
A FLEXIBLE EXAMPLE-BASED PARSER BASED ON THE SSTC" 

Mosleh Hmoud  A1-Adhaileh & Tang Enya Kong 
Computer  Aided Translation Unit 

School of  computer  sciences 
University Sains Malaysia 

1 1800 PENANG, MA LA Y S IA  
mosleh @ cs. usm.my, enyakong @ cs. usm. my 

Abstract 
In this paper we sketch an approach for Natural Language parsing. Our approach is an example-based 

approach, which relies mainly on examples that already parsed to their representation structure, and on the 
knowledge that we can get from these examples the required information to parse a new input s e n t e n c e .  In our 
approach, examples are annotated with the Structured String Tree Correspondence (SSTC) annotation schema 
where each SSTC describes a sentence, a representation tree as well as the correspondence between substrhzgs in 
the sentence and subtrees in the representation tree. In the process of  parsing, we first try to build subtrees for 
phrases in the input sentence which have been successfully found in the example-base - a bottom up approach. 
These subtrees will then be combined together to form a single rooted representation tree based on an example with 
similar representation structure - a top down approach. 

Keywords: Example-based parsing, SSTC. 

1. INTRODUCTION 
In natural language processing (NLP), one key 

problem is how to design an effective parsing system. 
Natural language parsing is the process of analyzing 
or parsing that takes sentences in a natural language 
and converts them to some representation form 
suitable for further interpretation towards some 
applications might be required, for example, 
translation, text abstraction, question-answering, etc. 
The generated representation tree structure can be a 
phrase structure tree, a dependency tree or a logical 
structure tree, as required by the application involved. 

Here we design an approach for parsing natural 
language to its representation structure, which 
depends on related examples already parsed in the 
example-base. This approach is called example-based 
parsing, as oppose to the traditional approaches of 
natural language parsing which normally are based on 
rewriting rules. Here linguistic knowledge extracted 
directly from the example-base will be used to parse a 
natural language sentence (i.e. using past language 
experiences instead of rules). For a new sentence, to 
build its analysis (i.e. representation structure tree), 
ideally if the sentence is already in the example-base, 
its analysis is found there too, but in general, the 
input sentence will not be found in the example-base. 
In such case, a method is used to retrieve close related 

examples and use the knowledge from these 
examples to build the analysis for the input sentence. 
In general, this approach relies on the assumption that 
if two strings (phrase or sentence) are "close", their 
analysis should be "close" too. If the analysis of the 
first one is known, the analysis of the other can be 
obtained by making some modifications in the 
analysis of the first one. 

The example-based approach has become a 
common technique for NLP applications, especially 
in MT as reported in [1], [2] or [3]. However, a main 
problem normally arises in the current approaches 
which indirectly limits their applications in the 
development of a large scale and practical example- 
based system. Namely the lack of flexibility in 
creating the representation tree due to the restriction 
that correspondences between nodes (terminal or non 
terminal) of the representation tree and words of the 
sentence must be one-to-one and some even restrict it 
to only in projective manner according to certain 
traversai order. This restriction normally results to 
the inefficient usage of the example-base. In this 
paper, we shall first discuss on certain cases where 
projective representation trees are inadequate for 
characterizing representation structures of some 
natural linguistic phenomena, i.e. featurisation, 
lexicalisation and crossed dependencies. Next, we 

• The work reported in this paper is supported by the IRPA research programs, under project number 04-02-05-6001 funded by the Ministry of 
Science, Technology and Environment, Malaysia. 

687 



propose to overcome the problem by introducing a 
flexible annotation schema called Structured String- 
Tree Correspondence(SSTC) which describes a 
sentencel a representation tree, and the 
correspondence between substrings in the sentence 
and subtrees in the representation tree. Finally, we 
present a algorithm to parse natural language 
sentences based on the SSTC annotation schema. 

2. N O N - P R O J E C T I V E  C O R R E S P O N D E  

- N C E S  I N  N A T U R A L  L A N G U A G E  

S E N T E N C E S  
In this section, we shall present some cases 

where projective representation tree is found to be 
inadequate for characterizing representation tree of 
some natural language sentences. The cases 
illustrated here are featurisation, lexicalisation and 
crossed dependencies. An example containing 
mixture of these non-projective correspondences also 
will be presented. 

2.1 F e a t u r i s a t i o n  
Featurisation occurs when a linguist decides that a 

particular substring in the sentence, should not be 
represented as a subtree in the representation tree but 
perhaps as a collection of features. For example, as 
illustrated in figure 1, this would be the case for 
prepositions in arguments which can be interpreted as 
part of the predicate and not the argument, and should 
be featurised into the predicate (e.g. "up" in "picks- 
up"), the particle "up" is featurised as a part of the 
feature properties of the verb "pick". 

picks up 

He picks up the ball 

Figure 1: Featurisation 

2 .2  L e x i c a l i s a t i o n  
Lexicalisation is the case when a particular 

subtree in the representation tree presents the 
meaning of some part of the string, which is not 
orally realized in phonological form. Lexicalisation 
may result from the correspondence of a subtree in 
the tree to an empty substring in the sentence, or 
substring in the sentence to more than one subtree in 
the tree. Figure 2 illustrates the sentence "John eats 
the apple and Mary the pear" where "eats" in the 
sentence corresponds to more than one node in the 
tree. 

and 

e a _ . / " o O ~ ~ e a t s  

John eats the apple and Mary tile pear 
Figure 2: Lexicalisation 

2.3 C r o s s e d  d e p e n d e n c i e s  
The most complicated case of string-tree 

correspondence is when dependencies are intertwined 
with each other. It is a very common phenomenon in 
natural language. In crossed dependencies, subtree in 
the tree corresponds to single substring in the 
sentence, but the words in a substring are distributed 
over the whole sentence in a discontinuous manner, 
in relation to the subtree they correspond to. An 
example of crossed dependencies is occurred in the 

b n c n sentences of the form (a n v I n>0), figure 3 
illustrates the representation tree for the string "aa v 
bb cc " (also written a . la .2  v b. lb .2 c.lc.2 to show 
the positions), this akin to the 'respectively' problem 
in English sentence like "John and Mary give Paul 
and Ann trousers and dresses respectively" [4]. 

v 

a.1 b.1 [ c.1 _ _ v  

1'4 
• 

Figure 3: Crossed dependencies 

Sometimes the sentence contains mixture of these 
non-projective correspondences, figure 4 illustrates 
the sentence "He picks the ball up", which contains 
both featurisation and crossed dependencies. Here, 
the particle "up" is separated from its verb "picks" by 
a noun phrase "the ball" in the string. And "up" is 
featurised into the verb "picks" (e.g. "up" in "picks- 
up"). 

picl 
/ 

pick 

:s up 

Figure 4: Mixture of featurisation 
and crossed dependencies 

688 



3. S T R U C T U R E D  S T R I N G - T R E E  

C O R R E S P O N D E N C E  ( S S T C )  
The correspondence between the string on one 

hand, and its representation of meaning on the other 
hand, is defined in terms of finer subcorrespondences 
between substrings of the sentence and subtrees of the 
tree. Such correspondence is made of two interrelated 
correspondences, one between nodes and substrings, 
and the other between subtrees and substrings, (the 
substrings being possibly discontinuous in both 
cases). 

The notation used in SSTC to denote a 
correspondence consists of a pair of intervals X/Y 
attached to each node in the tree, where X(SNODE) 
denotes the interval containing the substring that 
corresponds to the node, and Y(STREE) denotes the 
interval containing the substring that corresponds to 
the subtree having the node as root [4]. 

Figure 5 illustrates the sentence "all cats eat 
mice" with its corresponding SSTC. It is a simple 
projective correspondence. An interval is assigned to 
each word in the sentence, i.e. (0-1) for "all", (1-2) 
for "cats", (2-3) for "eat" and (3-4) for "mice". A 
substring in the sentence that corresponds to a node in 
the representation tree is denoted by assigning the 
interval of the substring to SNODE of the node, e.g. 
the node "cats" with SNODE interval (1-2) 
corresponds to the word "cats" in the string with the 
similar interval. The correspondence between 
subtrees and substrings are denoted by the interval 
assigned to the STREE of each node e.g. the subtree 
rooted at node "eat" with STREE interval (0-4) 
corresponds to the whole sentence "all cats eat mice". 

Tree  eat(2-3/0-4) 

 3.4,3.4, 

all 

(0-1/0-1)~ t 

String all cats eat mice 
(0-1) (1-2) (2-3) (3-4) 

Figure 5: An SSTC recording the sentence "all cats 
eat mice" and its Dependency tree together with the 
correspondences between substrings of the sentence 

and subtrees of the tree. 

4. U S E S  O F  S S T C  A N N O T A T I O N  I N  

E X A M P L E - B A S E D  P A R S I N G  
In order to enhance the quality of example- 

based systems, sentences in the example-base are 
normally annotated with theirs constituency or 
dependency structures which in turn allow example- 

based parsing to be established at the structural 
level. To facilitate such structural annotation, here 
we annotate the examples based on the Structured 
String-Tree Correspondence (SSTC). The SSTC is a 
general structure that can associate, to string in a 
language, arbitrary tree structure as desired by the 
annotator to be the interpretation structure of the 
string, and more importantly is the facility to specify 
the correspondence between the string and the 
associated tree which can be interpreted for both 
analysis and synthesis in NLP. These features are 
very much desired in the design of an annotation 
scheme, in particular for the treatment of linguistic 
phenomena which are not-standard e.g. crossed 
dependencies [5]. 

Since the example in the example-base are 
described in terms of SSTC, which consists of a 
sentence (the text), a dependency tree' (the linguistic 
representation) and the mapping between the two 
(correspondence); example-based parsing is 
performed by giving a new input sentence, followed 
by getting the related examples(i.e, examples that 
contains same words in the input sentence) from the 
example-base, and used them to compute the 
representation tree for the input sentence guided by 
the correspondence between the string and the tree 
as discussed in the following sections. Figure 6 
illustrates the general schema for example-based NL 
parsing based on the SSTC schema. 

sentence 

Input 

Example. Ii 
based / \ 

Parsing Output 

Figure 6: Example-based natural language parsing based on 
the SSTC schema. 

4. 1 The parsing algorithm 
The example-based approach in MT [1], [2] or 

[3], relies on the assumption that if two sentences 
are "close", their analysis should be "close" too. If 
the analysis of the first one is known, the analysis of 
the other can be obtained by making some 
modifications in the analysis of the first one (i.e. 

i Each node is tagged with syntactic category to enable 
substitution at category level. 

689 



close: distance not too large, modification: edit 
operations (insert, delete, replace) [6]. 

In most of  the cases, similar sentence might not 
occurred in the example-base, so the system utilized 
some close related examples to the given input 
sentence (i.e. similar structure to the input sentence or 
contain some words in the input sentence). For that it 
is necessary to construct several subSSTCs (called 
substitutions hereafter) for phrases in the input 
sentence according to their occurrence in the 
examples from the example-base. These substitutions 
are then combined together to form a complete SSTC 
as the output. 

Suppose the system intends to parse the sentence 
" the old man  picks  the green lamp up", depending 
on the following set of  examples representing the 
example-base. 

picks{v] uplp] 
(1-2+4-5/0-5) 

He[hi ball{n] 
(0-1/0-1) (3-4/2-4) 

I 
the[detl 

(2-3/2-3) 
He picks the ball up 
0-1 1-2 2-3 3-4 4-5 

(1) 

tums[v](3-4/0-5) 

signal{n] on[adv] 
(2-3/0-3) (4-5/4-5) 
/ ~  

theldet] green[adj] 
(0-1/0-1) (1-2/1-2) 

The green signal turns on 
0-1 I-2 2-3 3-4 4-5 

(2) 

is{v](2-3/0-4) 

lamp[nl off[adv] 
(1-2/0-2) (3-4/3-4) 

I 
theldetl 
(0-1/0-1) 

The lamp is off 
0-1 I-2 2-3 3-4 

died{v](3-4/0-4) 

mJn[n] (2-3/0-3) 
the[det] old[adj] 
(0-1/0-1) (1-2/1-2) 

The old man died 
0-1 1-2 2-3 3-4 

(3)  (4)  

The example-base is first processed to retrieve 
some knowledge related to each word in the example- 
base to form a knowledge index. Figure 7 shows the 
knowledge index constructed based on the example- 
base given above. The knowledge retrieved for each 
word consists of: 
1. Example  number :  The example number of  one of  
the examples which containing this word with this 
knowledge. Note that each example in the example- 
base is assigned with a number as its identifier. 
2. Frequency:  The frequency of  occurrence in the 
example-base for this word with the similar 
knowledge. 
3. Category:  Syntactic category of  this word. 
4. Type: Type of  this word in the dependency tree (0: 
terminal, l: non-terminal). 

- Terminal word: The word which is at the 
bottom level of  the tree structure, namely the 
word without any son/s under it (i.e. 
STREE=SNODE in SSTC annotation). 

- Non terminal word: The word which is 
linked to other word/s at the lower level, 
namely the word that has son/s (i.e. 
STREE~:SNODE in SSTC annotation). 

5. Status: Status of  this word in the dependency tree 
(0: root word, 1 : non-root word, 2: friend word) 

- Friend word: In case of  featurisation, if a 
word is featurised into other word, this 
word is called friend for that word, e.g. the 
word "up" is a friend for the word "picks" 
in figure 1. 

6. Pa ren t  category:  Syntactic category of  the parent 
node of  this word in the dependency tree. 
7. Position: The position of  the parent node in the 
sentence (0: after this word, 1 : before this word). 
8. Next knowledge: A pointer pointing to the next 
possible knowledge of  this word. Note that a word 
might have more than one knowledge, e.g. "man" 
could be a verb or a noun. 

Based on the constructed knowledge index in figure 
7, the system built the following table of  knowledge 
for the input sentence: 

The input sentence: the old man picks the green 
0-1 1-2 2-3 3-4 4-5 5-6 

the 0 1 1 

old 1 2 4 

man  2 3 4 

picks 3 4 1 

the 4 5 1 

green 5 6 2 

lamp 6 7 3 

up 7 8 1 

4 det 0 1 n 

l a d j 0  1 n 

1 n 1 1 v 

1 v 1 0 

4 det 0 1 n 

l a d j 0  1 v 

1 n 1 i v 

1 p l 2 v 

lamp up 
6-7 7-8 

0 nil 

0 nil 

0 nil 

nil 

0 nil 

0 nil 

0 nil 

1 nil 

Note that to each word in the input sentence, the 
system built a record which contain the word, 
SNODE interval, and a linked list of  possible 
knowledge related to the word as recorded in the 
knowledge index. The following figure describes an 
example record for the word <the>: 

This mean:  
the word <the>, snode(0-1), one of the examples 
that contain the word with this knowledge is 
example l, this knowledge repeated 4 time in the 
example-base, the category of the word is <det>, 
it is a terminal node, non-root node, the parent 
category is <n>, and the parent appear after it in 
the sentence. 

690 



=g lExample  No. I f requeneylcategory Itype Is~tus IParent categorylPosi t ion I N e x t K n . [  

the ~ I 4 det 0 I n 0 nil. 

old - ~ 4 1 adj 0 I n 0 nil. 

he - ~ I I n 0 I v 0 nil. 

turns - ~ 2 1 v I 0 nil. 

ball - ~ I I n 1 I v I nil. 

green - ~ 2 I adj 0 1 n 0 nil. 

signal - ~ 2 I n I I v 0 nil. 

on - ~ 2 1 adv 0 I v 1 nil. 

ticks - ~ I 1 v I 0 nil. 

off - ~ 3 1 adv 0 1 v 1 nil. 

man - ~ 4 I n 1 1 v 0 nil. 

died - ~ 4 I v I 0 nil. 

lamp - ~ 3 I n 1 I v 0 nil. 

up - ~ 1 1 p I 2 v 1 nil. 

Figure 7: The knowledge index for the words in the example-base. 

This knowledge will be used to build the 
substitutionsfor the input sentence, as we will discuss 
in the next section. 

4.1.1 Substitutions generation 
In order to build substitutions, the system first 

classifies the words in the input sentence into 
terminal words and non-terminal words. For each 
terminal word, the system tries to identify the non- 
terminal word it may be connected to based on the 
syntactic category and the position of the non- 
terminal word in the input sentence (i.e. before or 
after the terminal word) guided by SNODE interval. 

In the input sentence given above, the terminal 
words are "the", "old" and "green" and based on the 
knowledge table for the words in the input sentence, 
they may be connected as son node to the first non- 
terminal with category [n] which appear after them in 
the input sentence. 

For ( "the" 0-1, and "old" 1-2 ) they are connected as 
sons to the word ("man" 2-3). 

nowledge I] Non-terminal I 

able II wordStn] I 

For ("the" 4-5, and "green" 5-6 ) they are connected 
as sons to the word ("lamp" 6-7). 

~ n o w l e d g e  I I N o n - t e r m i n a l  I 

I - , ~ " - " , p v - - - l a m p [ n ]  

I 'he' ~ - ~  SU~ebnStl_~ertaUttio°? I ~  . . . .  
I green ~ "  ~ generator 

The remainder non-terminal words, which are not 
connected to any terminal word, will be treated as 
separate substitutions. 

From the input sentence the system builds the 
following substitutions respectively : 

m a n [ n ]  p i c k s [ v ]  l a m p [ n ]  u p [ p ]  
( 2 - 3 / 0 - 3 )  ( 3 - 4 / 0 - 8 )  ( 6 - 7 / 4 - 7 )  ( 7 - 8 / - )  

t he lde t ]  o l d [ a d j ]  the [de( ]  g r e e n [ a d j ]  
( 0 - 1 / 0 - 1 )  ( 1 - 2 / 1 - 2 )  (4 -5 /4-5~  ( 5 - 6 / 5 - 6 )  

(1) (2) (3) (4) 

Note that this approach is quite similar to the 
generation of constituents in bottom-up chart parsing 
except that the problem of handling multiple 
overlapping constituents is not addressed here. 

4.1.2 S u b s t i t u t i o n s  combination 
In order to combine the substitutions to form a 

complete SSTC, the system first finds non-terminal 
words of input sentence, which appear as root word 
of some dependency trees in the example SSTCs. If 
more than one example are found (in most cases), the 
system will calculate the distance between the input 
sentence and the examples, and the closest example 

691 



(namely one with minimum distance) will be chosen 
to proceed further. 

In our example, the word "picks" is the only 
word in the sentence which can be the root word, so 
example (1) which containing "pick" as root will be 
used as the base to construct the output SSTC. The 
system first generates the substitutions for example 
(1) based on the same assumptions mentioned earlier 
in substitutions generation, which are : 

heln] Picks[v] ball[n] uplPl 
(0-1/0-1) (1-2/0-5) (3-4~2-4) (4-5/-) 

I 
the[det] 
(2-3/2-3) 

(1) (2) (3) (4) 

Distance  calculat ion:  
Here the system utilizes distance calculation to 

determine the plausible example, which SSTC 
structure will be used as a base to combine the 
substitutions at the input sentence. We define a 
heuristic to calculate the distance, in terms of editing 

operations. Editing operations are insert (E --> p), 

deletion (p - - )E )  and replacing (a "-) s). Edition 
distances, which have been proposed in many works 
[7], [8] and [9], reflect a sensible notion, and it can be 
represented as metrics under some hypotheses. They 
defined the edition distances as number of editing 
operations to transfer one word to another form, i.e. 
how many characters needed to be edited based on 
insertion, deletion or replacement. Since words are 
strings of characters, sentences are strings of words, 
editing distances hence are not confined to words, 
they may be used on sentences [6]. 

With the similar idea, we define the edition 
distance as: (i) The distance is calculated at level of 
substitutions (i.e. only the root nodes of the 
substitutions will be considered, not all the words in 
the sentences). (ii) The edit operations are done based 
on the syntactic category of the root nodes, (i.e. the 
comparison between the input sentence and an 
example is based on the syntactic category of the root 
nodes of their substitutions, not based on the words). 
The distance is calculated based on the number of 
editing operations (deletions and insertion) needed to 
transfer the input sentence substitutions to the 
example substitutions, by assigning weight to each of 
these operations: 1 to insertion and 1 to deletion. 

e.g. : 

a) S 1: The old man eats an apple. 
$2: He eats a sweet cake. 

man [n] eats [v] f '  aplle in) 

t h e ~ [ a d j ]  ea~~ ~ a n  [det] 

He In] Iv] cake ln] 

a ldet] sweet [adj] 

In (a), the distance between S 1 and $2 is 0. 

b) 

He (nl 

boy[nl 
I 

The [detl 

S 1: He eats an apple in the garden. 
$2: The boy who drinks tea eats the cake. 

eats [v] ~ ~  garden [n] 

who~[~l] d r i ~ : : ~ ~ ~ l n ]  

I 
the [det] 

In (b), the distance between S1 and $2 is 
(3+2)=5. 

Note that when a substitution is decided to be 
deleted from the example, all the words of the related 
substitutions (i.e. the root of the substitutions and all 
other words that may link to it as brothers, or son/s), 
are deleted too. This series is determined by referring 
to an example containing this substitution in the 
example-base. For example in (b) above, the 
substitution rooted with "who" must be deleted, hence 
substitutions "drinks" and "tea" must be deleted too, 
similarly "in" must be deleted hence "garden" must be 
deleted too. 

Before making the replacement, the system must 
first check that the root nodes categories for 
substitutions in both the example and the input 
sentence are the same, and that these substitutions are 
occurred in the same order (i.e. the distance is 0). If  
there exist additional substitutions in the input 
sentence (i.e. the distance ~: 0), the system will either 
combine more than one substitution into a single 
substitution based on the knowledge index before 
replacement is carried out or treat it as optional 
substitution which will be added as additional subtree 
under the root. On the other hand, additional 
substitutions appear in the example will be treated as 
optional substitutions and hence can be removed. 
Additional substitutions are determined during 
distance calculation. 

Replacement:  
Next the substitutions in example (1) will be replaced 

by the corresponding substitutions generated from the 
input sentence to form a final SSTC. The replacement 

692 



process is done by traversing the SSTC tree structure 
for the example in preorder traversal, and each 
substitution in the tree structure replaced with its 
corresponding substitution in the input sentence. This 
approach is analogous to top down parsing technique. 
Figure 8, illustrates the parsing schema for the input 
sentence " The old malt picks the green lamp up". 

Input sentence 

The old man picks the green lamp up 

substitutions Ii m I 
(I) ~ 

theldeq oldladj] 

( 2 ) ~  

I the[det] greenladjl 

[(4)k~ ~ 
p.- 

pickslvl up [Pl 
(1-2+4-5/0-5) 

/ \  
He [hi balllnl 

(0-1/0-1) (3-4/2-4) 

I 
theldetl 
(2-3/2-3) 

He picks the ball up 
0-1 1-2 2-3 3-4 4-5 

SSTC base [ i;i 
structure ~,,,~ ...... 

• I I . J  
R e p l a c e m e n t  ]l ~ 

-q 

I 

SSTC example 
substitutions 

I,t l ,olnl I - 

( 2 ) ~  

I uptp)I c4) I ! 

Output SSTC ~ ,  
structure 

picks[v] uplp] 

man[n](2-3/0-3) lamp[n](6-7/4-7) 

/ \  / \  
the[det] oldladj] the[det] green[adj] 
(O-I/0-l) (1-2/1-2) (4-5/4-5) (5-6/5-6) 

The old man picks the green lamp up 
0-1 I-2 2-3 3-4 4-5 5-6 6-7 7-8 

I . . . . . . . . . . . . . .  

Figure 8: The parsing schema based on the SSTC for the 
sentence "the old man picks the green lamp up" using 

example ( 1 ). 

5. C O N C L U S I O N  
In this paper, we sketch an approach for parsing 

NL string, which is an example-based approach 
relies on the examples that already parsed to their 
representation structures, and on the knowledge that 
we can get from these examples information needed 
to parse the input sentence. 
A flexible annotation schema called Structured 
String-Tree Correspondence (SSTC) is introduced to 
express linguistic phenomena such as featurisation, 
lexicalisation and crossed dependencies. We also 
present an overview of the algorithm to parse natural 
language sentences based on the SSTC annotation 
schema. However, to obtain a full version of the 
parsing algorithm, there are several other problems 
which needed to be considered further, i.e. the 
handling of multiple substitutions, an efficient 
method to calculate the distance between the input 
sentence and the examples, and lastly a detailed 
formula to compute the resultant SSTC obtained from 
the combination process especially when deletion of 
optional substitutions are involved. 

R e f e r e n c e s :  
[1] M.Nagao, "A Framework of a mechanical 

translation between Japanese and English by analogy 
principle", in; A. Elithorn, R. Benerji, (Eds.), 
Artificial and Human Intelligence, Elsevier: 
Amsterdam. 
[2] V.Sadler & Vendelmans, "Pilot implementation of 
a bilingual knowledge bank", Proc. of Coling-90, 
Helsinki, 3, 1990, 449-451. 
[3] S. Sato & M.Nagao, "Example-based Translation 
of technical Terms", Proc. of TMI-93, Koyoto, 1993, 
58-68. 
[4] Y. Zaharin & C. Boitet, "Representation trees and 
string-tree correspondences", Proc. of Coling-88, 
Budapest, 1988, 59-64. 
[5] E. K. Tang & Y. Zaharin, "Handling Crossed 
Dependencies with the STCG", Proc. of NLPRS'95, 
Seoul, 1995, 
[6] Y.Lepage & A.Shin-ichi, "Saussurian analogy: a 
theoritical account and its application", Proc. of 
Coling-96, Copenhagen, 2, 1996, 717-722. 
[7] V. I. Levenshtein, "Binary codes capable of 
correcting deletions, insertions and reversals", Dokl. 
Akad. Nauk SSSR, 163, No. 4, 1965, 845-848. 
English translation hz Soviet Physics-doklady, 10, 
No. 8, 1966, 707-710. 
[8] Robert A. Wagner & Michael J. Fischer, " The 
String-to String Correction Problem", Journal for the 
Association of Computing Machinery, 21, No. 1, 
1974, 168-173. 
[9] Stanley M. Selkow, "The Tree-to-Tree Editing 
Problem", Information Processing Letters, 6, No. 6, 
1977, 184-186. 

693 


