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Abstract

There has been recent interest in applying
cognitively- or empirically-motivated bounds
on recursion depth to limit the search space
of grammar induction models (Ponvert et al.,
2011; Noji and Johnson, 2016; Shain et
al., 2016). This work extends this depth-
bounding approach to probabilistic context-
free grammar induction (DB-PCFG), which
has a smaller parameter space than hierar-
chical sequence models, and therefore more
fully exploits the space reductions of depth-
bounding. Results for this model on grammar
acquisition from transcribed child-directed
speech and newswire text exceed or are com-
petitive with those of other models when eval-
uated on parse accuracy. Moreover, gram-
mars acquired from this model demonstrate a
consistent use of category labels, something
which has not been demonstrated by other ac-
quisition models.

1 Introduction

Grammar acquisition or grammar induction (Car-
roll and Charniak, 1992) has been of interest to lin-
guists and cognitive scientists for decades. This task
is interesting because a well-performing acquisition
model can serve as a good baseline for examin-
ing factors of grounding (Zettlemoyer and Collins,
2005; Kwiatkowski et al., 2010), or as a piece of
evidence (Clark, 2001; Zuidema, 2003) about the
Distributional Hypothesis (Harris, 1954) against the
poverty of the stimulus (Chomsky, 1965). Unfor-
tunately, previous attempts at inducing unbounded
context-free grammars (Johnson et al., 2007; Liang

et al., 2009) converged to weak modes of a very
multimodal distribution of grammars. There has
been recent interest in applying cognitively- or
empirically-motivated bounds on recursion depth to
limit the search space of grammar induction mod-
els (Ponvert et al., 2011; Noji and Johnson, 2016;
Shain et al., 2016). Ponvert et al. (2011) and Shain
et al. (2016) in particular report benefits for depth
bounds on grammar acquisition using hierarchical
sequence models, but either without the capacity to
learn full grammar rules (e.g. that a noun phrase
may consist of a noun phrase followed by a preposi-
tional phrase), or with a very large parameter space
that may offset the gains of depth-bounding. This
work extends the depth-bounding approach to di-
rectly induce probabilistic context-free grammars,1

which have a smaller parameter space than hier-
archical sequence models, and therefore arguably
make better use of the space reductions of depth-
bounding. This approach employs a procedure for
deriving a sequence model from a PCFG (van Schi-
jndel et al., 2013), developed in the context of a su-
pervised learning model, and adapts it to an unsu-
pervised setting.

Results for this model on grammar acquisi-
tion from transcribed child-directed speech and
newswire text exceed or are competitive with those
of other models when evaluated on parse accu-
racy. Moreover, grammars acquired from this model
demonstrate a consistent use of category labels, as
shown in a noun phrase discovery task, something
which has not been demonstrated by other acquisi-
tion models.

1https://github.com/lifengjin/db-pcfg
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2 Related work

This paper describes a Bayesian Dirichlet model of
depth-bounded probabilistic context-free grammar
(PCFG) induction. Bayesian Dirichlet models have
been applied to the related area of latent variable
PCFG induction (Johnson et al., 2007; Liang et al.,
2009), in which subtypes of categories like noun
phrases and verb phrases are induced on a given tree
structure. The model described in this paper is given
only words and not only induces categories for con-
stituents but also tree structures.

There are a wide variety of approaches to
grammar induction outside the Bayesian modeling
paradigm. The CCL system (Seginer, 2007a) uses
deterministic scoring systems to generate bracketed
output of raw text. UPPARSE (Ponvert et al., 2011)
uses a cascade of HMM chunkers to produce syn-
tactic structures. BMMM+DMV (Christodoulopou-
los et al., 2012) combines an unsupervised part-
of-speech (POS) tagger BMMM and an unsuper-
vised dependency grammar inducer DMV (Klein
and Manning, 2004). The BMMM+DMV system
alternates between phases of inducing POS tags and
inducing dependency structures. A large amount
work (Klein and Manning, 2002; Klein and Man-
ning, 2004; Bod, 2006; Berg-kirkpatrick et al., 2010;
Gillenwater et al., 2011; Headden et al., 2009; Bisk
and Hockenmaier, 2013; Scicluna and de la Higuera,
2014; Jiang et al., 2016; Han et al., 2017) has
been on grammar induction with input annotated
with POS tags, mostly for dependency grammar in-
duction. Although POS tags can also be induced,
this separate induction has been criticized (Pate and
Johnson, 2016) for missing an opportunity to lever-
age information learned in grammar induction to es-
timate POS tags. Moreover, most of these mod-
els explore a search space that includes syntactic
analyses that may be extensively center embedded
and therefore are unlikely to be produced by hu-
man speakers. Unlike most of these approaches, the
model described in this paper uses cognitively moti-
vated bounds on the depth of human recursive pro-
cessing to constrain its search of possible trees for
input sentences.

Some previous work uses depth bounds in the
form of sequence models (Ponvert et al., 2011;
Shain et al., 2016), but these either do not produce

complete phrase structure grammars (Ponvert et al.,
2011) or do so at the expense of large parameter sets
(Shain et al., 2016). Other work implements depth
bounds on left-corner configurations of dependency
grammars (Noji and Johnson, 2016), but the use of
a dependency grammar makes the system impracti-
cal for addressing questions of how category types
such as noun phrases may be learned. Unlike these,
the model described in this paper induces a PCFG
directly and then bounds it with a model-to-model
transform, which yields a smaller space of learn-
able parameters and directly models the acquisition
of category types as labels.

Some induction models learn semantic gram-
mars from text annotated with semantic predicates
(Zettlemoyer and Collins, 2005; Kwiatkowski et
al., 2012). There is evidence humans use semantic
bootstrapping during grammar acquisition (Naigles,
1990), but these models typically rely on a set of
pre-defined universals, such as combinators (Steed-
man, 2000), which simplify the induction task. In
order to help address the question of whether such
universals are indeed necessary for grammar induc-
tion, the model described in this paper does not
assume any strong universals except independently
motivated limits on working memory.

3 Background

Like Noji and Johnson (2016) and Shain et al.
(2016), the model described in this paper de-
fines bounding depth in terms of memory ele-
ments required in a left-corner parse. A left-corner
parser (Rosenkrantz and Lewis, 1970; Johnson-
Laird, 1983; Abney and Johnson, 1991; Resnik,
1992) uses a stack of memory elements to store
derivation fragments during incremental processing.
Each derivation fragment represents a disjoint con-
nected component of phrase structure a/b consist-
ing of a top sign a lacking a bottom sign b yet to
come. For example, Figure 1 shows the deriva-
tion fragments in a traversal of a phrase structure
tree for the sentence The cart the horse the man
bought pulled broke. Immediately before process-
ing the word man, the traversal has recognized three
fragments of tree structure: two from category NP
to category RC (covering the cart and the horse)
and one from category NP to category N (cover-
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Figure 1: Derivation fragments before the word man in
a left-corner traversal of the sentence The cart the horse
the man bought pulled broke.

ing the). Derivation fragments at every time step
are numbered top-down by depth d to a maximum
depth of D. A left-corner parser requires more
derivation fragments — and thus more memory —
to process center-embedded constructions than to
process left- or right-embedded constructions, con-
sistent with observations that center embedding is
more difficult for humans to process (Chomsky and
Miller, 1963; Miller and Isard, 1964). Grammar
acquisition models (Noji and Johnson, 2016; Shain
et al., 2016) then restrict this memory to some low
bound, e.g. two derivation fragments.

For sequences of observed word tokens wt for
time steps t ∈ {1..T }, sequence models like Ponvert
et al. (2011) and Shain et al. (2016) hypothesize se-
quences of hidden states qt. Models like Shain et al.
(2016) implement bounded grammar rules as depth
bounds on a hierarchical sequence model implemen-
tation of a left-corner parser, using random variables
within each hidden state qt for:

1. preterminal labels pt and labels of top and bot-
tom signs, ad

t and bd
t , of derivation fragments

at each depth level d (which correspond to left
and right children in tree structure), and

2. Boolean variables for decisions to ‘fork out’ ft
and ‘join in’ jt derivation fragments (in

Johnson-Laird (1983) terms, to shift with or
without match and to predict with or without
match).

Probabilities from these distributions are then mul-
tiplied together to define a transition model M over
hidden states:

M[qt−1,qt] = P(qt | qt−1) (1a)
def
= P( ft pt jt a1..D

t b1..D
t | qt−1) (1b)

= P( ft | qt−1)

·P(pt | qt−1 ft)

·P( jt | qt−1 ft pt)

·P(a1..D
t | qt−1 ft pt jt)

·P(b1..D
t | qt−1 ft pt jt a1..D

t ). (1c)

For example, just after the word horse is rec-
ognized in Figure 1, the parser store contains two
derivation fragments yielding the cart and the horse,
both with top category NP and bottom category RC.
The parser then decides to fork out the next word the
based on the bottom category RC of the last deriva-
tion fragment on the store. Then the parser gener-
ates a preterminal category D for this word based on
this fork decision and the bottom category of the last
derivation fragment on the store. Then the parser de-
cides not to join the resulting D directly to the RC
above it, based on these fork and preterminal deci-
sions and the bottom category of the store. Finally
the parser generates NP and N as the top and bottom
categories of a new derivation fragment yielding just
the new word the based on all these previous deci-
sions, resulting in the store state shown in the figure.

The model over the fork decision (shift with
or without match) is defined in terms of a depth-
specific sub-model θF,d̄, where ⊥ is an empty deriva-
tion fragment and d̄ is the depth of the deepest non-
empty derivation fragment at time step t − 1:

P( ft | qt−1)def
= PθF,d̄

( ft | bd̄
t−1); d̄ =max

d
{bd

t−1,⊥} (2)

The model over the preterminal category label is
then conditioned on this fork decision. When there
is no fork, the preterminal category label is deter-
ministically linked to the category label of the bot-
tom sign of the deepest derivation fragment at the
previous time step (using ~φ� as a deterministic indi-
cator function, equal to one when φ is true and zero
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otherwise). When there is a fork, the preterminal
category label is defined in terms of a depth-specific
sub-model θP,d̄:2

P(pt | qt−1 ft)
def
=


~pt=bd̄

t−1� if ft = 0
PθP,d̄

(pt | bd̄
t−1) if ft = 1.

(3)

The model over the join decision (predict with or
without match) is also defined in terms of a depth-
specific sub-model θJ,d̄ with parameters depending
on the outcome of the fork decision:3

P( jt | qt−1 ft pt)
def
=


PθJ,d̄

( jt | bd̄−1
t−1 ad̄

t−1) if ft=0
PθJ,d̄+1

( jt | bd̄
t−1 pt) if ft=1.

(4)

Decisions about the top categories of derivation
fragments a1..D

t (which correspond to left siblings in
tree structures) are decomposed into fork- and join-
specific cases. When there is a join, the top category
of the deepest derivation fragment deterministically
depends on the corresponding value at the previous
time step. When there is no join, the top category is
defined in terms of a depth-specific sub-model:4

PθA(a1..D
t | qt−1 ft pt jt)

def
=



φd̄−2 · ~ad̄−1
t =ad̄−1

t−1 � · ψd̄+0 if ft, jt =0, 1
φd̄−1 · PθA,d̄

(ad̄
t | bd̄−1

t−1 ad̄
t−1) · ψd̄+1 if ft, jt =0, 0

φd̄−1 · ~ad̄
t =ad̄

t−1� · ψd̄+1 if ft, jt =1, 1
φd̄−0 · PθA,d̄+1

(ad̄+1
t | bd̄

t−1 pt) · ψd̄+2 if ft, jt =1, 0.
(5)

Decisions about the bottom categories b1..D
t

(which correspond to right children in tree struc-
tures) also depend on the outcome of the fork and
join variables, but are defined in terms of a side- and
depth-specific sub-model in every case:5

PθB(b1..D
t | qt−1 ft pt jt a1..D

t )def
=



φd̄−2 · PθB,R,d̄−1
(bd̄−1

t | bd̄−1
t−1 ad̄

t−1) · ψd̄+0 if ft, jt =0, 1
φd̄−1 · PθB,L,d̄

(bd̄
t | ad̄

t ad̄
t−1) · ψd̄+1 if ft, jt =0, 0

φd̄−1 · PθB,R,d̄
(bd̄

t | bd̄
t−1 pt) · ψd̄+1 if ft, jt =1, 1

φd̄−0 · PθB,L,d̄+1
(bd̄+1

t | ad̄+1
t pt) · ψd̄+2 if ft, jt =1, 0.

(6)
2 Here, again, d̄ =maxd{bd

t−1,⊥}.
3 Again, d̄ =maxd{bd

t−1,⊥}.
4 Here φd̄ = ~a1..d̄

t = a1..d̄
t−1�, ψd̄ = ~ad̄+1..D

t = ⊥�, and again,
d̄ =maxd{bd

t−1,⊥}.
5 Here φd̄ = ~b1..d̄

t = b1..d̄
t−1�, ψd̄ = ~bd̄+1..D

t = ⊥�, and again,
d̄ =maxd{bd

t−1,⊥}.

In a sequence model inducer like Shain et al.
(2016), these depth-specific models are assumed to
be independent of each other and fit with a Gibbs
sampler, backward sampling hidden variable se-
quences from forward distributions using this com-
piled transition model M (Carter and Kohn, 1996),
then counting individual sub-model outcomes from
sampled hidden variable sequences, then resampling
each sub-model using these counts with Dirichlet
priors over a, b, and p models and Beta priors over
f and j models, then re-compiling these resampled
models into a new M.

However, note that with K category labels this
model contains DK2 + 3DK3 separate parameters
for preterminal categories and top and bottom cat-
egories of derivation fragments at every depth level,
each of which can be independently learned by the
Gibbs sampler. Although this allows the hierarchi-
cal sequence model to learn grammars that are more
expressive than PCFGs, the search space is several
times larger than the K3 space of PCFG nonterminal
expansions. The model described in this paper in-
stead induces a PCFG and derives sequence model
distributions from the PCFG, which has fewer pa-
rameters, and thus strictly reduces the search space
of the model.

4 The DB-PCFG Model

The depth-bounded probabilistic context-free gram-
mar (DB-PCFG) model described in this paper di-
rectly induces a PCFG and then deterministically
derives the parameters of a probabilistic left-corner
parser from this single source. This derivation
is based on an existing derivation of probabilistic
left-corner parser models from PCFGs (van Schijn-
del et al., 2013), which was developed in a super-
vised parsing model, adapted here to run more effi-
ciently within a larger unsupervised grammar induc-
tion model.6

A PCFG can be defined in Chomsky normal form
as a matrix G of binary rule probabilities with one
row for each of K parent symbols c and one col-
umn for each of K2+W combinations of left and

6 More specifically, the derivation differs from that of van
Schijndel et al. (2013) in that it removes terminal symbols from
conditional dependencies of models over fork and join decisions
and top and bottom category labels, substantially reducing the
size of the derived model that must be run during induction.
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right child symbols a and b, which can be pairs of
nonterminals or observed words from vocabulary W
followed by null symbols ⊥:7

G =
∑

a,b,c

P(c→ a b | c) δc (δa ⊗ δb)>. (7)

A depth-bounded grammar is a set of side- and
depth-specific distributions:

GD = {Gs,d | s ∈ {L,R}, d ∈ {1..D}}. (8)

The posterior probability of a depth-bounded
model GD given a corpus (sequence) of words w1..T
is proportional to the product of a likelihood and a
prior:

P(GD | w1..T ) ∝ P(w1..T | GD) · P(GD). (9)

The likelihood is defined as a marginal over
bounded PCFG trees τ of the probability of that tree
given the grammar times the product of the proba-
bility of the word at each time step or token index t
given this tree:8

P(w1..T | GD) =
∑

τ

P(τ | GD) ·
∏

t

P(wt | τ). (10)

The probability of each tree is defined to be the prod-
uct of the probabilities of each of its branches:9

P(τ | GD) =
∏

τη∈τ
PGD(τη → τη0 τη1 | τη). (11)

7 This definition assumes a Kronecker delta function δi, de-
fined as a vector with value one at index i and zeros everywhere
else, and a Kronecker product M ⊗ N over matrices M and N,
which tiles copies of N weighted by values in M as follows:

M ⊗ N =



M[1,1] N M[1,2] N · · ·
M[2,1] N M[2,2] N · · ·

...
...

. . .


. (1’)

The Kronecker product specializes to vectors as single-column
matrices, generating vectors that contain the products of all
combinations of elements in the operand vectors.

8 This notation assumes the observed data w1..T is a single
long sequence of words, and the hidden variable τ is a single
large but depth-bounded tree structure (e.g. a right-branching
discourse structure). Since the implementation is incremental,
segmentation decisions may indeed be treated as hidden vari-
ables in τ, but the experiments described in Section 5 are run on
sentence-segmented input.

9 Here, η is a node address, with left child η0 and right child
η1, or with right child equal to ⊥ if unary.

The probability P(GD) is itself an integral
over the product of a deterministic transform φ

from an unbounded grammar to a bounded gram-
mar P(GD | G) = ~GD = φ(G)� and a prior over un-
bounded grammars P(G):

P(GD) =

∫
P(GD | G) · P(G) · dG. (12)

Distributions P(G) for each nonterminal symbol
(rows) within this unbounded grammar can then be
sampled from a Dirichlet distribution with a sym-
metric parameter β:

G ∼ Dirichlet(β), (13)

which then yields a corresponding transformed sam-
ple in P(GD) for corresponding nonterminals. Note
that this model is different than that of Shain et al.
(2016), who induce a hierarchical HMM directly.

A depth-specific grammar GD is (deterministi-
cally) derived from G via transform φwith probabil-
ities for expansions constrained to and renormalized
over only those outcomes that yield terminals within
a particular depth bound D. This depth-bounded
grammar is then used to derive left-corner expec-
tations (anticipated counts of categories appearing
as left descendants of other categories), and ulti-
mately the parameters of the depth-bounded left-
corner parser defined in Section 3. Counts for G are
then obtained from sampled hidden state sequences,
and rows of G are then directly sampled from the
posterior updated by these counts.

4.1 Depth-bounded grammar

In order to ensure the bounded version of G is a con-
sistent probability model, it must be renormalized in
transform φ to assign a probability of zero to any
derivation that exceeds its depth bound D. For ex-
ample, if D = 2, then it is not possible to expand a
left sibling at depth 2 to anything other than a lexical
item, so the probability of any non-lexical expansion
must be removed from the depth-bounded model,
and the probabilities of all remaining outcomes must
be renormalized to a new total without this probabil-
ity. Following van Schijndel et al. (2013), this can
be done by iteratively defining a side- and depth-
specific containment likelihood h(i)

s,d for left- or right-
side siblings s ∈ {L,R} at depth d ∈ {1..D} at each it-
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eration i ∈ {1..I},10 as a vector with one row for each
nonterminal or terminal symbol (or null symbol ⊥)
in G, containing the probability of each symbol gen-
erating a complete yield within depth d as an s-side
sibling:

h(0)
s,d = 0 (14a)

h(i)
L,d =


G (1 ⊗ δ⊥ + h(i−1)

L,d ⊗ h(i−1)
R,d ) if d ≤ D + 1

0 if d > D + 1
(14b)

h(i)
R,d =



δT if d = 0
G (1 ⊗ δ⊥ + h(i−1)

L,d+1 ⊗ h(i−1)
R,d ) if 0 < d ≤ D

0 if d > D.
(14c)

where ‘T’ is a top-level category label at depth zero.
A depth-bounded grammar Gs,d can then be de-

fined to be the original grammar G reweighted and
renormalized by this containment likelihood:11

GL,d =
G diag(1 ⊗ δ⊥ + h(I)

L,d ⊗ h(I)
R,d)

h(I)
L,d

(15a)

GR,d =
G diag(1 ⊗ δ⊥ + h(I)

L,d+1 ⊗ h(I)
R,d)

h(I)
R,d

. (15b)

This renormalization ensures the depth-bounded
model is consistent. Moreover, this distinction be-
tween a learned unbounded grammar G and a de-
rived bounded grammar Gs,d which is used to de-
rive a parsing model may be regarded as an instance
of Chomsky’s (1965) distinction between linguistic
competence and performance.

The side- and depth-specific grammar can then be
used to define expected counts of categories occur-
ring as left descendants (or ‘left corners’) of right-

10 Experiments described in this article use I = 20 following
observations of convergence at this point in supervised parsing.

11 where diag(v) is a diagonalization of a vector v:

diag(v) =



v[1] 0 · · ·
0 v[2]
...

. . .


. (2’)

sibling ancestors:

E(1)
d = GR,d (diag(1) ⊗ 1) (16a)

E(i)
d = E(i−1)

d GL,d (diag(1) ⊗ 1) (16b)

E+
d =
∑I

i=1 E(i)
d . (16c)

This left-corner expectation will be used to esti-
mate the marginalized probability over all gram-
mar rule expansions between derivation fragments,
which must traverse an unknown number of left chil-
dren of some right-sibling ancestor.

4.2 Depth-bounded parsing

Again following van Schijndel et al. (2013), the fork
and join decision, and the preterminal, top and bot-
tom category label sub-models described in Sec-
tion 3 can now be defined in terms of these side-
and depth-specific grammars Gs,d and depth-specific
left-corner expectations E+

d .
First, probabilities for no-fork and yes-fork out-

comes below some bottom sign of category b at
depth d are defined as the normalized probabilities,
respectively, of any lexical expansion of a right sib-
ling b at depth d, and of any lexical expansion fol-
lowing any number of left child expansions from b
at depth d:

PθF,d (0 | b) =
δb
>GR,d (1 ⊗ δ⊥)

δb
>(GR,d + E+

d GL,d) (1 ⊗ δ⊥)
(17a)

PθF,d (1 | b) =
δb
>E+

d GL,d (1 ⊗ δ⊥)

δb
>(GR,d + E+

d GL,d) (1 ⊗ δ⊥)
. (17b)

The probability of a preterminal p given a bot-
tom category b is simply a normalized left-corner
expected count of p under b:

PθP,d (p | b)def
=
δb
> E+

d δp

δb
> E+

d 1
. (18)

Yes-join and no-join probabilities below bottom
sign b and above top sign a at depth d are then de-
fined similarly to fork probabilities, as the normal-
ized probabilities, respectively, of an expansion to
left child a of a right sibling b at depth d, and of an
expansion to left child a following any number of
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left child expansions from b at depth d:

PθJ,d (1 | b a) =
δb
>GR,d (δa ⊗ 1)

δb
>(GR,d + E+

d GL,d) (δa ⊗ 1)
(19a)

PθJ,d (0 | b a) =
δb
>E+

d GL,d (δa ⊗ 1)

δb
>(GR,d + E+

d GL,d) (δa ⊗ 1)
.

(19b)

The distribution over category labels for top
signs a above some top sign of category c and be-
low a bottom sign of category b at depth d is defined
as the normalized distribution over category labels
following a chain of left children expanding from b
which then expands to have a left child of category c:

PθA,d (a | b c) =
δb
>E+

d diag(δa) GL,d (δc ⊗ 1)

δb
>E+

d diag(1) GL,d (δc ⊗ 1)
. (20)

The distribution over category labels for bottom
signs b below some sign a and sibling of top sign c
is then defined as the normalized distribution over
right children of grammar rules expanding from a
to c followed by b:

PθB,s,d (b | a c) =
δa
>Gs,d (δc ⊗ δb)

δa
>Gs,d (δc ⊗ 1)

. (21)

Finally, a lexical observation model L is defined
as a matrix of unary rule probabilities with one row
for each combination of store state and preterminal
symbol and one column for each observation sym-
bol:

L = 1 ⊗G (diag(1) ⊗ δ⊥). (22)

4.3 Gibbs sampling
Grammar induction in this model then fol-
lows a forward-filtering backward-sampling algo-
rithm (Carter and Kohn, 1996). This algorithm
first computes a forward distribution vt over hidden
states at each time step t from an initial value ⊥:

v0
> = δ⊥> (23a)

vt
> = vt−1

>M diag(L δwt ). (23b)

The algorithm then samples hidden states backward
from a multinomial distribution given the previously
sampled state qt+1 at time step t+1 (assuming input
parameters to the multinomial function are normal-
ized):

qt ∼ Multinom( diag(vt) M diag(L δwt+1) δqt+1 ).
(24)

Grammar rule applications C are then counted
from these sampled sequences:12

C =
∑

t



δbd̄−1
t−1

(δad̄
t−1
⊗ δbd̄−1

t
)> if ft, jt = 0, 1

δad̄
t

(δad̄
t−1
⊗ δbd̄

t
)> if ft, jt = 0, 0

δbd̄
t−1

(δpt ⊗ δbd̄
t
)> if ft, jt = 1, 1

δad̄+1
t

(δpt ⊗ δbd̄+1
t

)> if ft, jt = 1, 0

+
∑

t

δpt (δwt ⊗ δ⊥)>, (25)

and a new grammar G is sampled from a Dirichlet
distribution with counts C and a symmetric hyper-
parameter β as parameters:

G ∼ Dirichlet( C + β ). (26)

This grammar is then used to define transition and
lexical models M and L as defined in Sections 3
through 4.2 to complete the cycle.

4.4 Model hyper-parameters and priors
There are three hyper-parameters in the model. K is
the number of non-terminal categories in the gram-
mar G, D is the maximum depth, and β is the param-
eter for the symmetric Dirichlet prior over multino-
mial distributions in the grammar G.

As seen from the previous subsection, the prior
is over all possible rules in an unbounded PCFG
grammar. Because the number of non-terminal cate-
gories of the unbounded PCFG grammar is given as
a hyper-parameter, the number of rules in the gram-
mar is always known. It is possible to use non-
parametric priors over the number of non-terminal
categories, however due to the need to dynamically
mitigate the computational complexity of filtering
and sampling using arbitrarily large category sets,
this is left for future work.

5 Evaluation

The DB-PCFG model described in Section 4 is eval-
uated first on synthetic data to determine whether
it can reliably learn a recursive grammar from data
with a known optimum solution, and to determine
the hyper-parameter value for β for doing so. Two
experiments on natural data are then carried out.
First, the model is run on natural data from the Adam

12 Again, d̄ =maxd{ad
t−1,⊥}.
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and Eve parts of the CHILDES corpus (Macwhin-
ney, 1992) to compare with other grammar induc-
tion systems on a human-like acquisition task. Then
data from the Wall Street Journal section of the Penn
Treebank (Marcus et al., 1993) is used for further
comparison in a domain for which competing sys-
tems are optimized. The competing systems include
UPPARSE (Ponvert et al., 2011)13, CCL (Seginer,
2007a)14, BMMM+DMV with undirected depen-
dency features (Christodoulopoulos et al., 2012)15

and UHHMM (Shain et al., 2016).16

For the natural language datasets, the variously
parametrized DB-PCFG systems17 are first validated
on a development set, and the optimal system is then
run until convergence with the chosen hyperparam-
eters on the test set. In development experiments,
the log-likelihood of the dataset plateaus usually af-
ter 500 iterations. The system is therefore run at
least 500 iterations in all test set experiments, with
one iteration being a full cycle of Gibbs sampling.
The system is then checked to see whether the log-
likelihood has plateaued, and halted if it has.

The DB-PCFG model assigns trees sampled from
conditional posteriors to all sentences in a dataset
in every iteration as part of the inference. The sys-
tem is further allowed to run at least 250 iterations
after convergence and proposed parses are chosen
from the iteration with the greatest log-likelihood af-
ter convergence. However, once the system reaches
convergence, the evaluation scores of parses from
different iterations post-convergence appear to differ
very little.

5.1 Synthetic data

Following Liang et al. (2009) and Scicluna and de la
Higuera (2014), an initial set of experiments on syn-
thetic data are used to investigate basic properties of
the model—in particular:

13https://github.com/eponvert/upparse
14https://github.com/DrDub/cclparser
15BMMM:https://github.com/christos-c/bmmm

DMV:https://code.google.com/archive/p/
pr-toolkit/

16https://github.com/tmills/uhhmm/tree/

coling16
17The most complex configuration that would run on avail-

able GPUs was D=2,K=15. Analysis of full WSJ (Schuler et
al., 2010) shows 47.38% of sentences require depth 2, 38.32%
require depth 3 and 6.26% require depth 4.
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Figure 2: Synthetic left-branching (a,b) and right-
branching (c,d) datasets.

1. whether the model is balanced or biased in fa-
vor of left- or right-branching solutions,

2. whether the model is able to posit recursive
structure in appropriate places, and

3. what hyper-parameters enable the model to find
optimal modes more quickly.

The risk of bias in branching structure is impor-
tant because it might unfairly inflate induction re-
sults on languages like English, which are heavily
right branching. In order to assess its bias, the model
is evaluated on two synthetic datasets, each consist-
ing of 200 sentences. The first dataset is a left-
branching corpus, which consists of 100 sentences
of the form a b and 100 sentences of the form a b b,
with optimal tree structures as shown in Figure 2 (a)
and (b). The second dataset is a right-branching cor-
pus, which consists of 100 sentences of the form
a b and 100 sentences of the form a a b, with opti-
mal tree structures as shown in Figure 2 (c) and (d).
Results show both structures (and both correspond-
ing grammars) are learnable by the model, and re-
sult in approximately the same log likelihood. These
synthetic datasets are also used to tune the β hyper-
parameter of the model (as defined in Section 4) to
enable it to find optimal modes more quickly. The
resulting β setting of 0.2 is then used in induction on
the CHILDES and Penn Treebank corpora.

After validating that the model is not biased,
the model is also evaluated on a synthetic center-
embedding corpus consisting of 50 sentences each
of the form a b c; a b b c; a b a b c; and a b b a b b c,
which has optimal tree structures as shown in Fig-
ure 3.18 Note that the (b) and (d) trees have depth 2

18 Here, in order to more closely resemble natural language
input, tokens a, b, and c are randomly chosen uniformly from
{a1, . . . , a50}, {b1, . . . , b50} and {c1, . . . , c50}, respectively.
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Figure 3: Synthetic center-embedding structure. Note
that tree structures (b) and (d) have depth 2 because they
have complex sub-trees spanning a b and a b b, respec-
tively, embedded in the center of the yield of their roots.

because they each have a complex sub-tree spanning
a b and a b b embedded in the center of the yield of
the root. Results show the model is capable of learn-
ing depth 2 (recursive) grammars.

Finally, as a gauge of the complexity of this task,
results of the model described in this paper are com-
pared with those of other grammar induction mod-
els on the center-embedding dataset. In this ex-
periment, all models are assigned hyper-parameters
matching the optimal solution. The DB-PCFG is
run with K=5 and D=2 and β=0.2 for all priors, the
BMMM+DMV (Christodoulopoulos et al., 2012) is
run with 3 preterminal categories, and the UHHMM
model is run with 2 active states, 4 awaited states
and 3 parts of speech.19 Table 1 shows the PARSE-
VAL scores for parsed trees using the learned gram-
mar from each unsupervised system. Only the DB-
PCFG model is able to recognize the correct tree
structures and the correct category labels on this
dataset, showing the task is indeed a robust chal-
lenge. This suggests that hyper-parameters opti-
mized on this dataset may be portable to natural data.

19It is not possible to use just 2 awaited states, which is the
gold setting, since the UHHMM system errors out when the
number of categories is small.

System Precision Recall F1
CCL 83.2 71.1 76.7

UPPARSE 91.4 80.7 85.7
UHHMM 37.7 37.7 37.7

BMMM+DMV 99.2 83.2 90.5
DB-PCFG 100.0 100.0 100.0

Table 1: The performance scores of unlabeled parse eval-
uation of different systems on synthetic data.

Hyperparameters Precision Recall F1
D1K15 57.1 70.7 63.2
D1K30 52.8 65.4 58.5
D1K45 44.4 54.9 49.1
D2K15 44.0 54.5 48.7

Table 2: PARSEVAL results of different hyperparameter
settings for the DB-PCFG system on the Adam dataset.
Hyperparameter D is the number of possible depths, and
K is the number of non-terminals.

5.2 Child-directed speech corpus

After setting the β hyperparameter on synthetic
datasets, the DB-PCFG model is evaluated on
14,251 sentences of transcribed child-directed
speech from the Eve section of the Brown corpus
of CHILDES (Macwhinney, 1992). Hyperparame-
ters D and K are set to optimize performance on the
Adam section of the Brown Corpus of CHILDES,
which is about twice as long as Eve. Following pre-
vious work, these experiments leave all punctuation
in the input for learning, then remove it in all evalu-
ations on development and test data.

Model performance is evaluated against Penn
Treebank style annotations of both Adam and Eve
corpora (Pearl and Sprouse, 2013). Table 2 shows
the PARSEVAL scores of the DB-PCFG system
with different hyperparameters on the Adam corpus
for development.The simplest configuration, D1K15
(depth 1 only with 15 non-terminal categories), ob-
tains the best score, so this setting is applied to
the test corpus, Eve. Results of the D=1,K=15
DB-PCFG model on Eve are then compared against
those of other grammar induction systems which use
only raw text as input on the same corpus. Follow-
ing Shain et al. (2016) the BMMM+DMV system is
run for 10 iterations with 45 categories and its output
is converted from dependency graphs to constituent
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System Precision Recall F1
CCL 50.5 53.5 51.9

UPPARSE 60.5 51.9 55.9
UHHMM 55.5 69.3 61.7

BMMM+DMV 63.5 63.3 63.4
UHHMM-F 62.9 68.4 65.6
DB-PCFG 64.5 80.5 71.6∗∗

Right-branching 68.7 85.8 76.3

Table 3: PARSEVAL scores on Eve dataset for all com-
peting systems. These are unlabeled precision, recall and
F1 scores on constituent trees without punctuation. Both
the right-branching baseline and the best performing sys-
tem are in bold. (**: p < 0.0001, permutation test)

trees (Collins et al., 1999). The UHHMM system is
run on the Eve corpus using settings in Shain et al.
(2016), which also includes a post-process option to
flatten trees (reported here as UHHMM-F).

Table 3 shows the PARSEVAL scores for all the
competing systems on the Eve dataset. The right-
branching baseline is still the most accurate in terms
of PARSEVAL scores, presumably because of the
highly right-branching structure of child-directed
speech in English. The DB-PCFG system with only
one memory depth and 15 non-terminal categories
achieves the best performance in terms of F1 score
and recall among all the competing systems, signif-
icantly outperforming other systems (p < 0.0001,
permutation test).20

The Eve corpus has about 5,000 sentences with
more than one depth level, therefore one might ex-
pect a depth-two model to perform better than a
depth-one model, but this is not true if only PAR-
SEVAL scores are considered. This issue will be re-
visited in the following section with the noun phrase
discovery task.

5.3 NP discovery on child-directed speech
When humans acquire grammar, they do not only
learn tree structures, they also learn category types:
noun phrases, verb phrases, prepositional phrases,
and where each type can and cannot occur.

20Resulting scores are better when applying Shain et al.
(2016) flattening to output binary-branching trees. For the D=1,
K=15 model, precision and F1 can be raised to 70.31% and
74.33%. However, since the flattening is a heuristic which may
not apply in all cases, these scores are not considered to be com-
parable results.

System NP Recall NP agg F1
CCL 35.5 -

UPPARSE 69.1 -
UHHMM 61.4 27.4

BMMM+DMV 71.3 61.2
DB-PCFG (D1K15) 75.7 28.7
DB-PCFG (D1K30) 78.6 60.7
DB-PCFG (D1K45) 76.9 64.0
DB-PCFG (D2K15) 85.1 65.9

Right-branching 64.2 -

Table 4: Performances of different systems for noun
phrase recall and aggregated F1 scores on the Eve dataset.

Some of these category types — in particular,
noun phrases — are fairly universal across lan-
guages, and may be useful in downstream tasks such
as (unsupervised) named entity recognition. The
DB-PCFG and other models that can be made to
produce category types are therefore evaluated on a
noun phrase discovery task.

Two metrics are used for this evaluation. First, the
evaluation counts all constituents proposed by the
candidate systems, and calculates recall against the
gold annotation of noun phrases. This metric is not
affected by which branching paradigm the system is
using and reveals more about the systems’ perfor-
mances. This metric differs from that used by Pon-
vert et al. (2011) in that this metric takes NPs at all
levels in gold annotation into account, not just base
NPs.21

The second metric, for systems that produce cat-
egory labels, calculates F1 scores of induced cate-
gories that can be mapped to noun phrases. The
first 4,000 sentences are used as the development
set for learning mappings from induced category la-
bels to phrase types. The evaluation calculates pre-
cision, recall and F1 of all spans of proposed cate-
gories against the gold annotations of noun phrases
in the development set, and aggregates the categories
ranked by their precision scores so that the F1 score
of the aggregated category is the highest on the de-
velopment set. The evaluation then calculates the F1
score of this aggregated category on the remainder
of the dataset, excluding this development set.

21Ponvert et al. (2011) define base NPs as NPs with no NP
descendants, a restriction motivated by their particular task
(chunking).
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System
WSJ10test WSJ20test

Precision Recall F1 Precision Recall F1
CCL 63.4 71.9 67.4 60.1 61.7 60.9∗∗

UPPARSE 54.7 48.3 51.3 47.8 40.5 43.9
UHHMM 49.1 63.4 55.3 - - -

BMMM+DMV(K10) 36.2 40.6 38.2 25.3 29.0 27.0
UHHMM-F 57.1 54.4 55.7 - - -

DB-PCFG (D2K15) 64.5 82.6 72.4∗∗ 53.0 70.5 60.5
Right-branching 55.1 70.5 61.8 41.5 55.3 47.4

Table 5: PARSEVAL scores for all competing systems on WSJ10 and WSJ20 test sets. These are unlabeled precision,
recall and F1 scores on constituent trees without punctuation (**: p <0.0001, permutation test).

The UHHMM system is the only competing sys-
tem that is natively able to produce labels for pro-
posed constituents. BMMM+DMV does not pro-
duce constituents with labels by default, but can
be evaluated using this metric by converting depen-
dency graphs into constituent trees, then labeling
each constituent with the part-of-speech tag of the
head. For CCL and UPPARSE, the NP agg F1 scores
are not reported because they do not produce labeled
constituents.

Table 4 shows the scores for all systems on the
Eve dataset and four runs of the DB-PCFG system
on these two evaluation metrics. Surprisingly the
D=2, K=15 model which has the lowest PARSE-
VAL scores is most accurate at discovering noun
phrases. It has the highest scores on both evalua-
tion metrics. The best model in terms of PARSE-
VAL scores, the D=1, K=15 DB-PCFG model, per-
forms poorly among the DB-PCFG models, despite
the fact that its NP recall is higher than the com-
peting systems. The low score of NP agg F1 of
DB-PCFG at D1K15 shows a diffusion of induced
syntactic categories when the model is trying to find
a balance among labeling and branching decisions.
The UPPARSE system, which is proposed as a base
NP chunker, is relatively poor at NP recall by this
definition.

The right-branching baseline does not perform
well in terms of NP recall. This is mainly because
noun phrases are often left children of some other
constituent and the right branching model is un-
able to incorporate them into the syntactic structures
of whole sentences. Therefore although the right-
branching model is the best model in terms of PAR-
SEVAL scores, it is not helpful in terms of finding

noun phrases.

5.4 Penn Treebank

To further facilitate direct comparison to previous
work, we run experiments on sentences from the
Penn Treebank (Marcus et al., 1993). The first ex-
periment uses the sentences from Wall Street Jour-
nal part of the Penn Treebank with at most 20 words
(WSJ20). The first half of the WSJ20 dataset is used
as a development set (WSJ20dev) and the second
half is used as a test set (WSJ20test). We also extract
sentences in WSJ20test with at most 10 words from
the proposed parses from all systems and report re-
sults on them (WSJ10test). WSJ20dev is used for
finding the optimal hyperparameters for both DB-
PCFG and BMMM-DMV systems.22

Table 5 shows the PARSEVAL scores of all sys-
tems. The right-branching baseline is relatively
weak on these two datasets, mainly because formal
writing is more complex and uses more non-right-
branching structures (e.g., subjects with modifiers
or parentheticals) than child-directed speech. For
WSJ10test, both the DB-PCFG system and CCL are
able to outperform the right branching baseline. The
F1 difference between the best-performing previous-
work system, CCL, and DB-PCFG is highly sig-
nificant. For WSJ20test, again both CCL and DB-

22Although UHHMM also needs tuning, in practice we find
that this system is too inefficient to be tuned on a development
set, and it requires too many resources when the hyperparame-
ters become larger than used in previous work. We believe that
further increasing the hyperparameters of UHHMM may lead to
performance increase, but the released version is not scalable to
larger values of these settings. We also do not report UHHMM
on WSJ20test for the same scalabilty reason. The results of
WSJ10test of UHHMM is induced with all WSJ10 sentences.

221



System
WSJ10 WSJ40

Precision Recall F1 Precision Recall F1
CCL 75.3 76.1 75.7 58.7 55.9 57.2

UPPARSE 74.6 66.7 70.5 60.0 49.4 54.2
DB-PCFG (D2K15) 65.5 83.6 73.4 47.0 63.6 54.1

Right-branching 55.2 70.0 61.7 35.4 47.4 40.5

Table 6: Published PARSEVAL results for competing systems. Please see text for details as the systems are trained
and evaluated differently.

PCFG are above the right-branching baseline. The
difference between the F scores of CCL and DB-
PCFG is very small compared to WSJ10, however
it is also significant.

It is possible that the DB-PCFG is being penal-
ized for inducing fully binarized parse trees. The
accuracy of the DB-PCFG model is dominated by
recall rather than precision, whereas CCL and other
systems are more balanced. This is an important
distinction if it is assumed that phrase structure
is binary (Kayne, 1981; Larson, 1988), in which
case precision merely scores non-linguistic deci-
sions about whether to suppress annotation of non-
maximal projections. However, since other systems
are not optimized for recall, it would not be fair to
use only recall as a comparison metric in this study.

Finally, Table 6 shows the published results of dif-
ferent systems on WSJ. The CCL results come from
Seginer (2007b), where the CCL system is trained
with all sentences from WSJ, and evaluated on sen-
tences with 40 words or fewer from WSJ (WSJ40)
and WSJ10. The UPPARSE results come from Pon-
vert et al. (2011), where the UPPARSE system is
trained using 00-21 sections of WSJ, and evaluated
on section 23 and the WSJ10 subset of section 23.
The DB-PCFG system uses hyperparameters opti-
mized on the WSJ20dev set, and is evaluated on
WSJ40 and WSJ10, both excluding WSJ20dev. The
results are not directly comparable, but the results
from the DB-PCFG system is competitive with the
other systems, and numerically have the best recall
scores.

6 Conclusion

This paper describes a Bayesian Dirichlet model
of depth-bounded PCFG induction. Unlike earlier
work this model implements depth bounds directly

on PCFGs by derivation, reducing the search space
of possible trees for input words without exploding
the search space of parameters with multiple side-
and depth-specific copies of each rule. Results for
this model on grammar acquisition from transcribed
child-directed speech and newswire text exceed or
are competitive with those of other models when
evaluated on parse accuracy. Moreover, grammars
acquired from this model demonstrate a consistent
use of category labels, something which has not
been demonstrated by other acquisition models.

In addition to its practical merits, this model may
offer some theoretical insight for linguists and other
cognitive scientists. First, the model does not as-
sume any universals except independently motivated
limits on working memory, which may help address
the question of whether universals are indeed neces-
sary for grammar induction. Second, the distinction
this model draws between its learned unbounded
grammar G and its derived bounded grammar GD

seems to align with Chomsky’s (1965) distinction
between competence and performance, and has the
potential to offer some formal guidance to linguistic
inquiry about both kinds of models.
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