
Exploiting Syntactic Structure for Language Modeling

Ciprian C h e l b a a n d F r e d e r i c k J e l i n e k
C e n t e r for L a n g u a g e a n d S p e e c h P r o c e s s i n g

T h e J o h n s H o p k i n s Un ive r s i ty , B a r t o n Hal l 320
3400 N. C h a r l e s St . , B a l t i m o r e , M D - 2 1 2 1 8 , U S A

{che lba , j e l i nek} @ j h u . e d u

A b s t r a c t

The paper presents a language model that devel-
ops syntactic structure and uses it to extract mean-
ingful information from the word history, thus en-
abling the use of long distance dependencies. The
model assigns probability to every joint sequence
of words-binary-parse-structure with headword an-
notation and operates in a left-to-right manner - -
therefore usable for automatic speech recognition.
The model, its probabilistic parameterization, and a
set of experiments meant to evaluate its predictive
power are presented; an improvement over standard
trigram modeling is achieved.

1 Introduction
The main goal of the present work is to develop a lan-
guage model that uses syntactic structure to model
long-distance dependencies. During the summer96
DoD Workshop a similar a t tempt was made by the
dependency modeling group. The model we present
is closely related to the one investigated in (Chelba
et al., 1997), however different in a few important
aspects:
• our model operates in a left-to-right manner, al-
lowing the decoding of word lattices, as opposed to
the one referred to previously, where only whole sen-
tences could be processed, thus reducing its applica-
bility to n-best list re-scoring; the syntactic structure
is developed as a model component;
• our model is a factored version of the one
in (Chelba et al., 1997), thus enabling the calculation
of the joint probability of words and parse structure;
this was not possible in the previous case due to the
huge computational complexity of the model.

Our model develops syntactic structure incremen-
tally while traversing the sentence from left to right.
This is the main difference between our approach
and other approaches to statistical natural language
parsing. Our parsing strategy is similar to the in-
cremental syntax ones proposed relatively recently
in the linguistic community (Philips, 1996). The
probabilistic model, its parameterization and a few
experiments that are meant to evaluate its potential
for speech recognition are presented.

///
/ ~ t r a c t NP

the_DT contract NN ~,dc,l VBI)with INa DT Ioss_NN of_IN 7_CD ~: ~::, X~,'~ after

Figure 1: Partial parse

2 T h e B a s i c I d e a and Terminology
Consider predicting the word a f t e r in the sentence:
the contract ended with a loss of 7 cents

after trading as low as 89 cents.

A 3-gram approach would predict after from
(7, c en t s) whereas it is intuitively clear that the
strongest predictor would be ended which is outside
the reach of even 7-grams. Our assumption is that
what enables humans to make a good prediction of
a f t e r is the syntactic structure in the past. The
linguistically correct partial parse of the word his-
tory when predicting a f t e r is shown in Figure 1.
The word ended is called the headword of the con-
stituent (ended (wi th (. . .))) and ended is an ex-
posed headword when predicting a f t e r - - topmost
headword in the largest constituent that contains it.
The syntactic structure in the past filters out irrel-
evant words and points to the important ones, thus
enabling the use of long distance information when
predicting the next word.

Our model will a t tempt to build the syntactic
structure incrementally while traversing the sen-
tence left-to-right. The model will assign a probabil-
ity P(W, T) to every sentence W with every possible
POStag assignment, binary branching parse, non-
terminal label and headword annotation for every
constituent of T.

Let W be a sentence of length n words to which
we have prepended <s> and appended </s> so
that Wo =<s> and w,+l =</s>. Let Wk be the
word k-prefix Wo.. .wk of the sentence and WkTk

225

" i " °''
(¢:s>. SB) (wp. t p) (w {p÷l }. L_(I~-I }) (wk. t_k) w_(k*l }.... </s.~

T [-ra}

< s >

h _ (- 2 } h (- ! } h_O

.

Figure 2: A word-parse k-prefix Figure 4: Before an adjoin operation

_ (<,'s>, TOP)

(<s>, SB) (w_l, ~_1) ('*'_n, t_n) (< /~ , SE)

Figure 3: Complete parse

the word-parse k-prefix. To stress this point, a
word-parse k-prefix contains - - for a given parse
- - only those binary subtrees whose span is com-
pletely included in the word k-prefix, excluding
w0 =<s>. Single words along with their POStag
can be regarded as root-only trees. Figure 2 shows
a word-parse k-prefix; h_0 . . h_{-m} are the ex-
posed heads, each head being a pair(headword, non-
terminal label), or (word, POStag) in the case of a
root-only tree. A complete parse - - Figure 3 - - is
any binary parse of the
(w l , t l) . . . (w n , t ,) (< / s> , SE) sequence with the
restriction that (< / s> , TOP') is the only allowed
head. Note that ((w l , t l) . . . (w , , t ,)) needn't be a
constituent, but for the parses where it is, there is
no restriction on which of its words is the headword
or what is the non-terminal label that accompanies
the headword.

The model will operate by means of three mod-
ules:
• W O R D - P R E D I C T O R predicts the next word
wk+l given the word-parse k-prefix and then passes
control to the TAGGER;
• TAGGER predicts the POStag of the next word
tk+l given the word-parse k-prefix and the newly
predicted word and then passes control to the
PARSER;
• PARSER grows the already existing binary
branching structure by repeatedly generating the
transitions:
(unary, NTlabel), (adjoin-left, NTlabel) or
(adjoin-right, NTlabel) until it passes control
to the PREDICTOR by taking a null transition.
NTlabel is the non-terminal label assigned to the
newly built constituent and {left ,right} specifies
where the new headword is inherited from.

The operations performed by the PARSER are
illustrated in Figures 4-6 and they ensure that all
possible binary branching parses with all possible

T'_{.m÷l l <-<s.~.

<s>

h ' { - I } = h_(-2 } h'_0= (h_{-I }.word, NTlabel)

Figure 5: Result of adjoin-left under NTlabel

headword and non-terminal label assignments for
the wl . . . wk word sequence can be generated. The
following algorithm formalizes the above description
of the sequential generation of a sentence with a
complete parse.

Transition t; // a PARSER transition
predict (<s>, SB);
do{

//WORD-PREDICTORand TAGGER
predict (next_word, POStag);
//PARSER
do{

if(h_{-l}.word != <s>){
if(h_O.word == </s>)

t = (adjoin-right, TOP');
else{

if(h_O.tag== NTlabel)
t = [(adjoin-{left,right}, NTlabel),

null];
else

t = [(unary, NTlabel),
(adjoin-{left,right}, NTlabel),
null];

}
}

else{
if (h_O.tag == NTlabel)

t = null;
else

t = [(unary, NTlabel), null] ;
}

}while(t != null) //done PARSER
}while (! (h_0. word==</s> && h_{- 1 }. word==<s>))
t = (adjoin-right, TOP); //adjoin <s>_SB; DONE;

The unary transition is allowed only when the
most recent exposed head is a leaf of the tree --
a regular word along with its POStag -- hence it
can be taken at most once at a given position in the

226

T'_l.m+l } <-<s>

h' {- I }=h {-2} h'_0 = (h_0.word, NTlab¢l)

Figure 6: Result of adjoin-right under NTlabel

input word string. The second subtree in Figure 2
provides an example of a unary transition followed
by a null transition.

It is easy to see that any given word sequence
with a possible parse and headword annotation is
generated by a unique sequence of model actions.
This will prove very useful in initializing our model
parameters from a treebank - - see section 3.5.

3 P r o b a b i l i s t i c M o d e l

The probability P(W, T) of a word sequence W and
a complete parse T can be broken into:

P(W, T) =

1-I "+xr P(wk/Wk-aTk-x) " P(tk /Wk-lTk-x ,wk)" k=X I.
N~
~I P(Pki /Wk-xTk-a' Wk, tk,pkx . . . pLX)](1)
i=X

where:
• Wk-lTk-x is the word-parse (k - 1)-prefix
• wk is the word predicted by WORD-PREDICTOR
* tk is the tag assigned to wk by the TAGGER
• Nk -- 1 is the number of operations the PARSER
executes before passing control to the WORD-
PREDICTOR (the Nk-th operation at position k is
the n u l l transition); Nk is a function of T
• pi k denotes the i-th PARSER operation carried out
at position k in the word string;
p~ 6 {(unary, NTlabel),
(adjoin-left, NTlabel),
(adjoin-right, NTlabel), null},
pk 6 { (adjoin-left, NTlabel),
(adjoin-right, NTlabel)}, 1 < i < Nk ,
p~ =null, i = Nk

Our model is based on three probabilities:

P(wk/Wk-lTk-1) (2)

P(tk/wk, Wk-lTk-x) (3)

P(p~/wk,tk,Wk--xTk--l,p~.. k "Pi--X) C a)

As can be seen, (wk, tk, Wk-xTk-x,p~...pki_x) is one
of the Nk word-parse k-prefixes WkTk at position k
in the sentence, i = 1, Nk.

To ensure a proper probabilistic model (1) we
have to make sure that (2), (3) and (4) are well de-
fined conditional probabilities and that the model

halts with probability one. Consequently, certain
PARSER and WORD-PREDICTOR probabilities
must be given specific values:
• P(nul l /WkTk) = 1, if h_{-1}.word = <s> and
h_{0} ~ (</s>, TOP') - - that is, before predicting
< / s > - - ensures that (<s>, SB) is adjoined in the
last step of the parsing process;
• P ((a d j o i n - r i g h t , TOP)/WkTk) = 1, if
h_O = (</s>, TOP') and h_{-l}.word = <s>
and
P ((a d j o i n - r i g h t , TOP')/WkTk) = 1, if
h_0 = (</s>, TOP') and h_{-1}.word ~ <s>
ensure that the parse generated by our model is con-
sistent with the definition of a complete parse;
• P ((u n a r y , NWlabel)/WkTk) = 0, if h _ 0 . t a g
POStag ensures correct treatment of unary produc-
tions;
• 3e > O, VWk-lTk-l ,P(wk=</s>/Wk-xTk-1) >_ e
ensures that the model halts with probability one.

The word-predictor model (2) predicts the next
word based on the preceding 2 exposed heads, thus
making the following equivalence classification:

P(wk/Wk-lTk-1) = P(wk/ho, h - l)

After experimenting with several equivalence clas-
sifications of the word-parse prefix for the tagger
model, the conditioning part of model (3) was re-
duced to using the word to be tagged and the tags
of the two most recent exposed heads:

P(tk/Wk, Wk-lTk-1) = P(tk/wk, ho.tag, h-l.tag)

Model (4) assigns probability to different parses of
the word k-prefix by chaining the elementary oper-
ations described above. The workings of the parser
module are similar to those of Spatter (Jelinek et al.,
1994). The equivalence classification of the WkTk
word-parse we used for the parser model (4) was the
same as the one used in (Collins, 1996):

p (pk / Wk Tk) = p (pk / ho , h-x)

It is worth noting that if the binary branching
structure developed by the parser were always right-
branching and we mapped the POStag and non-
terminal label vocabularies to a single type then our
model would be equivalent to a trigram language
model.

3.1 M o d e l i n g T o o l s

All model components - - WORD-PREDICTOR,
TAGGER, PARSER - - are conditional probabilis-
tic models of the type P (y / x l , x 2 , . . . , x n) where
y, Xx,X2,. . . ,Xn belong to a mixed bag of words,
POStags, non-terminal labels and parser operations
(y only). For simplicity, the modeling method we
chose was deleted interpolation among relative fre-
quency estimates of different orders fn(') using a

227

recursive mixing scheme:

P (y / x l , . . . ,xn) =

A (x l , . . . , x ,) - P (y / x l , . . . , x , _ x) +

(1 - - ~ (X l , . . . , X n)) " f n (y / X l , . . . , X n) , (5)

f - l (Y) = uniform(vocabulary(y)) (6)

As can be seen, the context mixing scheme dis-
cards items in the context in right-to-left order. The
A coefficients are tied based on the range of the
count C (x x , . . . ,Xn) . The approach is a standard
one which doesn't require an extensive description
given the literature available on it (Jelinek and Mer-
cer, 1980).

3 . 2 S e a r c h S t r a t e g y
Since the number of parses for a given word prefix
Wt grows exponentially with k, I{Tk}l ,,. O(2k), the
state space of our model is huge even for relatively
short sentences so we had to use a search strategy
that prunes it. Our choice was a synchronous multi-
stack search algorithm which is very similar to a
beam search.

Each stack contains hypotheses - - partial parses
- - that have been constructed by the same number of
predictor and the same number of parser operations.
The hypotheses in each stack are ranked according
to the ln(P(W, T)) score, highest on top. The width
of the search is controlled by two parameters:
• the maximum stack depth - - the maximum num-
ber of hypotheses the stack can contain at any given
state;
• log-probability threshold - - the difference between
the log-probability score of the top-most hypothesis
and the bottom-most hypothesis at any given state
of the stack cannot be larger than a given threshold.

Figure 7 shows schematically the operations asso-
ciated with the scanning of a new word Wk+l. The
above pruning strategy proved to be insufficient so
we chose to also discard all hypotheses whose score
is more than the log-probability threshold below the
score of the topmost hypothesis. This additional
pruning step is performed after all hypotheses in
stage k' have been extended with the null parser
transition and thus prepared for scanning a new
word.

3.3 W o r d Leve l P e r p l e x i t y

The conditional perplexity calculated by assigning
to a whole sentence the probability:

P (W / T *) = f i P(wk+l/WkT~), (7)
k=O

where T* = argrnaxTP(W, T), is not valid because
it is not causal: when predicting wk+l we use T*
which was determined by looking at the entire sen-
tence. To be able to compare the perplexity of our

(k) \

0 parser ot~

k predict. [

p parser o p

k predict.

p+l parser

k predict.

P_k parser

k predict.

(k') \

~ 0 parser opt_
"~+1 predict. [" -

1 k+l predict.

p+ 1 parser ~

+1 predict]z/

~ P_k parser ~ _

predict V -

_k+ 1 parse~e~

1 predict.~"

word predictor
and tagger

- (k+l)

oq
I
I
I

)~_ -~ - -)]ppa r se r op

I

- - =-~+1 predict. I

! - - ~ + 1 parser]
- - 7 - - >~+. .} p r e d i c [. I

i
i
i

- - - ! - - ~ l P kparser!

---:
, - :-~+ 1 predict.
I

nullparser transitions
parser adjoin/unary transitions

Figure 7: One search extension cycle

model with that resulting from the standard tri-
gram approach, we need to factor in the entropy of
guessing the correct parse T~ before predicting wk+l,
based solely on the word prefix Wk.

The probability assignment for the word at posi-
tion k + 1 in the input sentence is made using:

P(Wk+l/Wk) =

~TheS~ P(Wk+x/WkTk) " p(Wk,Tk), (8)

p(Wk,Tk) = P(W Tk)/ P(WkTk) (9)
TkESk

which ensures a proper probability over strings W*,
where Sk is the set of all parses present in our stacks
at the current stage k.

Another possibility for evaluating the word level
perplexity of our model is to approximate the prob-
ability of a whole sentence:

N
P (W) = Z P(W, T (k)) (10)

k=l

where T (k) is one of the "N-best" - - in the sense
defined by our search - - parses for W. This is a
deficient probability assignment, however useful for
justifying the model parameter re-estimation.

The two estimates (8) and (10) are both consistent
in the sense that if the sums are carried over all

228

possible parses we get the correct value for the word
level perplexity of our model.

3.4 P a r a m e t e r R e - e s t i m a t i o n

The major problem we face when trying to reesti-
mate the model parameters is the huge state space of
the model and the fact that dynamic programming
techniques similar to those used in HMM parame-
ter re-estimation cannot be used with our model.
Our solution is inspired by an HMM re-estimation
technique that works on pruned - - N-best - - trel-
lises(Byrne et al., 1998).

Let (W, T(k)), k = 1 . . . N be the set of hypothe-
ses that survived our pruning strategy until the end
of the parsing process for sentence W. Each of
them was produced by a sequence of model actions,
chained together as described in section 2; let us call
the sequence of model actions that produced a given
(W, T) the derivation(W, T).

Let an elementary event in the derivation(W, T)
be :, (m,) .~(m,)~ where:
* l is the index of the current model action;
* ml is the model component - - WORD-
PREDICTOR, TAGGER, PARSER - - that takes
action number l in the derivation(W, T);

, y~mt) is the action taken at position I in the deriva-
tion:
if mt = W O R D - P R E D I C T O R , then y~m,) is a word;

if mt -- TAGGER, then y~m~) is a POStag;

if mt = PARSER, then y~m~) is a parser-action;

• ~m~) is the context in which the above action was
taken:
if rat = W O R D - P R E D I C T O R or PARSER, then
_~,na) = (ho.tag, ho.word, h-1 .tag, h-l.word);
if rat = TAGGER, then

~mt) = (word-to-tag, ho.tag, h-l.tag).
The probability associated with each model ac-

tion is determined as described in section 3.1, based
on counts C (m) (y(m), x_("0), one set for each model
component.

Assuming that the deleted interpolation coeffi-
cients and the count ranges used for tying them stay
fixed, these counts are the only parameters to be
re-estimated in an eventual re-estimation procedure;
indeed, once a set of counts C (m) (y(m), x_(m)) is spec-
ified for a given model ra, we can easily calculate:
• the relative frequency estimates

fn(m)/,,(m) Ix(m) ~ for all context orders kY I _ n /

n = 0...maximum-order(model(m));
• the count c(m)(x_ (m)) used for determining the

A(x_ (m)) value to be used with the order-n context
x(m)"

This is all we need for calculating the probability of
an elementary event and then the probability of an
entire derivation.

One training iteration of the re-estimation proce-
dure we propose is described by the following algo-
rithm:

N-best parse development data; // counts.El
// prepare counts.E(i+l)
for each model component c{

gather_counts development model_c;
}

In the parsing stage we retain for each "N-best" hy-
pothesis (W, T(k)), k = 1 . . . N, only the quantity
¢(W, T(k)) p(W,T(k))/ N = ~-~k=l P(W, T(k))
and its derivation(W,T(k)). We then scan all
the derivations in the "development set" and, for
each occurrence of the elementary event (y(m), x_(m))
in derivation(W,T(k)) we accumulate the value
¢ (W , T (k)) in the C(m)(y(m),x__ (m)) counter to be
used in the next iteration.

The intuition behind this procedure is that
¢ (W , T (k)) is an approximation to the P(T(k) /w)
probabili ty which places all its mass on the parses
that survived the parsing process; the above proce-
dure simply accumulates the expected values of the
counts c(m)(y(m),x (m)) under the ¢(W,T (k)) con-
ditional distribution. As explained previously, the
C(m) (y(m), X_(m)) counts are the parameters defining
our model, making our procedure similar to a rigor-
ous EM approach (Dempster et al., 1977).

A particular - - and very interesting - - case is that
of events which had count zero but get a non-zero
count in the next iteration, caused by the "N-best"
nature of the re-estimation process. Consider a given
sentence in our "development" set. The "N-best"
derivations for this sentence are trajectories through
the state space of our model. They will change
from one iteration to the other due to the smooth-
ing involved in the probabili ty estimation and the
change of the parameters - - event counts - - defin-
ing our model, thus allowing new events to appear
and discarding others through purging low probabil-
ity events from the stacks. The higher the number
of trajectories per sentence, the more dynamic this
change is expected to be.

The results we obtained are presented in the ex-
periments section. All the perplexity evaluations
were done using the left-to-right formula (8) (L2R-
PPL) for which the perplexity on the "development
set" is not guaranteed to decrease from one itera-
tion to another. However, we believe that our re-
estimation method should not increase the approxi-
mation to perplexity based on (10) (SUM-PPL) - -
again, on the "development set"; we rely on the con-
sistency property outlined at the end of section 3.3
to correlate the desired decrease in L2R-PPL with
that in SUM-PPL. No claim can be made about
the change in either L2R-PPL or SUM-PPL on test
data.

229

Y_! Y_k Y_n Y l Y_k Y_n

Figure 8: Binarization schemes

3 . 5 I n i t i a l P a r a m e t e r s

Each model component - - W O R D - P R E D I C T O R ,
TAGGER, PARSER - - is trained initially from a
set of parsed sentences, after each parse tree (W, T)
undergoes:
• headword percolation and binarization - - see sec-
tion 4;
• decomposition into its derivation(W, T).
Then, separately for each m model component, we:
• gather joint counts cCm)(y(m),x (m)) from the
derivations that make up the "development data"
using ¢(W,T) = 1;
• estimate the deleted interpolation coefficients on
joint counts gathered from "check data" using the
EM algorithm.
These are the initial parameters used with the re-
estimation procedure described in the previous sec-
tion.

4 H e a d w o r d P e r c o l a t i o n and
B i n a r i z a t i o n

In order to get initial statistics for our model com-
ponents we needed to binarize the UPenn Tree-
bank (Marcus et al., 1995) parse trees and perco-
late headwords. The procedure we used was to first
percolate headwords using a context-free (CF) rule-
based approach and then binarize the parses by us-
ing a rule-based approach again.

The headword of a phrase is the word that best
represents the phrase, all the other words in the
phrase being modifiers of the headword. Statisti-
cally speaking, we were satisfied with the output
of an enhanced version of the procedure described
in (Collins, 1996) - - also known under the name
"Magerman & Black Headword Percolation Rules".

Once the position of the headword within a con-
stituent - - equivalent with a CF production of the
type Z --~ Y1.--Yn , where Z, Y1,. . .Yn are non-
terminal labels or POStags (only for Y/) - - is iden-
tified to be k, we binarize the constituent as follows:
depending on the Z identity, a fixed rule is used
to decide which of the two binarization schemes in
Figure 8 to apply. The intermediate nodes created
by the above binarization schemes receive the non-
terminal label Z ~.

5 Exper imen t s
Due to the low speed of the parser - - 200 wds/min
for stack depth 10 and log-probability threshold
6.91 nats (1/1000) - - we could carry out the re-
estimation technique described in section 3.4 on only
1 Mwds of training data. For convenience we chose
to work on the UPenn Treebank corpus. The vocab-
ulary sizes were:
* word vocabulary: 10k, open - - all words outside
the vocabulary are mapped to the <unk> token;
• POS tag vocabulary: 40, closed;
• non-terminal tag vocabulary: 52, closed;
• parser operation vocabulary: 107, closed;
The training data was split into "development" set
- - 929,564wds (sections 00-20) - - and "check set"
- - 73,760wds (sections 21-22); the test set size was
82,430wds (sections 23-24). The "check" set has
been used for estimating the interpolation weights
and tuning the search parameters; the "develop-
ment" set has been used for gather ing/est imating
counts; the test set has been used strictly for evalu-
ating model performance.

Table 1 shows the results of the re-estimation tech-
nique presented in section 3.4. We achieved a reduc-
tion in tes t -data perplexity bringing an improvement
over a deleted interpolation t r igram model whose
perplexity was 167.14 on the same training-test data;
the reduction is statistically significant according to
a sign test.

iteration DEV set TEST set
number L2R-PPL L2R-PPL

E0 24.70 167.47
E1 22.34 160.76
E2 21.69 158.97
E3 21.26 158.28

3-gram 21.20 167.14

Table 1: Parameter re-estimation results

Simple linear interpolation between our model and
the tr igram model:

Q (w k + l / W k) =

)~" P(Wk+I/Wk-I,Wk) + (1 -- A)" P(wk+l/Wk)

yielded a further improvement in PPL, as shown in
Table 2. The interpolation weight was estimated on
check data to be)~ = 0.36.

An overall relative reduction of 11% over the tr igram
model has been achieved.

6 C o n c l u s i o n s and Fu tu re Direc t ions
The large difference between the perplexity of our
model calculated on the "development" set - - used

230

II iteration
number

II Eo
E3

[l 3-gram

TEST set
L2R-PPL

167.47
158.28
167.14

TEST set
3-gram interpolated PPL

152.25 II
148.90

167.14 II

Table 2: Interpolation with trigram results

for model parameter estimation - - and "test" set - -
unseen data - - shows that the initial point we choose
for the parameter values has already captured a lot
of information from the training data. The same
problem is encountered in standard n-gram language
modeling; however, our approach has more flexibility
in dealing with it due to the possibility of reestimat-
ing the model parameters.

We believe that the above experiments show the
potential of our approach for improved language
models. Our future plans include:
• experiment with other parameterizations than the
two most recent exposed heads in the word predictor
model and parser;
• estimate a separate word predictor for left-to-
right language modeling. Note that the correspond-
ing model predictor was obtained via re-estimation
aimed at increasing the probability of the "N-best"
parses of the entire sentence;
• reduce vocabulary of parser operations; extreme
case: no non-terminal labels/POS tags, word only
model; this will increase the speed of the parser
thus rendering it usable on larger amounts of train-
ing data and allowing the use of deeper stacks - -
resulting in more "N-best" derivations per sentence
during re-estimation;
• relax - - flatten - - the initial statistics in the re-
estimation of model parameters; this would allow the
model parameters to converge to a different point
that might yield a lower word-level perplexity;
• evaluate model performance on n-best sentences
output by an automatic speech recognizer.

7 A c k n o w l e d g m e n t s

This research has been funded by the NSF
IRI-19618874 grant (STIMULATE).

The authors would like to thank Sanjeev Khu-
danpur for his insightful suggestions. Also to Harry
Printz, Eric Ristad, Andreas Stolcke, Dekai Wu and
all the other members of the dependency model-
ing group at the summer96 DoD Workshop for use-
ful comments on the model, programming support
and an extremely creative environment. Also thanks
to Eric Brill, Sanjeev Khudanpur, David Yarowsky,
Radu Florian, Lidia Mangu and Jun Wu for useful
input during the meetings of the people working on
our STIMULATE grant.

R e f e r e n c e s
w. Byrne, A. Gunawardana, and S. Khudanpur.

1998. Information geometry and EM variants.
Technical Report CLSP Research Note 17, De-
partment of Electical and Computer Engineering,
The Johns Hopkins University, Baltimore, MD.

C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khu-
danpur, L. Mangu, H. Printz, E. S. Ristad,
R. Rosenfeld, A. Stolcke, and D. Wu. 1997. Struc-
ture and performance of a dependency language
model. In Proceedings of Eurospeech, volume 5,
pages 2775-2778. Rhodes, Greece.

Michael John Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In Proceed-
ings of the 34th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 184-
191. Santa Cruz, CA.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. In Journal of the Royal Statistical
Society, volume 39 of B, pages 1-38.

Frederick Jelinek and Robert Mercer. 1980. Inter-
polated estimation of markov source parameters
from sparse data. In E. Gelsema and L. Kanal, ed-
itors, Pattern Recognition in Practice, pages 381-
397.

F. Jelinek, J. Lafferty, D. M. Magerman, R. Mercer,
A. Ratnaparkhi, and S. Roukos. 1994. Decision
tree parsing using a hidden derivational model.
In ARPA, editor, Proceedings of the Human Lan-
guage Technology Workshop, pages 272-277.

M. Marcus, B. Santorini, and M. Marcinkiewicz.
1995. Building a large annotated corpus of En-
glish: the Penn Treebank. Computational Lin-
guistics, 19(2):313-330.

Colin Philips. 1996. Order and Structure. Ph.D.
thesis, MIT. Distributed by MITWPL.

231

