
Compositional Semantics for Linguistic Formalisms

S h u l y W i n t n e r *
In s t i t u t e for Research in Cogni t ive Science

Univers i ty of Pennsy l van i a
3401 W a l n u t St., Sui te 400A

Phi lade lph ia , PA 19018
shuly@:t±nc, c i s . u p e n n , edu

A b s t r a c t

In what sense is a grammar the union of its
rules? This paper adapts the notion of com-
posi t ion, well developed in the context of pro-
gramming languages, to the domain of linguis-
tic formalisms. We s tudy alternative definitions
for the semantics of such formalisms, suggest-
ing a denotat ional semantics that we show to
be composit ional and fully-abstract. This fa-
cilitates a clear, mathematical ly sound way for
defining grammar modularity.

1 I n t r o d u c t i o n

Developing large scale grammars for natural
languages is a complicated task, and the prob-
lems grammar engineers face when designing
broad-coverage grammars are reminiscent of
those tackled by software engineering (Erbach
and Uszkoreit, 1990). Viewing contemporary
linguistic formalisms as very high level declara-
tive programming languages, a g r a m m a r for a
natural language can be viewed as a program.
It is therefore possible to adapt methods and
techniques of software engineering to the do-
main of natural language formalisms. We be-
lieve that any advances in grammar engineering
must be preceded by a more theoretical work,
concentrating on the semantics of grammars.
This view reflects the si tuation in logic program-
ming, where developments in alternative defini-
tions for predicate logic semantics led to im-
plementat ions of various program composit ion
operators (Bugliesi et al., 1994).

This paper suggests a denotational seman-
tics tbr unification-based linguistic formalisms
and shows that it is composit ional and fully-

*I am gra tefu l to Niss im Francez for c o m m e n t i n g on an
em'lier vers ion of th i s paper . Th i s work was s u p p o r t e d
by an IRCS Fellowship a n d N SF g ran t S B R 8920230.

abstract. This facilitates a clear, mathemat i -
cally sound way for defining grammar modu-
larity. While most of the results we report on
are probably not surprising, we believe that it
is important to derive them directly for linguis-
tic formalisms for two reasons. First, practi-
tioners of linguistic formMisms usually do not
view them as instances of a general logic pro-
gramming framework, but rather as first-class
programming environments which deserve in-
dependent study. Second, there are some cru-
cial differences between contemporary linguis-
tic formalisms and, say, Prolog: the basic ele-
ments - - typed feature-structures - - are more
general than first-order terms, the notion of uni-
fication is different, and computa t ions amount
to parsing, rather than SLD-resolution. The
fact that we can derive similar results in this
new domain is encouraging, and should not be
considered trivial.

Analogously to logic programming languages,
the denotat ion of grammars can be defined us-
ing various techniques. We review alternative
approaches, operational and denotational , to
the semantics of linguistic formalisms in sec-
tion 2 and show that they are "too crude"
to support grammar composition. Section 3
presents an alternative semantics, shown to be
composit ional (with respect to grammar union,
a simple syntactic combination operat ion on
grammars). However, this definition is "too
fine": in section 4 we present an adequate,
composit ional and fully-abstract semantics for
linguistic formalisms. For lack of space, some
proofs are omitted; an extended version is avail-
able as a technical report (Wintner, 1999).

2 G r a m m a r s e m a n t i c s

Viewing grammars as formal entities that share
many features with computer programs, it is

9{}

na tu ra l to consider the not ion of semantics of
ratif ication-based formalisms. We review in this
se(:tion the opera t iona l defini t ion of Shieber et
a,1. (1995) and the deno ta t iona l definit ion of,
e.g., Pereira and Shieber (1984) or Carpente r
(1992, pp. 204-206). We show tha t these def-
ini t ions are equivalent and tha t none of t hem
suppor t s composi t ional i ty .

2.1 B a s i c n o t i o n s

W(, assume famil iar i ty wi th theories of feature
s t ruc tu re based unif icat ion grammars , as for-
mula ted by, e.g., Carpen te r (1992) or Shieber
(1992). G r a m m a r s are defined over typed fea-
twre .structures (TFSs) which can be viewed as
general izat ions of f irst-order te rms (Carpenter ,
1991). TFSs are par t ia l ly ordered by subsump-
tion, wi th ± the least (or most general) TFS. A
multi-rooted structure (MRS, see Sikkel (1997)
()r Win tne r and Francez (1999)) is a sequence
of TFSs , wi th possible reentrancies among dif-
fi;rent elements in the sequence. Meta-variables
A, /3 range over TFSs and a, p - over MRSs.
MRSs are par t ia l ly ordered by subsumpt ion , de-
n()ted '__', wi th a least upper b o u n d opera t ion
()f 'an'llfication, denoted 'U', and a greatest lowest
t)(mnd denoted 'W. We assume the existence of
a. fixed, finite set WORDS of words. A lexicon
associates wi th every word a set of TFSs, its cat-
egory. Meta-var iable a ranges over WORDS and
.w -- over str ings of words (elements of WORDS*).

G r a m m a r s are defined over a signature of types
and features, a s sumed to be fixed below.

D e f i n i t i o n 1. A ru le is an M R S of length
greater than or equal to 1 with a designated
(fir'st) element, the head o.f the rule. The rest of
the elements .form the rule's body (which may
be em, pty, in which case the rule is depicted
a.s' a TFS). A l e x i con is a total .function .from
WORDS to .finite, possibly empty sets o.f TFSs.
A g r a m m a r G = (T¢,/:, A s} is a .finite set of
,rules TO, a lexicon £. and a s t a r t s y m b o l A s
that is a TFS.

Figure 1 depicts an example g rammar , 1 sup-
pressing the under ly ing type hierarchy. 2

The defini t ion of unif icat ion is lifted to MRSs:
let a , p be two MRSs of the same length; the

'Grammars are displayed using a simple description
language, where ':' denotes feature values.

2Assmne that in all the example grammars, the types
s, n, v and vp are maximal and (pairwise) inconsistent.

A '~ = (~:at : .~)

{ (c a t : s) -+ (co, t : n) (c a t : v p)]
7~ = (ca t : vp) ---> (c.at: v) (c a t : n)

vp) + .,,)

Z2(John) = Z~(Mary) = { (ca t : 'n)}
£(sleeps) = £(sleep) = £(lovcs) = {(co, t : v)}

Figure 1: An example g rammar , G

unification of a and p, denoted c, U p, is the
most general MRS tha t is subsmned by bo th er
and p, if it exists. Otherwise, the unif icat ion
.fails.

D e f i n i t i o n 2. An M R S (AI, . . . ,A~:) reduces
to a TFS A with respect to a gram, mar G (de-
noted (A t , . . . , A k) ~(-~ A) 'li~' th, ere exists a
rule p E T~ such, that (B,131, . . . ,B~:) = p ll
(_L, A1, . . . , Ak) and B V- A. Wll, en G is under-
stood from. the context it is om, itted. Reduction
can be viewed as the bottom-up counterpart of
derivation.

If f , g, are f lmctions over the same (set) do-
main, .f + g is)~I..f(I) U .q(I). Let ITEMS =
{[w, i ,A , j] [w E WORDS*, A is a T F S and
i , j E { 0 , 1 , 2 , 3 , . . . } } . Let Z = 2 ITEMS. Meta-
variables x, y range over i tems and I - over sets
of items. W h e n 27 is ordered by set inclusion
it forms a complete lat t ice wi th set un ion as a
least upper b o u n d (lub) operat ion. A f lmct ion
T : 27 -+ 27 is monotone if whenever 11 C_/2, also
T(I1) C_ T(I2). It is cont inuous i f tbr every chain
I1 C_ /2 C_ . . . , T (U j < ~/. i) = U j < ~ T (I j) . If a
funct ion T is monotone it has a least f ixpoint
(Tarski -Knaster theorem); if T is also continu-
ous, the f ixpoint can be ob ta ined by i terat ive
appl icat ion of T to the empty set (Kleene the-
orem): lfp(T) = T S w , where T I " 0 = 0 and
T t n = T (T t (n - 1)) when 'n is a succes-
sor ordinal and (_Jk<n(T i" n) when n is a l imit
ordinal.

W h e n the semantics of p rog ramming lan-
guages are concerned, a not ion of observables
is called for: Ob is a f lmct ion associat ing a set
of objects, the observables, wi th every program.
The choice of semantics induces a na tu ra l equiv-
alence opera tor on grammars : given a semantics
' H ' , G1 ~ G2 iff ~GI~ = ~G2~. An essential re-
qui rement of any semant ic equivalence is t ha t it

97'

be correct (observables-preserving): if G1 - G 2 ,
then Ob(G1) = Ob(G2).

Let 'U' be a composit ion operat ion on gram-
mars and ' • ' a combination operator on deno-
rations. A (correct) semantics ' H ' is compo-
.s'itional (Gaifinan and Shapiro, 1989) if when-
ever ~ 1 ~ : ~G2~ and ~G3] -- ~G4], also
~G, U G3~ = [G2 U G4]. A semantics is com-
mutat ive (Brogi et al., 1992) if ~G1 UG2] =
~G,~ • [G2~. This is a stronger notion than
(:ompositionality: if a semantics is commutat ive
with respect to some operator then it is compo-
sitional.

2.2 A n operat iona l semant ics

As Van Emden and Kowalski (1976) note, "to
define an operat ional semantics for a program-
ruing language is to define an implementat ional
independent interpreter for it. For predicate
logic the proof procedure behaves as such an in-
terpreter." Shieber et al. (1995) view parsing as
a. deductive process that proves claims about the
grammatical s ta tus of strings from assumptions
derived from the grammar. We follow their in-
sight and notat ion and list a deductive system
for parsing unification-based grammars.

Def in i t ion 3. The deductive parsing system
associated with a grammar G = (7~,F.,AS} is
defined over ITEMS and is characterized by:

Axioms: [a, i, A, i + 1] i.f B E Z.(a) and B K A;
[e, i, A, i] i f B is an e-rule in T~ and B K_ A

Goals: [w, 0, A, [w]] where A ~ A s

Inference rules:

[wx , i l , A1, i l l , . . . , [Wk, ik, Ak , Jk]

[Wl " " " Wk, i, A, j]

i f .'h = i1,+1 .for 1 <_ l < k and i = il and
J = Jk and (A 1 , . . . , A k) =>a A

When an i tem [w , i , A , j] can be deduced,
applying k times the inference rules associ-
z~ted with a grammar G, we write F-~[w, i, A, j].
When the number of inference steps is irrele-
vant it is omitted. Notice that the domain of
items is infinite, and in particular that the num-
ber of axioms is infinite. Also, notice that the
goal is to deduce a TFS which is subsumed by
the start symbol, and when TFSs can be cyclic,
there can be infinitely many such TFSs (and,
hence, goals) - see Wintner and Francez (1999).

Def in i t ion 4. The operational denotat ion
o.f a grammar G is EG~o,, = {x IF-v; :,:}. G1 - o p

G2 iy]C1 o, = G2Bo ,

We use the operational semantics to de-
fine the language generated by a grammar G:
L(G) = { (w , A } [[w,O,A,l',,[] E [G]o,} . Notice
that a language is not merely a set of strings;
rather, each string is associated with a TFS
through the deduction procedure. Note also
that the start symbol A ' does not play a role
in this definition; this is equivalent to assuming
that the start symbol is always the most general
TFS, _k.

The most natural observable for a grammar
would be its language, either as a set of strings
or augmented by TFSs. Thus we take Ob(G)
to be L(G) and by definition, the operat ional
semantics '~.] op' preserves observables.

2.3 D e n o t a t i o n a l semant ics

In this section we consider denotat ional seman-
tics through a fixpoint of a t ransformational op-
erator associated with grammars. -This is es-
sentially similar to the definition of Pereira and
Shieber (1984) and Carpenter (1992, pp. 204-
206). We then show that the denotat ional se-
mantics is equivalent to the operat ional one.

Associate with a grammar G an operator
7~ that, analogously to the immediate conse-
quence operator of logic programming, can be
thought of as a "parsing step" operator in the
context of grammat ica l formalisms. For the
following discussion fix a part icular grammar
G = (n , E , A ~) .

Def in i t ion 5. Let T c : Z -+ Z be a trans-
format ion on sets o.f i tems, where .for every
I C_ ITEMS, [w , i , A , j] E T(~(I) i f f either

• there exist Y l , . . . , y k E I such that Yl =
[w1,,iz,Al,jt] .for" 1 < 1 <_ k and il+l = jz
for 1 < l < k and il = 1 and jk = J and
(A1, . . . ,Ak) ~ A and w = "w~ .. • wk; or

• i = j a n d B is an e-rule in G a n d B K A
and w = e; or

• i + l = j and [w[= 1 a n d B G 12(w) and
B K A .

For every grammar G, To., is monotone and
continuous, and hence its least fixpoint exists
and l.fp(TG) = TG $ w. Following the paradigm

98

of logic programming languages, define a fix-
point semantics for unification-based grammars
by taking the least fixpoint of the parsing step
operator as the denotat ion of a grammar.

D e f i n i t i o n 6. The f ixpoint deno ta t ion of a
grammar G is ~G[.fp = l.fp(Ta). G1 =--.fp G2 iff

~ti,(T<; ~) = l fp(Ta~).

The denotat ional definition is equivalent to
the operational one:

T h e o r e m 1. For x E ITEMS, X E lfp(TG) iff
~-(? x.

The proof is that [w , i , A , j] E Ta $ n iff
F-7;,[w, i, A, j], by induction on n.

C o r o l l a r y 2. The relation '=fp' is correct:

whenever G1 =.fp G2, also Ob(G1) = Ob(a2) .

2 .4 C o m p o s i t i o n a l i t y

While the operational and the denotational se-
mantics defined above are s tandard for com-
plete grammars, they are too coarse to serve
as a model when the composit ion of grammars
is concerned. When the denotat ion of a gram-
mar is taken to be ~G]op, important character-
istics of the internal s t ructure of the grammar
are lost. To demonstra te the problem, we intro-
duce a natural composit ion operator on gram-
mars, namely union of the sets of rules (and the
lexicons) in the composed grammars.

D e f i n i t i o n 7. / f GI = <T¢1, ~1, A~) and G2 =

(7-~2,E'2,A~) are two grammars over the same
signature, then the u n i o n of the two gram-
mars, denoted G1 U G2, is a new grammar G =
(T~, £, AS> such that T~ = 7~ 1 (.J 7"~2, ft. = ff~l + ff~2
and A s = A~ rq A~.

Figure 2 exemplifies grammar union. Observe
that for every G, G', G O G' = G' O G.

• P r o p o s i t i o n 3. The equivalence relation '=op'
is not compositional with respect to Ob, {U}.

Proof. Consider the grammars in figure 2.
~a:~o,, = l a d o . = {["loves",/, (cat : v) , i + 1]l
i > 0} but tbr I = {["John loves John", i, (cat :
s) , i + 3 I i >_ 0}, I C_ [G1UG4]op whereas
I ~ [G1UGa~op. Thus Ga =-op G4 but
(Gl (2 Go) ~op (G1 tO G4), hence '~--Op' is not
composit ional with respect to Ob, {tO}. []

G1 : A s = (cat :.s)
(co, t : s) -+ (c.,t: ,,,,) (co, t : vp)
C(John) = {((:.t : n)}

a 2 : A s = (_1_)
(co, t : vp) -+ (co, t : v)
(cat : vp) -+ (c a t : v) (c a t : n)
/:(sleeps) = / : (loves) = { (ca t : v)}

Go: A s = (&)
/:(loves) = {(cat : v)}

G4: A s = (_1_)
(ca t :vp) -+ (co, t : v) (c a t : n)
C(loves) = {(cat : v)}

G1 U G2 : A s = (cat : s)
(co, t : ~) -+ (~:o,t: ,,,,) (~.at : vp)
(cat : vp) -~ (co, t : v)
(cat: vp) --+ (cat: v) (cat : n)
/ : (John) = { (ca t : n)}
£(sleeps) = £(loves) = { (ca t : v)}

G 1 U G a : A s = (cat : s)
(cat: s) --+ (ca t : n) (cat: vp)
C(John) = {(cat : ',,,)}
£(loves) = {(ca t : v)}

GI U G4 : A s = (cat : s)
(co, t : ~) + (co.t: ,,,.) (cat : vp)
(co, t : vp) -~ (ca t : , ,) (co, t : ~)
/ :(John) = {(cat : n)}
/:(loves) = { (ca t : v)}

Figure 2: Grammar union

The implication of the above proposit ion is that
while grammar union might be a natural, well
defined syntactic operation on grammars, the
s tandard semantics of grannnars is too coarse to
support it. Intuitively, this is because when a
grammar G1 includes a particular rule p that is
inapplicable for reduction, this rule contributes
nothing to the denotat ion of the grammar. But
when G1 is combined with some other grammar,
G2, p might be used for reduction in G1 U G2,
where it can interact with the rules of G2. We
suggest an alternative, fixpoint based semantics
for unification based grammars that natural ly
supports compositionality.

3 A c o m p o s i t i o n a l s e m a n t i c s

To overcome the problems delineated above, we
follow Mancarella and Pedreschi (1988) in con-
sidering the grammar t ransformation operator
itself (rather than its fixpoint) as the denota-

9 9

tion of a grammar.

D e f i n i t i o n 8. The a lgebraic d e n o t a t i o n o.f
G is ffGffa I = Ta. G1 - a t G2 iff Tal = TG2.

Not only is the algebraic semantics composi-
tionM, it is also commutative with respect to
grammar union. To show that , a composition
operation on denotations has to be defined, and
we tbllow Mancarella and Pedreschi (1988) in
its definition:

Tc;~ • To;., =),LTc, (~) u Ta2 (5

T h e o r e m 4. The semantics '==-at ' is commuta-
tive with respect to grammar union and '•': for
e, vcry two grammars G1, G2, [a l f f a t " ~G2ffal =
: G I [-J G 2 f f (tl .

Proof. It has to be shown that, for every set of
i tems L Tca~a., (I) = Ta , (I) u Ta. , (I) .

• if x E TG1 (I) U TG~, (I) then either x G
Tch (I) or x E Ta.,(I). From the definition
of grammar union, x E TG1uG2(I) in any
case.

• if z E Ta~ua.,(I) then x can be added by
either of the three clauses in the definition
of Ta.

- if x is added by the first clause then
there is a rule p G 7~1 U T~2 that li-
censes the derivation through which
z is added. Then either p E 7~1 or
p G T~2, but in any case p would have
licensed the same derivation, so either

~ Ta~ (I) or • ~ Ta~ (I).

- if x is added by the second clause then
there is an e-rule in G1 U G2 due to
which x is added, and by the same
rationale either x C TG~(I) or x E
TG~(I).

- if x is added by the third clause then
there exists a lexical category in £1 U
£2 due to which x is added, hence this
category exists in either £1 or £2, and
therefore x C TG~ (I) U TG2 (I).

[]

Since '==-at' is commutative, it is also compo-
sitional with respect to grammar union. In-
tuitively, since TG captures only one step of

the computation, it cannot capture interactions
among different rules in the (unioned) grammar,
and hence taking To: to be the denotat ion of G
yields a compositional semantics.

The Ta operator reflects the s tructure of the
grammar better than its fixpoint. In other
words, the equivalence relation induced by TG is
finer than the relation induced by l fp(Tc). The
question is, how fine is the ' - a l ' relation? To
make sure that a semantics is not too fine, one
usually checks the reverse direction.

D e f i n i t i o n 9. A f u l l y - a b s t r a c t equivalence
relation ' - ' is such that G1 =- G'2 'i,.[.-f .for all G,
Ob(G1 U G) = Ob(G.e U G).

P r o p o s i t i o n 5. Th, e semantic equivalence re-
lation '--at' is not fully abshuct.

Proof. Let G1 be the grammar

A~ = ±,

£1 = 0,
~ = { (ca t : ~) -~ (~:.,t : ,,,,p) (c.,t : vp),

(ca t : up) -~ (,:..t : ',,.p)}

and G2 be the gramm~:r

A~ = 2 ,
Z:2 = O,
n ~ = {(~at : .~) -~ (~,.,t : .,p) (. a t : ~p)}

• G1 ~at G2: because tbr I = {["John loves
Mary" ,6 , (ca t : np),9]}, T(;I(I) = I but
To., (I) = O

• for all G, Ob(G U G~) = Ob(G [3 G2). The
only difference between GUG1 and GUG2 is
the presence of the rule (cat : up) -+ (cat :
up) in the former. This rule can contribute
nothing to a deduction procedure, since any
item it licenses must already be deducible.
Therefore, any item deducible with G U G1
is also deducible with G U G2 and hence
Ob(G U G1) ---- Ob(G U G,2).

[]

A better a t tempt would have been to con-
sider, instead of TG, the fbllowing operator as
the denotat ion of G: [G]i d = AI .Ta(I) U I. In
other words, the semantics is Ta + Id, where
Id is the identity operator. Unfortunately, this
does not solve the problem, a s '~']id' is still not
fully-abstract.

100

4 A ful ly abs tract s emant i c s

We have shown so far that ' H f p ' is not com-

positional, and that ' H i d ' is compositional but
not fully abstract . The "right" semantics, there-
fore, lies somewhere in between: since the choice
of semantics induces a natural equivalence on
grammars, we seek an equivalence that is cruder
thzm ' H i d ' but finer than 'H.fp'. In this section

we adapt results from Lassez and Maher (1984)
a.nd Maher (1988) to the domain of unification-
b~Lsed linguistic formalisms.

Consider the following semantics for logic
programs: rather than taking the operator asso-
d a t e d with the entire program, look only at the
rules (excluding the facts), and take the mean-
ing of a program to be the function that is ob-
tained by an infinite applications of the opera-
tor associated with the rules. In our framework,
this would amount to associating the following
operator with a grammar:

D e f i n i t i o n 10. Le t RG : Z -~ Z be a trans-
f o rma t ion on sets o.f i tems, where .for every
[C ITEMS, [w , i , A , j] E R G (I) i f f there exist
Y l , . . . , Y k E I such that yl = [wz , i t ,A l , j d .for
1 _ < l _ < k and il+t = jl .for 1 < l < k and
i, = 1 and. jk = J and (A 1 , . . . , A k) ~ A and
"~1) ~ 'tl) 1 • • • ?U k .

Th, e func t ional denotat ion of a g ra mmar G is
/[G~.f,,, = (R e + Id) ~ = End-0 (RG + Id) n. Notice

that R w is not RG "[w: the f o r m e r is a func t ion " d

f rom sets of i tems to set of i tems; the latter is
a .set of i tems.

Observe that R c is defined similarly to Ta
(definition 5), ignoring the items added (by Ta)
due to e-rules and lexical items. If we define the
set of items I ' n i t c to be those items that are
a.dded by TG independently of the argument it
operates on, then for every grammar G and ev-
ery set of items I, T a (I) = R a (I) U I n i t a . Re-
lating the functional semantics to the fixpoint
one, we tbllow Lassez and Maher (1984) in prov-
ing that the fixpoint of the grammar transfor-
mation operator can be computed by applying
the fimctional semantics to the set In i tG.

D e f i n i t i o n 11. For G = (hg ,£ ,A~) , I n i t c =
{[e, i ,A,i] [B is an e~-rule in G and B E_A} U
{[a , i ,A , i + 1J I B E £ (a) .for B E A }

T h e o r e m 6. For every g r a m m a r G,

(R.c + fd.) (z',,.itcd = tb(TG)

Proof. We show that tbr every 'n., (T~ + Id)
n = (E~.-~ (R e + Id) ~:) (I 'nit(;) by induction on
Tt.
For n = 1, (Tc + Id) ~[1 = (Tc~ + I d) ((T a +
Id) ~ O) = (Tc, + Id)(O). Clearly, the only
items added by TG are due to the second and
third clauses of definition 5, which are exactly
I n i t a . Also, (E~=o(Ra + Id)~:)(Initc;) = (R a +
Id) ° (I n i t c) = I'nitc;.
Assume that the proposit ion holds tbr n - 1,
that is, (To + Id) "[(',, - 1) = t~E'"-2t~'a:=0 txta +
Id) k) U n i t e) . Then

(Ta + Id) $ n =
definition of i"

(TG + I d) ((T a + Id) ~[(v, - 1)) =
by the induction hypothesis

~n--2 (Ta + I d) ((k=0(RG + I d) k) (I n i t a)) =
since T a (I) = R a (I) U I n i t a

En-2 (R a + Id) ((k=Q(Rc; + I d) ~ ') (I n i t a)) U I n i t a =
(Ra + (Ra + Id) k) (1',,,its,)) =
(y]n -1 /R , Id)h:)(Init(:) k=0 ~, , G - I -

Hence (RG + Id) ~ (In i t (; = (27(; + Id) ~ w =
lfp(TG) . []

The choice of 'Hfl~' as the semantics calls for

a different notion of' observables. The denota-
tion of a grammar is now a flmction which re-
flects an infinite number of' applications of the
grammar 's rules, but completely ignores the e-
rules and the lexical entries. If we took the ob-
servables of a grammar G to be L (G) we could
in general have ~G1].f,. = ~G2]fl~. but Ob(G1) 7 ~

Ob(G2) (due to different lexicons), that is, the
semantics would not be correct. However, when
the lexical entries in a grammar (including the e-
rules, which can be viewed as empty categories,
or the lexical entries of traces) are taken as in-
put, a natural notion of observables preservation
is obtained. To guarantee correctness, we define
the observables of a grammar G with respect to
a given input.

D e f i n i t i o n 12. Th, e o b s e r v a b l e s of a gram-
mar G = (~ , / : , A s} with respect to an in-
put set of items I are Ot, (C) = {(' , , , ,A) I
[w,0, d, I 1] e

101

C o r o l l a r y 7. The semantics '~.~.f ' is correct:
'llf G1 =fn G2 then .for every I, Obl(G1) =
Ol, (a,e).

The above definition corresponds to the pre-
vious one in a natural way: when the input is
taken to be Ini ta, the observables of a grammar
are its language.

T h e o r e m 8. For all G, L(G) = Obinita(G).

P'moJ:

L(G) =
definition of L(G)

{ (',,,, A) I [w, O, A, I 1] e I[C]lo,,} =
definition 4

{ (w, A) [F-c [w, O, A, =
by theorem 1

{<w, A> I [,w, 0, A, Iwl] e l.fp(Ta)} =
by theorem 6

{(,w, A) I [w, O, A, [wl] e [G] f n (I n i t G) } =
by definition 12

Obt,,,~tc; (G)

[]

.To show that the semantics 'Hfn' is composi-

tional we must define an operator for combining
denotations. Unfortunately, the simplest oper-
ator, '+ ' , would not do. However, a different
operator does the job. Define ~Gl~.f~ • [G2~f~ to

1)e ([[G1]l.fn + [G2~f~) °'. Then 'H.f~' is commuta-
tive (and hence compositional) with respect to
~•' and 'U' .

T h e o r e m 9. fiG1 U G2~fn = ~Gl]fn " ~G2~.fn.

The proof is basically similar to the case of
logic programming (Lassez and Maher, 1984)
and is detailed in Wintner (1999).

T h e o r e m 10. The semantics '~'[fn' is fully
abstract: ,for every two grammars G1 and G2,
'llf .for" every grammar G and set of items I,
Obr(G1 U G) = ObI(G2 U G), then G1 =fn G2.

The proof is constructive: assuming that
G t ~f;~ G2, we show a grammar G (which de-

t)ends on G1 and G2) such that Obt(G1 U G) ¢
Obr(G2 U G). For the details, see Wintner
(1999).

5 C o n c l u s i o n s

This paper discusses alternative definitions for
the semantics of unification-based linguistic for-
malisms, culminating in one that is bo th com-
positional and fully-abstract (with respect to
grammar union, a simple syntactic combinat ion
operations on grammars). This is mostly an
adapta t ion of well-known results from h)gic pro-
gramming to the ti 'amework of unification-based
linguistic tbrmalisms, and it is encouraging to
see that the same choice of semantics which
is composit ional and fiflly-abstra(:t for Prolog
turned out to have the same desirable proper-
ties in our domain.

The functional semantics '~.].f,' defined here

assigns to a grammar a fimction which reflects
the (possibly infinite) successive application of
grammar rules, viewing the lexicon as input to
the parsing process. We, believe that this is a
key to modular i ty in grammar design. A gram-
mar module has to define a set of i tems that
it "exports", and a set of items that can be
"imported", in a similar way to the declarat ion
of interfaces in programming languages. We
are currently working out the details of such
a definition. An immediate application will fa-
cilitate the implementat ion of grammar devel-
opment systems that suppor t modular i ty in a
clear, mathematical ly sound way.

The results reported here can be extended
in various directions. First, we are only con-
cerned in this work with one composi t ion oper-
ator, grammar union. But alternative operators
are possible, too. In particular, it would be in-
teresting to define an operator which combines
the information encoded in two grammar rules,
for example by unifying the rules. Such an op-
erator would facilitate a separate development
of grammars along a different axis: one module
can define the syntactic component of a gram-
mar while another module would account for the
semantics. The composit ion operator will unify
each rule of one module with an associated rule
in the other. It remains to be seen whether the
grammar semantics we define here is composi-
tional and fully abstract with respect to such an
operator.

A different extension of these results should
provide for a distr ibution of the type hierarchy
among several grammar modules. While we as-
sume in this work that all grammars are defined

102

over a given signature, it is more realistic to as-
sume separate, interacting signatures. We hope
to be able to explore these directions in the fu-
ture.

R e f e r e n c e s

Antonio Brogi, Evelina Lamina, and Paola
Mello. 1992. Compositional model-theoretic
semantics for logic programs. New Genera-
tion Computing, 11:1-21.

Michele Bugliesi, Evelina Lamina, and Paola
Mello. 1994. Modularity in logic pro-
gramming. Journal of Logic Programming,
19,20:443 502.

Bob Carpenter. 1991. Typed feature struc-
tures: A generalization of first-order terms.
In Vijai Saraswat and Ueda Kazunori, edi-
tors, Logic Programming - Proceedings of the
1991 International Symposium,, pages 187-
201, Cambridge, MA. MIT Press.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge Tracts in Theo-
retical Computer Science. Cambridge Univer-
sity Press.

Gregor Erbach and Hans Uszkoreit. 1990.
Grammar engineering: Problems and
prospects. CLAUS report 1, University of
the Saarland and German research center for
Artificial Intelligence, July.

Haim Gaifman and Ehud Shapiro. 1989. Fully
abstract compositional semantics for logic
programming. In 16th Annual ACM Sym-
posium on Principles o.f Logic Programming,
pages 134-142, Austin, Texas, January.

J.-L. Lassez and M. J. Maher. 1984. Closures
and fairness in the semantics of programming
logic. Theoretical computer science, 29:167-
184.

M. J. Maher. 1988. Equivalences of logic pro-
grams. In .Jack Minker, editor, Foundations
of Deductive Databases and Logic Program-
rain.q, chapter 16, pages 627-658. Morgan
Kaulinann Publishers, Los Altos, CA.

Paolo Mancarella and Dino Pedreschi. 1988.
An algebra of logic programs. In Robert A.
Kowalski and Kenneth A. Bowen, edi-
tors, Logic Programming: Proceedings of the
F@h international conference and sympo-
,sium, pages 1006-1023, Cambridge, Mass.
MIT Press.

Fernando C. N. Pereira and Stuart M. Shieber.

1984. The semantics of grammar formalisms
seen as computer languages. In Proceedings of
the lOth international con.ference on compu-
tational linguistics and the 22nd annual meet-
ing o.f the association .for computational lin-
guistics, pages 123-129, Stantbrd, CA, July.

Stuart Shieber, Yves Schabes, and Fernando
Pereira. 1995. Principles and implementation
of deductive parsing. Jo'wrr~,al o]" Logic Pro-
gramming, 24(1-2):3-36, July/August .

Stuart M. Shieber. 1992. Constraint-Based
Grammar Form, alism, s. MIT Press, Cam-
bridge, Mass.

Klaas Sikkel. 1997. Par'sing Schemata. Texts in
Theoretical Computer Science - An EATCS
Series. Springer Verlag, Berlin.

M. H. Van Emden and Robert A. Kowalski.
1976. The semantics of predicate logic as a
programming language. . Iournal of the Asso-
ciation .for Ccrmputing Machinery, 23(4):733-
742, October.

Shuly Wintner and Nissim Francez. 1999. Off-
line parsability and the well-tbundedness of
subsumption. Journal of Logic, Language
and In.formation, 8(1):1-16, January.

Shuly Wintner. 1999. Compositional semantics
for linguistic formalisms. IRCS Report 99-05,
Insti tute for Research in Cognitive Science,
University of Pennsylvania, 3401 Wahmt St.,
Suite 400A, Philadelphia, PA 19018.

103

