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A b s t r a c t  

This paper describes the incremental 
generation of parse tables for the LR- 
type parsing of Tree Adjoining Languages 
(TALs). The algorithm presented han- 
dles modifications to the input grammar 
by updating the parser generated so far. 
In this paper, a lazy generation of LR- 
type parsers for TALs is defined in which 
parse tables are created by need while 
parsing. We then describe an incremental 
parser generator for TALs which responds 
to modification of the input grammar by 
updating parse tables built so far. 

1 L R  P a r s e r  G e n e r a t i o n  

Tree Adjoining Grammars  (TAGs) are tree rewrit- 
ing systems which combine trees with the sin- 
gle operation of adjoining. (Schabes and Vijay- 
Shanker, 1990) describes the construction of an LR 
parsing algorithm for TAGs 1. Parser generation 
here is taken to be the construction of LR(0) ta- 
bles (i.e., without any lookahead) for a particular 
TAG z. The moves made by the parser can be ex- 
plained by an automaton which is weakly equivalent 
to TAGs called Bottom-Up Embedded Pushdown 
Automata  (BEPDA) (Schabes and Vijay-Shanker, 
1990) 3. Storage in a BEPDA is a sequence of stacks, 
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1 Familiarity with TAGs and their parsing techniques 
is assumed throughout the paper, see (Schabes and 
Joshi, 1991) for an introduction. We assume that our 
definition of TAG does not have the substitution opera- 
tion. See (Aho et al., 1986) for details on LR parsing. 

2The algorithm described here can be extended to use 
SLR(1) tables (Schabes and Vijay-Shanker, 1990). 

SNote that the LR(0) tables considered here are deter- 
ministic and hence correspond to a subset of the TALs. 
Techniques developed in (Tomita, 1986) can be used to 
resolve nondeterminism in the parser. 

where new stacks can be introduced above and be- 
low the top stack in the automaton.  Recognition of 
adjunction is equivalent to the u n w r a p  move shown 
in Fig. 1. 

of 

Figure 1: Recognition of adjunction in a BEPDA. 

The LR parser (of (Schabes and Vijay-Shanker, 
1990)) uses a parsing table and a sequence of stacks 
(Fig. 1) to parse the input. The parsing table en- 
codes the actions taken by the parser as follows (us- 
ing two GOTO functions): 

• Sh i f t  to a new state, pushed onto a new stack 
which appears on top of the current sequence 
of stacks. The current input token is removed. 

• R e s u m e  R i g h t  when the parser has reached 
right and below a node (in a dotted tree, ex- 
plained below) on which an auxiliary tree has 
been adjoined. The GOTOIoo, function en- 
codes the proper state such that  the string to 
the right of the footnode can be recognized. 

• R e d u c e  R o o t ,  the parser executes an unwrap 
move to recognize adjunction (Fig. 1). The 
proper state for the parser after adjunction is 
given by the GOTOr@h, function. 

• A c c e p t  and E r r o r  functions as in conventional 
LR parsing. 

There are four positions for a dot associated with 
a symbol in a dotted tree: left above, left below, 
right below and right above. A dotted tree has one 
such dotted symbol. The tree traversal in Fig. 2 
scans the frontier of the tree from left to right while 
trying to recognize possible adjunctions between the 
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above and below positions of the dot. Adjunction on 
a node is recorded by marking it with an asterisk 4. 

IB$. ~C .  $ 

Figure 2: Left to right dotted tree traversal. 

The  parse table is built as a finite state automaton 
(FSA) with each state defined to be a set of dotted 
trees. The closure operations on states in the parse 
table are defined in Fig. 3. All the states in the parse 
table must be closed under these operations 5. 

The FSA is built as follows: in state 0 put  all the 
initiM trees with the dot left and above the root. 
The state is then closed. New states are built by 
three transitions: s,{*a} - a sj {a '},  a is a terminal 

symbol; s ,{A,}  #"g~' s j {A ' } ,  fl can adjoin at node 

A; s ,{ .A} #.?oo, s j {A ,} ,  A is a footnode. Entries in 
the parse table are determined as follows: 

• a sh i f t  for each transition in the FSA. 

• r e s u m e  r i g h t  iff there is a node B .  with the 
dot right and below it. 

• r e d u c e  r o o t  iff there is a rootnode in an aux- 
iliary tree with the dot right and above it. 

• a c c e p t  and e r r o r  with the usual interpreta- 
tion. 

The items created in each state before closure applies 
are called the k e r n e l s  of each state in the FSA. The 
initial trees with the dot left and above the root form 
the kernel for state 0. 

2 L a z y  P a r s e r  G e n e r a t i o n  

The algorithm described so far assumes that  the 
parse table is precompiled before the parser is used. 
Lazy parser generation generates only those parts of 
the parser that  become necessary during actual pars- 
ing. The approach is an extension of the algorithm 
for CFGs given in (Heering et al., 1990; I-Ieering et 
M., 1989). To modify the LR parsing strategy given 
earlier we move the closure and computation of tran- 
sitions from the table generation stage to the LR 
parser. The lazy technique expands a kernel state 
only when the parser, looking at the current input, 
indicates so. For example, a TAG and correspond- 
ing FSA is shown in Fig. 4 (ha rules out adjunction 
at a node) 6, Computat ion of closure and transitions 
in the state occurs while parsing as in Fig. 5 which 

4For example, B*. This differs from the usual nota- 
tion for marking a footnode with an asterisk. 

5Fig. 5 is a partial FSA for the grammar in Fig. 4. 
6Unexpanded kernel states are marked with a bold- 

fa~=ed outline, acceptance states with double-lines. 

is the result of the LR parser expanding the FSA in 
Fig. 4 while parsing the string aec. 

The modified parse function checks the type of the 
state and may expand the kernel states while pars- 
ing a sentence. Memory use in the lazy technique 
is greater as the FSA is needed during parsing and 
parser generation. 

TAG G: a: Se] I~"~Snaa S ~  FSA: 0 

Sna e 

Figure 4: TAG G where L(G) = {anec n) and corre- 
sponding FSA after lazy parse table generation. 
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Figure 5: The FSA after parsing the string aec. 
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Figure 6: New tree added to G with L(G) = 
{ anbm ecn d m} 

3 I n c r e m e n t a l  P a r s e r  G e n e r a t i o n  

An incremental parser generator responds to gram- 
mar updates by throwing away only that  information 
from the FSA of the old grammar that  is inconsistent 
in the updated grammar.  Incremental behaviour is 
obtained by selecting the states in the parse table af- 
fected by the change in the grammar and returning 
them to their kernel form (i.e. remove items added 
by the closure operations). The parse table FSA will 
now become a disconnected graph. The lazy parser 
will expand the states using the new grammar.  All 
states in the disconnected graph are kept as the lazy 
parser will reconnect with those states (when the 
transitions between states are computed) that  are 
unaffected by the change in the grammar.  Consider 
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Figure 3: Closure Operations. 

the addition of a tree to the grammar (deletion will 
be similar). 

• for an initial tree a return state 0 to kernel form 
adding a with the dot left and above the root 
node. Also return all states where a possible 
Left Completion on a can occur to their kernel 
form. 

• for an auxiliary tree fl return all states where a 
possible Adjunction Prediction on/3 can occur 
and all states with a fl, ight transition to their 
kernel form. 

For example, the addition of the tree in Fig. 6 
causes the FSA to fragment into the disconnected 
graph in Fig. 7. It is crucial to keep the discon- 
nected states around; consider the re-expansion of a 
single state in Fig. 8. All states compatible with the 
modified grammar are eventually reused• 

4 ~ 

Figure 7: The parse table after the addition of 7. 

The approach presented above causes certain 
states to become unreachable from the start state 7. 
Frequent modifications of a grammar can cause 
many unreachable states. A garbage collection 
scheme defined in (Heering et al., 1990) can be used 
here which avoids overregeneration by retaining un- 
reachable states• 

4 C o n c l u s i o n  

What  we have described above is work in progress in 
implementing an LR-type parser for a wide-coverage 
lexiealized grammar of English using TAGs (XTAG 
Group, 1995)• Incremental parser generation allows 
the addition and deletion of elementary trees from a 

rQuantitative results on the performance of the algo- 
rithm presented are forthcoming. 
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Figure 8: The parse table after expansion of state 0 
with the modified grammar.  

TAG without recompilation of the parse table for the 
updated grammar• This allows precompilation of 
top-down dependencies such as the prediction of ad- 
junction while having the flexibility given by Earley- 
style parsers• 
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