The text-hypothesis pairs are tokenized with the tokenizer
of OpenNLP framework and stemmed with Porter’s
stemmer4 [3]. We also enhanced this NER-preprocess
module by using an acronym database [8].
 The output module was applied to approximately 10
percent of the text-hypothesis pairs of RTE4. The accuracy
of the filter evaluated in TAC’08 was 0.71, with 66 cases
correctly classified out of 92 where rules applied.
An error analysis revealed that misclassified cases were
indeed difficult cases, as in the following example (pair
807, RTE4):

Text: Larges scores of Disney fans had hoped Roy
would read the Disneyland Dedication Speech on the
theme park's fiftieth birthday next week, which
was originally read by Walt on the park's opening
day, but Roy had already entered an annual sailing
race from Los Angeles to Honolulu.

Hypothesis: Disneyland theme park was built fifty
years ago.

It was misclassified because of the entity date “fifty years
ago” is present in H but not in T. The module unknowns
that “fifty years ago” refers to the same date event as
“fiftieth birthday”.
We plan to extend this module so it can also be used to
filter cases where an entailment between text and
hypothesis can be reliably identified via heuristic rules.

2.2 Lexical Distance

We use the standard Levenshtein distance as a simple
measure of how different two text strings are. This
distance quantifies the number of changes (character

4 http://tartarus.org/~martin/PorterStemmer/

based) to generate one text string from the other. For
example, how many changes are necessary in the
hypothesis H to obtain the text T. For identical strings, the
distance is 0 (zero).
Additionally, using Levenshtein distance we defined a
lexical distance and the procedure is the following:
• Each string T and H are divided in a list of tokens.
• The similarity between each pair of tokens in T and H is

performed using the Levenshtein distance.
• The string similarity between two lists of tokens is

reduced to the problem of “bipartite graph matching”,
performed using the Hungarian algorithm over this
bipartite graph. Then, we found the assignment that
maximizes the sum of ratings of each token. Note that
each graph node is a token of the list.

The final score is calculated by:

))(),((HLenghtTLenghtMax
TotalSimfinalscore

Where:
TotalSim is the sum of the similarities with the optimal
assignment in the graph.
Length (T) is the number of tokens in T.
Length (H) is the number of tokens in H.

2.3 WordNet Distance

WordNet is used to calculate the semantic similarity
between a T and an H. The following procedure is applied:

1. Word sense disambiguation using the Lesk algorithm
[4], based on Wordnet definitions.
2. A semantic similarity matrix between words in T and H
is defined. Words are used only in synonym and
hyperonym relationship. The Breadth First Search
algorithm is used over these tokens; similarity is calculated
by using two factors: length of the path and orientation of
the path.
3. To obtain the final score, we use matching average. A
bipartite graph is built and computed using Hungarian
algorithm.

The semantic similarity between two words (step 2) is
computed as:

)()(
)),((

2),(
tDepthsDepth

tsLCSDepth
tsSim

14

Where:
s,t are source and target words that we are comparing (s is
in H and t is in T).
Depth(s) is the shortest distance from the root node to the
current node.
LCS(s,t):is the least common subsume of s and t.

Finally, the matching average (step 3) between two
sentences X and Y is calculated as follows:

)()(
),(

2
YLengthXLength

YXMatcherageMatchingAv

2.4 Longest Common Substring

Given two strings, T of length n and H of length m, the
Longest Common Sub-string (LCS) method [5] will find
the longest strings which are substrings of both T and H. It
is founded by dynamic programming.

))(),(min(
)),((),(

HLengthTLength
HTMaxComSubLengthHTlcs

In all practical cases, min(Length(T), Length(H)) would be
equal to Length(H) . Therefore, all values will be
numerical in the [0,1] interval.

3. Experimental Evaluation and
Discussion of Results

With the aim of exploring the differences between the
training sets and machine learning algorithms, we did
many experiments looking for the best result to our system.

Thus, we used the following combination of datasets:
RTE1, RTE2, RTE3, BPI5, RTE1+RTE2, RTE1+RTE3,
RTE2+RTE3 and RTE1+RTE2+RTE3 to deal with two-
way classification task.

In a similar way, we used the following combination of
datasets: RTE1, RTE2, RTE3, RTE1+RTE2,
RTE2+RTE3, RTE1+RTE3 and RTE1+RTE2+RTE3 of
Stanford Group to deal with three-way classification task.

We used five classifiers to learn every development set:
(1) Support Vector Machine, (2) Ada Boost, (3) Bayes Net,
(4) Multilayer Perceptron (MLP) and (5) Decision Tree
using the open source WEKA Data Mining Software [7].
In all the tables results we show only the accuracy of the
best classifier.

5 http://www.cs.utexas.edu/users/pclark/bpi-test-suite/

 The RTE4 data set is three-way. Nevertheless, this
corpus was converted into “RTE4 2-way” taking
contradiction and unknown pairs as no- entailment in
order to test the system in the two-way task.
Our results for RTE two-way classification task are
summarized in Table 1 below. In addition, table 2 shows
the results obtained in RTE three-way classification task.

Dataset Classifier Acc %
RTE3 MLP 58.4%

RTE3 With NER
Module

SVM 57.6%

RTE2 + RTE3 MLP 57.5%
RTE1 + RTE2 +

RTE3
MLP 57.4%

RTE1+ RTE3 Decision Tree 57.1%
RTE1 + RTE2 Decision tree 56.2%

ADA Boost 55.6%
Decision tree 55.6%

RTE2

Bayes Net 55.6%
ADA Boost 54.6% RTE1
Bayes Net 54.6%

Baselines - 50%
BPI BayesNet 49.8%

Table 1.Results obtained in two-way classification task.

Dataset Classifier Acc %
RTE3 MLP 55.4%

RTE1 + RTE3 MLP 55.1%
RTE1 + RTE2 +

RTE3
MLP 54.8%

RTE1 + RTE2 SVM 54.7%
RTE2 SVM 54.6%

RTE2+RTE3 MLP 54.6%
RTE1 SVM 54%

RTE3-With NER
Module

SVM 53.8%

Baseline - 50%
Table 2.Results obtained in three-way classification task using

Stanford datasets.

Here we noted that using RTE3 instead of RTE2 or RTE1
in both classification tasks (two and three way) always
achieves better results. Interestingly, the RTE3 training set
alone outperforms the results obtained with any other
combination of RTE-s datasets, even despite the size of
increased corpus. Thus, for training purpose, it seems that
any additional datasets to RTE-3 introduces "noise" in the
classification task.

15

(Zanzotto et al) shown that RTE3 alone could produce
higher results that training on RTE3 merged with RTE2
for the two-way task. Consequently, it seems that it is not
always true that more learning examples increase the
accuracy of RTE systems. These experiments provide
additional evidence for both classification tasks. However,
this claim is still under investigation.
Always the RTE1 dataset yields the worse results, maybe
because this dataset has been collected with different text
processing applications (QA, IE, IR, SUM, PP and MT),
and our system do not have into account it.
In addition, a significant difference in performance of
3.8% and 8.6% was obtained using different corpus, in
two-way classification task (with and without the BPI
development set, respectively).
 The best performance of our system was achieved with
Multilayer Perceptron classifier with RTE-3 dataset; it was
58.4% and 55.4% of accuracy, for two and three way,
respectively.
The average difference between the best and the worst
classifier of all datasets in two way task was 1.6%, and
2.4% in three-way task.
On the other hand, even if the SVM classifier does not
appear as ‘favorite’ in neither classification task, in
average SVM is one of the best classifiers.
 We have to remark that in two-way task we obtained a
difference of 3.8% between the best and worst combination
of datasets and classifiers; meanwhile, in three-way task a
slight and not statistical significant difference of 1.4%
between the best and worst combination of datasets and
classifiers is found. So, it suggests that the combination of
data set and classifier has more impact over 2-way task
than over 3-way task.

The performance in all the cases was clearly above those
baselines. Only using BPI in two-way classification we
obtained a worse result than baseline, and it is because BPI
is syntactically simpler than PASCAL RTE; therefore, it
seems that is not good enough training set for machine
learning algorithm.

Although the best results were obtained without using

the Name Entity Preprocessing module, we believe these
results could be enhanced. The accuracy of this module
was 71%, but the misclassified instances provide evidence
that could be improved almost up to 80% (e.g: improving
the acronym database), and having into account the
coverage of corpus that was 10%, it could impact
positively on the overall performance of the system. While
this Name Entity Preprocessing module approach
performed reasonably well in these evaluations, we feel

that even better results could be obtained by adding
heuristic rules and knowledge base information.
 With the aim of analyzing the feature-dependency, we
calculated the correlation of them. The correlation and
causation are connected, because correlation is needed for
causation to be proved.
The correlation matrix of features is shown below:

Features 1 2 3 4
1 - 0,8611 0,6490 0,2057
2 0,8611 - 0,6951 0,0358
3 0,6490 0,6951 - 0,1707
4 0,2057 0,0358 0,1707 -

Table 3.Correlation matrix of features.

The table shows that features (1) and (2) are strongly
correlated, so we experimented eliminating feature (1) to
assess the effect on the overall performance over cross
validation, and we obtained that accuracy slight decreases
in 1%. Similar results are obtained by eliminating feature
(2).

Additionally, we calculated the Kappa statistics over all
development set using WEKA (Witten and Frank, 2000)
for both 2-way and 3-way task classification. The average
for Kappa measure was 0.138 for two-way task and 0.168
for three-way task.
In general, because of the corpus was incremented we
obtained better values for Kappa. Nevertheless, the best
value was obtained with RTE-3 two ways using MLP. In
this case, the Kappa measure was 0.35 for cross validation
experiment (See Tables 4 and 5).
There are two main reasons because of the values were
slight: the size of the corpus and the mistakes made in the
class contradiction, which was the most difficult class to
predict in the 3-way classification.

Finally, we assessed our system using cross validation
technique with ten folds to every corpus, testing over our
five classifiers for both classification tasks.
The results are shown in the tables 4 and 5 below.

Dataset Classifier Accuracy%
RTE3 MLP 65.5%

RTE2 + RTE3 MLP 60.68%
RTE1+RTE2+RTE3 MLP 59.35%

RTE2 SVM 56.62%
RTE1+RTE2 SVM 55.84%

RTE1 Decision
tree

54.70%

Table 3.Results obtained with Cross Validation in three-way
task.

16

Dataset Classifier Accuracy%
RTE3 BayesNet 67.85%
BPI BayesNet 64%

RTE1 + RTE2 +
RTE3

MLP 63.16%

RTE2 SVM 60.12%
RTE1+RTE2 MLP 59.79%

RTE1 SVM 57.83%
Table 4.Results obtained with Cross Validation in two-way task.

The results on test set are worse than those obtained on
training set, which is most probably due to the overfitting
of classifiers and because of the possible difference
between these datasets.

4. Conclusion and Future Work

We presented our RTE system that is based on a wide
range of machine learning classifiers. It was a workbench
that gave us a vision and knowledge about the structure of
the data set and the abilities of different classifiers to learn
them.
As a conclusion about development sets, we mention that
the results performed using RTE3 were very similar to
those obtained by the union of the RTE1 + RTE2+RTE3
for both 2-way and 3-way tasks. Thus, the claim that using
more training material helps seems not to be supported by
these experiments.

Additionally, we concluded that the relatively similar
performances of RTE3 and RTE3 with NER preprocessing
module suggests that further refinements over heuristic
rules can achieve better results.

Despite not presenting an exhaustive comparison among
all available datasets and classifiers, we can conclude that
the best combination of RTE-s datasets and classifiers
chosen for two way task produce more impact that the
same combination for three way task, almost for all
experiments that we did. In fact, the use of RTE3 alone
improved the performance of our system.
Finally, we conclude that RTE3 corpus for both two and
three way outperforms any other combination of RTE-s
corpus using Multilayer Perceptron classifier.

Future work is oriented to experiment with additional
lexical and semantic similarities features and test the
improvements they may yield. Additional work will
focused on improving the performance of our NE
preprocessing module.

5. References

[1] Prodromos Malakasiotis and Ion Androutsopoulos. Learning
Textual Entailment using SVMs and String Similarity
Measures. ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, (ACL 2007), Prague, Czech Republic,
2007.

[2] Julio Javier Castillo, and Laura Alonso i Alemany. An
approach using Named Entities for Recognizing Textual
Entailment. TAC 2008, Gaithersburg, Maryland, USA,
November 2008.

[3] M. Lesk. Automatic sense disambiguation using machine
readable dictionaries: How to tell a pine cone from a ice
cream cone. In SIGDOC ’86, 1986.

[4] Gusfield, Dan. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. CUP, 1999.

[5] V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[6] Ian H. Witten and Eibe Frank (2005). Data Mining:
Practical machine learning tools and techniques, 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.

[7] Alvaro Rodrigo, Anselmo Peñas, Jesus Herrera, Felisa
Verdejo. Experiments of UNED at the Third RTE
Challenge. Proceedings of the ACL-PASCAL 2007.

[8] British Atmospheric Data Centre (BADC) acronym
database: http://badc.nerc.ac.uk/help/abbrevs.html

[9] D. Inkpen, D. Kipp and V. Nastase. Machine Learning
Experiments for Textual Entailment. Proceedings of the
second RTE Challenge, Venice-Italy, 2006.

[10] Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In COLING ’04:
Proceedings of the 20th international conference on
Computational Linguistics, page 350, Morristown, NJ,
USA. Association for Computational Linguistics.

[11] F. Zanzotto, Marco Pennacchiotti and Alessandro Moschitti.
Shallow Semantics in Fast Textual Entailment Rule
Learners. In Proceedings of the Third Recognizing Textual
Entailment Challenge, Prague, 2007.

[12] Marie-Catherine de Marneffe, et al. Manning.Learning to
distinguish valid textual entailments. In Proceedings of the
Third Recognizing Textual Entailment Challenge, Italy,
2006.

17

