
Machine Transl i teration

K e v i n K n i g h t a n d J o n a t h a n G r a e h l

I n f o r m a t i o n Sc iences I n s t i t u t e

U n i v e r s i t y of S o u t h e r n C a l i f o r n i a

M a r i n a del Rey , C A 90292

knight~isi, edu, graehl@isi, edu

A b s t r a c t

It is challenging to translate names and
technical terms across languages with differ-
ent alphabets and sound inventories. These
items are commonly transliterated, i.e., re-
placed with approximate phonetic equivalents.
For example, computer in English comes out
as ~ i/l::: '=--~-- (konpyuutaa) in Japanese.
Translating such items from Japanese back to
English is even more challenging, and of prac-
tical interest, as transliterated items make up
the bulk of text phrases not found in bilin-
gual dictionaries. We describe and evaluate a
method for performing backwards translitera-
tions by machine. This method uses a gen-
erative model, incorporating several distinct
stages in the transliteration process.

1 I n t r o d u c t i o n

Translators must deal with many problems, and
one of the most frequent is translating proper
names and technical terms. For language pairs
like Spanish/English, this presents no great chal-
lenge: a phrase like Antonio Gil usually gets trans-
lated as Antonio Gil. However, the situation is
more complicated for language pairs that employ
very different alphabets and sound systems, such
as Japanese/English and Arabic/English. Phonetic
translation across these pairs is called translitera-
tion. We will look at Japanese/English translitera-
tion in this paper.

Japanese frequently imports vocabulary from
other languages, primarily (but not exclusively)
from English. It has a special phonetic a lphabe t
called katakana, which is used primarily (but not
exclusively) to write down foreign names and loan-
words. To write a word like golf bag in katakana,
some compromises must be made. For example,
Japanese has no distinct L and R sounds: the two En-
glish sounds collapse onto the same Japanese sound.
A similar compromise must be struck for English
H and F. Also, Japanese generally uses an alter-
nating consonant-vowel structure, making it impos-
sible to pronounce LFB without intervening vow-
els. Katakana writing is a syllabary rather than an
a lphabet- - there is one symbol for ga (~I), another

for g i (4e), another for gu (P'), etc. So the way
to write gol]bag in katakana is =~'~ 7 ~ ~, ~ , roughly
pronounced goruhubaggu. Here are a few more ex-
amples:

Angela Johnson
T v z J ~ • "J~ vY v

(anj ira jyonson)

New York Times

(nyuuyooku t aimuzu)

ice cream
T 4 x ~, ~) -- z,
(aisukuriimu)

Notice how the transliteration is more phonetic than
orthographic; the letter h in Johnson does not pro-
duce any katakana. Also, a dot-separator (.) is
used to separate words, but not consistently. And
transliteration is clearly an information-losing oper-
ation: a i s u k u r i i m u loses the distinction between ice
cream and I scream.

Transliteration is not trivial to automate, but
we will be concerned with an even more challeng-
ing problem--going from katakana back to En-
glish, i.e., back-transliteration. Automating back-
transliteration has great practical importance in
Japanese/English machine translation. Katakana
phrases are the largest source of text phrases that
do not appear in bilingual dictionaries or training
corpora (a.k.a. "not-found words"). However, very
little computational work has been done in this area;
(Yamron et al., 1994) briefly mentions a pattern-
matching approach, while (Arbabi et al., 1994) dis-
cuss a hybrid neural-net/expert-system approach to
(forward) transliteration.

The information-losing aspect of transliteration
makes it hard to invert. Here are some problem in-
stances, taken from actual newspaper articles: 1

ITexts used in ARPA Machine Translation evalua-
tions, November 1994.

128

?

T - - x ~ - -
(aasudee)

'9

(robaato shyoon renaado)

?

"~':~ ~--:~" l . - -) -~ y I-
(masu~aazu~ oonamen~ o)

English translations appear later in this paper.
Here are a few observations about back-

transliteration:

• Back-transliteration is less forgiving than
transliteration. There are many ways to write
an English word like switch in katakana, all
equally valid, but we do not have this flexibility
in the reverse direction. For example, we can-
not drop the t in switch, nor can we write arture
when we mean archer.

• Back-transliteration is harder than romaniza-
tion, which is a (frequently invertible) trans-
formation of a non-roman alphabet into ro-
man letters. There are several romanization
schemes for katakana writing--we have already
been using one in our examples. Katakana
Writing follows Japanese sound patterns closely,
so katakana often doubles as a Japanese pro-
nunciation guide. However, as we shall see,
there are many spelling variations that compli-
cate the mapping between Japanese sounds and
katakana writing.

• Finally, not all katakana phrases can be
"sounded out" by back-transliteration. Some
phrases are shorthand, e.g., r] _ 7" ~ (uaapuro)
should be translated as word processing. Oth-
ers are onomatopoetic and difficult to translate.
These cases must be solved by techniques other
than those described here.

The most desirable feature of an automatic back-
transliterator is accuracy. If possible, our techniques
should also be:

• portable to new language pairs like Ara-
bic/English with minimal effort, possibly
reusing resources.

• robust against errors introduced by optical
character recognition.

• relevant to speech recognition situations in
which the speaker has a heavy foreign accent.

• able to take textual (topical/syntactic) context
into account, or at least be able to return a
ranked list of possible English translations.

Like most problems in computational linguistics,
this one requires full world knowledge for a 100%

solution. Choosing between Katarina and Catalina
(both good guesses for ~' ~ ~ ")-) might even require
detailed knowledge of geography and figure skating.
At that level, human translators find the problem
quite difficult as well. so we only aim to match or
possibly exceed their performance.

2 A Modular Learning Approach
Bilingual glossaries contain many entries mapping
katakana phrases onto English phrases, e.g.: (air-
craft carrier --, ~ T ~ ~ 7 I. ~ ~ ~3 7"). It is possible
to automatically analyze such pairs to gain enough
knowledge to accurately map new katakana phrases
that come along, and learning approach travels well
to other languages pairs. However, a naive approach
to finding direct correspondences between English
letters and katakana symbols suffers from a number
of problems. One can easily wind up with a sys-
tem that proposes iskrym as a back-transliteration of
a i sukur i imu . Taking letter frequencies into account
improves this to a more plausible-looking isclim.
Moving to real words may give is crime: the i cor-
responds to a i , the s corresponds to su, etc. Unfor-
tunately, the correct answer here is ice cream. Af-
ter initial experiments along these lines, we decided
to step back and build a generative model of the
transliteration process, which goes like this:

1. An English phrase is written.

2. A translator pronounces it in English.

3. The pronunciation is modified to fit the
Japanese sound inventory.

4. The sounds are converted into katakana.

5. Katakana is written.

This divides our problem into five sub-problems.
Fortunately, there are techniques for coordinating
solutions to such sub-problems, and for using gen-
erative models in the reverse direction. These tech-
niques rely on probabilities and Bayes' Rule. Sup-
pose we build an English phrase generator that pro-
duces word sequences according to some probability
distribution P(w). And suppose we build an English
pronouncer that takes a word sequence and assigns
it a set of pronunciations, again probabilistically, ac-
cording to some P(plw). Given a pronunciation p,
we may want to search for the word sequence w that
maximizes P(wtp). Bayes" Rule lets us equivalently
maximize P (w) . P(plw). exactly the two distribu-
tions we have modeled.

Extending this notion, we settled down to build
five probability distributions:

1. P(w) - - generates written English word se-
quences.

2. P(elw) - - pronounces English word sequences.

3. P(jle) - - converts English sounds into Japanese
sounds.

129

4. P(k[j) ~ converts Japanese sounds to katakana
writing.

5. P(o{k) ~ introduces misspellings caused by op-
tical character recognition (OCR).

Given a katakana string o observed by OCR, we
want to find the English word sequence w that max-
imizes the sum, over all e, j , and k, of

P(w) • P(e[w). P(j le)" P(kJ j) . P(olk)

Following (Pereira et al., 1994; Pereira and Riley,
I996), we implement P(w) in a weighted finite-state
aceeptor (WFSA) and we implement the other dis-
tributions in weighted finite-state transducers (WF-
STs). A WFSA is an state/transition diagram with
weights and symbols on the transitions, making
some output sequences more likely than others. A
WFST is a WFSA with a pair of symbols on each
transition, one input, and one output. Inputs and
outputs may include the empty symbol e. Also fol-
lowing (Pereira and Riley, 1996), we have imple-
mented a general composition algorithm for con-
structing an integrated model P(zlz) from models
P(~IY) and P(ylz), treating WFSAs as WFSTs with
identical inputs and outputs. We use this to combine
an observed katakana string with each of the mod-
els in turn. The result is a large WFSA containing
all possible English translations. We use Dijkstra's
shortest-path algorithm {Dijkstra, 1959) to extract
the most probable one.

The approach is modular. We can test each en-
gine independently and be confident that their re-
sults are combined correctly. We do no pruning,
so the final WFSA contains every solution, however
unlikely. The only approximation is the Viterbi one,
which searches for the best path through a WFSA
instead of the best sequence (i.e., the same sequence
does not receive bonus points for appearing more
than once).

3 P r o b a b i l i s t i c M o d e l s

This section describes how we desigued and built
each of our five models. For consistency, we continue
to print written English word sequences in italics
(golf ball), English sound sequences in all capitals
(G AA L F B A0 L). Japanese sound sequences in
lower case (g o r u h u b o o r u)and katakana
sequences naturally (=':t. 7 . ~ - ~) .

3.1 W o r d Sequences

The first model generates scored word sequences,
the idea being that ice cream should score higher
than ice creme, which should score higher than
nice kreem. We adopted a simple unigram scor-
ing method that multiplies the scores of the known
words and phrases in a sequence. Our 262,000-entry
frequency list draws its words and phrases from the
Wall Street Journal corpus, an online English name

list, and an online gazeteer of place names." A por-
tion of the WFSA looks like this:

los / 0.000087

federal / O . O 0 1 3 ~ angele s ~

~ month 10.000992

An ideal word sequence model would look a bit
different. It would prefer exactly those strings
which are actually grist for Japanese translitera-
tots. For example, people rarely transliterate aux-
iliary verbs, but surnames are often transliterated.
We have approximated such a model by removing
high-frequency words like has, an, are, am, were,
their, and does, plus unlikely words corresponding
to Japanese sound bites, like coup and oh.

We also built a separate word sequence model con-
taining only English first and last names. If we know
(from context) that the transliterated phrase is a
personal name, this model is more precise.

3.2 W o r d s to Engl i sh Sounds

The next WFST converts English word sequences
into English sound sequences. We use the English
phoneme inventory from the online CMU Pronuncia-
tion Dictionary, 3 minus the stress marks. This gives
a total of 40 sounds, including 14 vowel sounds (e.g.,
AA, AE, UW), 25 consonant sounds (e.g., K, 1tlt, It), plus
our special symbol (PAUSE). The dictionary has pro-
nunciations for 110,000 words, and we organized a
phoneme-tree based WFST from it:

E:E

:E
E:IH

¢;::K

Note that we insert an optional PAUSE between word
pronunciations. Due to memory limitations, we only
used the 50,000 most frequent words.

We originally thought to build a general letter-
to-sound WFST, on the theory that while wrong
(overgeneralized) pronunciations might occasionally
be generated, Japanese transliterators also mispro-
nounce words. However, our letter-to-sound WFST
did not match the performance of Japanese translit-

2Available from the ACL Dat~ Collection Initiative.
3ht%p ://~ww. speech, cs. cmu. edu/cgi-bin/cmudict.

130

erators, and it turns out that mispronunciations are
modeled adequately in the next stage of the cascade.

3.3 Eng l i sh Sounds to J a p a n e s e S ounds

Next, we map English sound sequences onto
Japanese sound sequences. This is an inherently
information-losing process, as English R and L
sounds collapse onto Japanese r, the 14 English
vowel sounds collapse onto the 5 Japanese vowel
sounds, etc. We face two immediate problems:

1. What is the target Japanese sound inventory?

2. How can we build a WFST to perform the se-
quence mapping?

An obvious target inventory is the Japanese syl-
labary itself, written down in katakana (e.g., ") or
a roman equivalent (e.g., hi). With this approach,
the English sound K corresponds to one of 2 (ka),
-'Y (ki), ~' (ku), ~ (ke), or = (ko), depending on
its context. Unfortunately, because katakana is a
syllabary, we would be unable to express an obvi-
ous and useful generalization, namely that English
g usually corresponds to Japanese k, independent of
context. Moreover, the correspondence of Japanese
katakana writing to Japanese sound sequences is not
perfectly one-to-one (see next section), so an inde-
pendent sound inventory is well-motivated in any
case. Our Japanese sound inventory includes 39
symbols: 5 vowel sounds, 33 consonant sounds (in-
cluding doubled consonants like kk), and one spe-
cial symbol (pause). An English sound sequence
like (P R OW PAUSE S AA K ER) might map onto a
Japanese sound sequence like (p u r o pause s a
kk a a). Note that long Japanese vowel sounds are
written with two symbols (a a) instead of just one
(an). This scheme is attractive because Japanese
sequences are almost always longer than English se-
quences.

Our WFST is learned automatically from 8,000
pairs of English/Japanese sound sequences, e.g., ((s
AA K ER) --* (s a kk a a)) . We were able to pro-
duce'these pairs by manipulating a small English-
katakana glossary. For each glossary entry, we
converted English words into English sounds us-
ing the previous section's model, and we converted
katakana words into Japanese sounds using the next
section's model. We then applied the estimation-
maximization (EM) algorithm (Baum, 1972) to gen-
erate symbol-mapping probabilities, shown in Fig-
ure 1. Our EM training goes like this:

1. For each English/Japanese sequence pair, com-
pute all possible alignments between their ele-
ments. In our case. an alignment is a drawing

. that connects each English sound with one or
more Japanese sounds, such that all Japanese
sounds are covered and no lines cross. For ex-
ample, there are two ways to align the pair ((L
OW) <-> (r o o)):

L OW L OW
l /\ /\ I
r o o r o o

2. For each pair, assign an equal weight to each
of its alignments, such that those weights sum
to 1. In the case above, each alignment gets a
weight of 0.5.

3. For each of the 40 English sounds, count up in-
stances of its different mappings, as observed in
all alignments of all pairs. Each alignment con-
tributes counts in proportion to its own weight.

4. For each of the 40 English sounds, normalize the
scores of the Japanese sequences it maps to, so
that the scores sum to 1. These are the symbol-
mapping probabilities shown in Figure 1.

5. Recompute the alignment scores. Each align-
ment is scored with the product of the scores of
the symbol mappings it contains.

6. Normalize the alignment scores. Scores for each
pair 's alignments should sum to 1.

7. Repeat 3-6 until the symbol-mapping probabil-
ities converge.

We then build a WFST directly from the symbol-
mapping probabilities:

PAUSE:pause

AA:a / 0 024 ~ AA:o / 0,018

o < --o

Our WFST has 99 states and 283 arcs.
We have also built models that allow individual

English sounds to be "swallowed" (i.e., produce zero
Japanese sounds). However, these models are ex-
pensive to compute (many more alignments) and
lead to a vast number of hypotheses during WFST
composition. Furthermore, in disallowing "swallow-
ing," we were able to automatically remove hun-
dreds of potentially harmful pairs from our train-
ing set, e.g., ((B AA R B ER SH AA P) - - (b a a
b a a)) . Because no alignments are possible, such
pairs are skipped by the learning algorithm; cases
like these must be solved by dictionary lookup any-
way. Only two pairs failed to align when we wished
they had- -both involved turning English Y UW into
Japanese u, as in ((Y UW K AH L EY L IY) ~ (u
k u r e r e)) .

Note also that our model translates each English
sound without regard to context. We have built also
context-based models, using decision trees receded
as WFSTs. For example, at the end of a word, En-
glish T is likely to come out as (= o) rather than (1;).
However, context-based models proved unnecessary

131

e J P(j l e)
o 0.566
a 0.382
a a 0.024
o o 0.018

AE a 0.942

y a 0.046

AH a 0.486

o 0.169

e 0.134

i 0.III

u 0.076

AO o 0.671

o o 0.257

a 0.047
AW a u 0.830

a w 0.095
o o 0.027
a o 0.020
a 0.014

AY a i 0.864
i 0.073
a 0.018
a i y 0.018

B b 0.802

b u 0.185

CH ch y 0.277
ch 0.240
t c h i 0.199
ch i 0.159
t c h 0.038
ch y u 0.021
t c h y 0.020

DH

d 0.535

d o 0.329

dd o 0.053

j 0.032
z 0.670
z u 0.125
j 0.125
a z 0.080

EH e 0.901
a 0.069

ER a a 0.719
a 0.081
a r 0.063
e r 0.042
o r 0.029

e
E¥

J P(J l e)
e e 0.641
a 0.122
e 0.114
e i 0.080
a i 0.014

F h 0.623
h u 0.331

hh 0.019

a h u 0.010
G g 0.598

g u 0.304
gg u 0.059

gg 0.010

HH h 0.959
w 0.014

IH i 0.908
e 0.071

IY i i 0.573
i 0.317
e 0.074
e e 0.016

JR j 0.329
j y 0.328
j i 0.129
j j i 0.066
e j i 0.057

z 0.032

g 0.018
j j 0.012
e 0.012
k 0.528
k u 0.238
kk u 0.150
kk 0.043
k i 0.015
k y 0.012

L r 0.621

r u 0.362

M m 0.653

m u 0.207

n 0.123

n m 0.011

N n 0.978
NG n g u 0.743

n 0.220

n g 0.023

e j P(j I e)
OW o 0.516

o o 0.456

o u 0.011

OY o i 0.828
o o i 0.057
i 0.029
o i y 0.029
o 0.027

o o y 0.014

o o 0.014
P p 0.649

p u 0.218
pp u 0.085
pp 0.045

PAUSE p a u s e 1.000
R r 0.661

a 0.170

o 0.076

r u 0.042

u r 0.016

a r 0.012

s u 0.539
s 0.269
sh 0.109
u 0.028
s s 0.014

8H s h y 0.475
sh 0.175
s s h y u 0.166
s s h y 0.088
sh i 0.029
s s h 0.027
s h y u 0.015
t 0.463
t o 0.305
t t o 0.103
ch 0.043
t t 0.021
t s 0.020
t s u 0.011

TH s u 0.418
s 0.303
s h 0.130
ch 0.038
t 0.029

e j P U l e)
UH u 0.794

u u 0.098
dd 0.034
a 0.030
o 0.026

UW u u 0.550
u 0.302
y u u 0.109
y u 0.021

V b 0.810
b u 0.150
w 0.015

W w 0.693
u 0.194
o 0.039
£ 0.027
a 0.015
e 0.012
y 0.652
i 0.220
y u 0.050
u 0.048
b 0.016
z 0.296
z u 0.283
j 0.107
s u 0.103
u 0.073
a 0.036
o 0.018
s 0.015
n 0.013
i 0.011
s h 0.011

ZH j y 0.324
s h i 0.270
j i 0.173
j 0.135
a j y u 0.027
s h y 0.027
s 0.027
a j i 0.016

F i g u r e 1: E n g l i s h s o u n d s (in c a p i t a l s) w i t h p r o b a b i l i s t i c m a p p i n g s to J a p a n e s e s o u n d s e q u e n c e s (in l ower

case) , as l e a r n e d by e s t i m a t i o n - m a x i m i z a t i o n . O n l y m a p p i n g s w i t h c o n d i t i o n a l p r o b a b i l i t i e s g r e a t e r t h a n

1% are s h o w n , so tile f i gu res m a y n o t s u m to 1.

132

for back-transliteration. 4 They are more useful for
English-to-Japanese forward transliteration.

3.4 J a p a n e s e s o u n d s to K a t a k a n a

To map Japanese sound sequences like (m o o 1:
a a) onto katakana sequences like (~ - - $ t - -) , we
manually constructed two WFSTs. Composed to-
gether, they yield an integrated WFST with 53
states and 303 arcs. The first WFST simply merges
long Japanese vowel sounds into new symbols aa, i i ,
uu, ee, and oo. The second WFST maps Japanese
sounds onto katakana symbols. The basic idea is
to consume a whole syllable worth of sounds before
producing any katakana, e.g.:

 :-:,0951

This fragment shows one kind of spelling varia-
tion in Japanese: long vowel sounds (oo) are usu-
ally written with a long vowel mark (~ -) but are
sometimes written with repeated katakana (~) .
We combined corpus analysis with guidelines from
a Japanese textbook (Jorden and Chaplin, 1976)
to turn up many spelling variations and unusual
katakana symbols:

• the sound sequence (j ±) is usually written ~,
but occasionally ¢:.

• (g u a) is usually ~ 'T , but occasionally Y T .

• (w o o) is variously ~z ' - - - , ~ r - , or with a
special, old-style katakana for wo.

• (y e) may be =I=, d ~ , or d ~.

• (w i) i s either #~" or ~ 4 .

• (n y e) is a rare sound sequence, but is written
-~* when it occurs.

• (1: y u) is rarer than (ch y u), but is written
~-~- when it occurs.

and so on.
Spelling variation is clearest in cases where an En-

glish word like swiIeh shows up transliterated vari-
ously (:~ ~" :, ¢-, :~4 ~, ¢-, x ~, 4 ~, 4-) in different
dictionaries. Treating these variations as an equiv-
alence class enables us to learn general sound map-
pings even if our bilingual glossary adheres to a sin-
gle narrow spelling convention. We do not, however,

4And harmfully restrictive in their unsmoothed
incarnations.

generate all katakana sequences with this model;
for example, we do not output strings that begin
with a subscripted vowel katakana. So this model
also serves to filter out some ill-formed katakana
sequences, possibly proposed by optical character
recognition.

3.5 K a t a k a n a to O C R

Perhaps uncharitably, we can view optical character
recognition (OCR) as a device that garbles perfectly
good katakana sequences. Typical confusions made
by our commercial OCR system include ~ for ~-',
¢-for -)', T for 7 , and 7 for 7". To generate pre-
OCR text, we collected 19,500 characters worth of
katakana words, stored them in a file, and printed
them out. To generate post-OCR text, we OCR'd
the printouts. We then ran the EM Mgorithm to de-
termine symbol-mapping ("garbling") probabilities.
Here is part of that table:

k o P(o [k)
~:" ~:" 0.492

~" O.434
0.042

7 0.011
~" ~" 1.000
.,~ z, 0.964

] , 0.036

This model outputs a superset of the 81 katakana
symbols, including spurious quote marks, alphabetic
symbols, and the numeral 7.

4 E x a m p l e

We can now use the models to do a sample back-
transliteration. We start with a katakana phrase
as observed by OCR. We then serially compose it
with the models, in reverse order. Each intermedi-
ate stage is a WFSA that encodes many possibilities.
The final stage contains all back-transliterations sug-
gested by the models, and we finally extract the best
one.

We start with the masutaazutoonamento problem
from Section 1. Our OCR observes:

~ x ~,-- ;~° 1. - - - / - j : / 1.

This string has two recognition errors: ~' (ku)
for $ (ta) , and ¢-(ch£) for "3-(na). We turn the
string into a chained 12-state/ l l -arc WFSA and
compose it with the P(k[o) model. This yields a fat-
ter 12-state/15-arc WFSA, which accepts the cor-
rect spelling at a lower probability. Next comes
the P(jlk) model, which produces a 28-state/31-arc
WFSA whose highest-scoring sequence is:

m a s u t a a z u t o o ch i m e n t o

Next comes P(elj), yielding a 62-state/241-arc
WFSA whose best sequence is:

M AE S T AE AE DH UH T AO AO CH IH M EH N T AO

1 3 3

Next to last comes P(wle), which results in a 2982-
state/4601-arc WFSA whose best sequence (out of
myriads) is:

masters tone am ent awe

This English string is closest phonetically to the
Japanese, but we are willing to trade phonetic prox-
imity for more sensical English; we restore this
WFSA by composing it with P(w) and extract the
best translation:

masters tournament

(Other Section 1 examples are translated correctly
as earth day and robert scan leonard.)

5 E x p e r i m e n t s

We have performed two large-scale experiments, one
using a full-language P(w) model, and one using a
personal name language model.

In the first experiment, we extracted 1449 unique
katakana phrases from a corpus of 100 short news
articles. Of these, 222 were missing from an on-
line 100,000-entry bilingual dictionary. We back-
transliterated these 222 phrases. Many of the trans-
lations are perfect: technical program, sez scandal,
omaha beach, new york times, ramon diaz. Oth-
ers are close: tanya harding, nickel simpson, danger
washington, world cap. Some miss the mark: nancy
care again, plus occur, patriot miss real. While it
is difficult to judge overall accuracy--some of the
phases are onomatopoetic, and others are simply too
hard even for good human translators--i t is easier
to identify system weaknesses, and most of these lie
in the P(w) model. For example, nancy kerrigan
should be preferred over nancy care again.

In a second experiment, we took katakana
versions of the names of 100 U.S. politicians,
e.g.: -Jm : / . 7' = - - (jyon.buroo) , T ~ / ~ .
~ '0 ' I" (a.rhonsu.dama~;'¢o), and "~'4 3' • ~ 7 , f :/
(maiku.de~ain) . We back-transliterated these by
machine and asked four human subjects to do the
same. These subjects were native English speakers
and news-aware: we gave them brief instructions, ex-
amples, and hints. The results were as follows:

correct
(e.g., spencer abraham /

spencer abraham)

phonetically equivalent,
but misspelled
(e.g., richard brian /

richard bryan)

incorrect
(e.g., olin hatch /

omen hatch)

human machine

27% 64%

7,% 12%

66% 24%

There is room for improvement on both sides. Be-
ing English speakers, the human subjects were good
at English name spelling and U.S. politics, but not
at Japanese phonetics. A native Japanese speaker
might be expert at the latter but not the former.
People who are expert in all of these areas, however,
are rare.

On the automatic side. many errors can be cor-
rected. A first-name/last-name model would rank
richard bryan more highly than richard brian. A bi-
gram model would prefer orren hatch over olin hatch.
Other errors are due to unigram training problems,
or more rarely, incorrect or brittle phonetic models.
For example, "Long" occurs much more often than
"R.on" in newspaper text, and our word selection
does not exclude phrases like "Long Island." So we
get long wyden instead of ton wyden. Rare errors
are due to incorrect or brittle phonetic models.

Still the machine's performance is impressive.
When word separators (,) are removed from the
katakana phrases, rendering the task exceedingly dif-
ficult for people, the machine's performance is un-
changed. When we use OCR. 7% of katakana tokens
are mis-recognized, affecting 50% of test strings, but
accuracy only drops from 64% to 52%.

6 D i s c u s s i o n

We have presented a method for automatic back-
transliteration which, while far from perfect, is
highly competitive. It also achieves the objectives
outlined in Section 1. It ports easily to new lan-
guage pairs; the P(w) and P(e[w) models are entirely
reusable, while other models are learned automati-
cally. It is robust against OCR noise, in a rare ex-
ample of high-level language processing being useful
(necessary, even) in improving low-level OCK.

We plan to replace our shortest-path extraction
algorithm with one of the recently developed k-
shortest path algorithms (Eppstein, 1994). We will
then return a ranked list of the k best translations
for subsequent contextual disambiguation, either by
machine or as part of an interactive man-machine
system. We also plan to explore probabilistic models
for Arabic/English transliteration. Simply identify-
ing which Arabic words to transliterate is a difficult
task in itself; and while Japanese tends to insert ex-
tra vowel sounds, Arabic is usually written without
any (short) vowels. Finally, it should also be pos-
sible to embed our phonetic shift model P(jle) in-
side a speech recognizer, to help adjust for a heavy
Japanese accent, although we have not experimented
in this area.

7 A c k n o w l e d g m e n t s

We would like to thank Alton Earl Ingram, Yolanda
Gil, Bonnie Glover-Stalls, Richard Whitney, and
Kenji Yamada for their helpful comments. We would

134

also like to thank our sponsors at the Department of
Defense.

R e f e r e n c e s

M. Arbabi, S. M. Fischthal, and V. C. Cheng andd
E. Bart. 1994. Algorithms for Arabic name
transliteration. IBM J. Res. Develop., 38(2).

L. E. Baum. 1972. An inequality and associated
maximization technique in statistical estimation
ofprobabilistic functions of a Markov process. In-
equalities, 3.

E. W. Dijkstra. 1959. A note on two problems in
connexion with graphs. Numerische Malhematik,
1.

David Eppstein. 1994. Finding the k shortest paths.
In Proc. 35th Syrup. Foundations of Computer
Science. IEEE.

E. H. Jorden and H. I. Chaplin. 1976. Reading
Japanese. Yale University Press, New Haven.

F. Pereira and M. Riley. 1996. Speech recognition
by composition of weighted finite automata. In
preprint, cmp-lg/9603001.

F. Pereira, M. Riley, and R. Sproat. 1994. Weighted
rational transductions and their application to hu-
man language processing. In Proe. ARPA Human
Language Technology Workshop.

J. Yamron, J. Cant, A. Demedts, T. Dietzel, and
Y. Ito. 1994. The automatic component of
the LINGSTAT machine-aided translation sys-
tem. In Proc. ARPA Workshop on Human Lan-
guage Technology.

135

