
Efficient Normal-Form Parsing
for Combinatory Categorial Grammar*

Jason Eisner
Dept. of C o m p u t e r and In fo rma t ion Science

Univers i ty of Pennsy lvan ia

200 S. 33rd St., Ph i lade lph ia , PA 19104-6389, USA

j e i s n e r @ l i n c , c i s . upenn , edu

A b s t r a c t

Under categorial grammars that have pow-
erful rules like composition, a simple
n-word sentence can have exponentially
many parses. Generating all parses is ineffi-
cient and obscures whatever true semantic
ambiguities are in the input. This paper
addresses the problem for a fairly general
form of Combinatory Categorial Grammar,
by means of an efficient, correct, and easy
to implement normal-form parsing tech-
nique. The parser is proved to find ex-
actly one parse in each semantic equiv-
alence class of allowable parses; that is,
spurious ambiguity (as carefully defined)
is shown to be both safely and completely
eliminated.

1 I n t r o d u c t i o n

Combinatory Categorial Grammar (Steedman,
1990), like other "flexible" categorial grammars,
suffers from spurious ambiguity (Wittenburg, 1986).
The non-standard constituents that are so crucial to
CCG's analyses in (1), and in its account of into-
national focus (Prevost ~ Steedman, 1994), remain
available even in simpler sentences. This renders (2)
syntactically ambiguous.

(1) a. Coord ina t ion : [[John likes]s/NP, and
[Mary pretends to like]s/NP], the big
galoot in the corner.

b. Ex t rac t ion : Everybody at this party
[whom [John likes]s/NP] is a big galoot.

(2) a. John [likes Mary]s\NP.
b. [.John likes]s/N P Mary.

The practical problem of "extra" parses in (2) be-
comes exponentially worse for longer strings, which
can have up to a Catalan number of parses. An

*This material is based upon work supported under
a National Science Foundation Graduate Fellowship. I
have been grateful for the advice of Aravind Joshi, Nobo
Komagata, Seth Kulick, Michael Niv, Mark Steedman,
and three anonymous reviewers.

exhaustive parser serves up 252 CCG parses of (3),
which must be sifted through, at considerable cost,
in order to identify the two distinct meanings for
further processing. 1

(3) the galoot in the corner
NP]N N (N\N)/NP NP]N N

that I said Mary
(N\N)](S/NP) S/(S\NP) (S\NP)]$ S](S\NP)

pretends to
(S\NP)](Sin f \NP) (Sin f \NP)/(Sstem \NP)

like
(Sstem\NP)/NP

This paper presents a simple and flexible CCG
parsing technique that prevents any such explosion
of redundant CCG derivations. In particular, it is
proved in §4.2 that the method constructs exactly
one syntactic structure per semantic reading--e.g.,
just two parses for (3). All other parses are sup-
pressed by simple normal-form constraints that are
enforced throughout the parsing process. This ap-
proach works because CCG's spurious ambiguities
arise (as is shown) in only a small set of circum-
stances. Although similar work has been attempted
in the past, with varying degrees of success (Kart-
tunen, 1986; Wittenburg, 1986; Pareschi & Steed-
man, 1987; Bouma, 1989; Hepple & Morrill, 1989;
KSnig, 1989; Vijay-Shanker & Weir, 1990; Hepple,
1990; Moortgat, 1990; ttendriks, 1993; Niv, 1994),
this appears to be the first full normal-form result
for a categorial formalism having more than context-
free power.

2 D e f i n i t i o n s a n d R e l a t e d W o r k

CCG may be regarded as a generalization of context-
free grammar (CFG)--one where a grammar has
infinitely many nonterminals and phrase-structure
rules. In addition to the familiar atomic nonter-
minal categories (typically S for sentences, N for

1Namely, Mary pretends to like the galoot in 168
parses and the corner in 84. One might try a statis-
tical approach to ambiguity resolution, discarding the
low-probability parses, but it is unclear how to model
and train any probabilities when no single parse can be
taken as the standard of correctness.

79

nouns, NP for noun phrases, etc.), CCG allows in-
finitely many slashed categories. If z and y are
categories, then x / y (respectively z \ y) is the cat-
egory of an incomplete x that is missing a y at its
right (respectively left). Thus verb phrases are an-
alyzed as subjectless sentences S\NP, while "John
likes" is an objectless sentence or S/NP. A complex
category like ((S\NP) \ (S\NP))/N may be written as
S\NP\(S\NP)/N, under a convention that slashes are
left-associative.

The results herein apply to the TAG-equivalent
CCG formalization given in (Joshi et M., 1991). 2
In this variety of CCG, every (non-lexical) phrase-
structure rule is an instance of one of the following
binary-rule templates (where n > 0):

(4) Forward generalized composition >Bn:
;~/y y[nzn''" [2Z211Zl -'+ ;~[nZn''"]2Z211Zl

Backward generalized composition <Bn:
y l . z . . . - 12z2 Ilzl x\y x I . z 12z llzl

Instances with n -- 0 are called application rules, and
instances with n > 1 are called composition rules. In
a given rule, x, y, z l . . . z~ would be instantiated as
categories like NP, S/I~P, or S\NP\(S\NP)/N. Each of
]1 through In would be instantiated as either / or \ .

A fixed CCG grammar need not include every
phrase-structure rule matching these templates. In-
deed, (Joshi et al., 1991) place certain restrictions
on the rule set of a CCG grammar, including a re-
quirement that the rule degree n is bounded over the
set. The results of the present paper apply to such
restricted grammars and also more generally, to any
CCG-style grammar with a decidable rule set.

Even as restricted by (Joshi et al., 1991), CCGs
have the "mildly context-sensitive" expressive power
of Tree Adjoining Grammars (TAGs). Most work
on spurious ambiguity has focused on categorial for-
malisms with substantially less power. (Hepple,
1990) and (Hendriks, 1993), the most rigorous pieces
of work, each establish a normal form for the syn-
tactic calculus of (Lambek, 1958), which is weakly
context-free. (Kbnig, 1989; Moortgat, 1990) have
also studied the Lambek calculus case. (Hepple &
Morrill, 1989), who introduced the idea of normal-
form parsing, consider only a small CCG frag-
ment that lacks backward or order-changing com-
position; (Niv, 1994) extends this result but does
not show completeness. (Wittenburg, 1987) assumes
a CCG fragment lacking order-changing or higher-
order composition; furthermore, his revision of the
combinators creates new, conjoinable constituents
that conventional CCG rejects. (Bouma, 1989) pro-
poses to replace composition with a new combina-
tor, but the resulting product-grammar scheme as-

2This formalization sweeps any type-raising into the
lexicon, as has been proposed on linguistic grounds
(Dowty, 1988; Steedman, 1991, and others). It also
treats conjunction lexically, by giving "and" the gener-
alized category x \ x / x and barring it from composition.

80

signs different types to "John likes" and "Mary pre-
tends to like," thus losing the ability to conjoin such
constituents or subcategorize for them as a class.
(Pareschi & Steedman, 1987) do tackle the CCG
case, but (Hepple, 1987) shows their algorithm to
be incomplete.

3 O v e r v i e w o f t h e P a r s i n g S t r a t e g y

As is well known, general CFG parsing methods
can be applied directly to CCG. Any sort of chart
parser or non-deterministic shift-reduce parser will
do. Such a parser repeatedly decides whether two
adjacent constituents, such as S/NP and I~P/N, should
be combined into a larger constituent such as S/N.
The role of the grammar is to state which combi-
nations are allowed. The key to efficiency, we will
see, is for the parser to be less permissive than the
grammar--for it to say "no, redundant" in some
cases where the grammar says "yes, grammatical."

(5) shows the constituents that untrammeled
CCG will find in the course of parsing "John likes
Mary." The spurious ambiguity problem is not that
the grammar allows (5c), but that the grammar al-
lows both (5f) and (5g)--distinct parses of the same
string, with the same meaning.

(5) a. [John]s/(s\sp)
b. [likes](S\NP)/Np
C. [John likes]s/N P
d. [Mary]N P
e. [likes Mary]s\N P
f. [[John likes] Mary]s ~ to be disallowed
g, [John [likes Mary]Is

The proposal is to construct all constituents
shown in (5) except for (5f). If we slightly con-
strain the use of the grammar rules, the parser will
still produce (5c) and (5d)--constituents that are
indispensable in contexts like (1)--while refusing to
combine those constituents into (5f). The relevant
rule S/I~P NP --* S will actually be blocked when it
attempts to construct (5f). Although rule-blocking
may eliminate an analysis of the sentence, as it does
here, a semantically equivalent analysis such as (5g)
will always be derivable along some other route.

In general, our goal is to discover exactly one anal-
ysis for each <substring, meaning> pair. By prac-
ticing "birth control" for each bottom-up generation
of constituents in this way, we avoid a population
explosion of parsing options. "John likes Mary" has
only one reading semantically, so just one of its anal-
yses (5f)-(5g) is discovered while parsing (6). Only
that analysis, and not the other, is allowed to con-
tinue on and be built into the final parse of (6).

(6) that galoot in the corner that thinks [John
likes Mary]s

For a chart parser, where each chart cell stores the
analyses of some substring, this strategy says that

all analyses in a cell are to be semantically distinct.
(Karttunen, 1986) suggests enforcing that property
direct ly--by comparing each new analysis semanti-
cally with existing analyses in the cell, and refus-
ing to add it if r edundant - -bu t (Hepple & Morrill,
1989) observe briefly that this is inefficient for large
charts. 3 The following sections show how to obtain
effectively the same result without doing any seman-
tic interpretation or comparison at all.

4 A Normal Form for "Pure" CCG

It is convenient to begin with a special case. Sup-
pose the CCG grammar includes not some but all
instances of the binary rule templates in (4). (As
always, a separate lexicon specifies the possible cat-
egories of each word.) If we group a sentence's parses
into semantic equivalence classes, it always turns out
that exactly one parse in each class satisfies the fol-
lowing simple declarative constraints:

(7) a. No constituent produced by >Bn, any
n ~ 1, ever serves as the primary (left)
argument to >Bn', any n' > 0.

b. No constituent produced by <Bn, any
n > 1, ever serves as the primary (right)
argument to <Bn', any n' > 0.

The notation here is from (4). More colloquially,
(7) says that the output of rightward (leftward) com-
position may not compose or apply over anything to
its right (left). A parse tree or subtree that satisfies
(7) is said to be in normal form (NF).

As an example, consider the effect of these restric-
tions on the simple sentence "John likes Mary." Ig-
noring the tags -OT, -FC, and -Be for the moment,
(8a) is a normal-form parse. Its competitor (85) is
not, nor is any larger tree containing (8b). But non-

3How inefficient? (i) has exponentially many seman-
tically distinct parses: n = 10 yields 82,756,612 parses

(2°) -- 48,620 equivalence classes. Karttunen's in 10
method must therefore add 48,620 representative parses
to the appropriate chart cell, first comparing each one
against all the previously added parses--of which there
are 48,620/2 on average--to ensure it is not semantically
redundant. (Additional comparisons are needed to reject
parses other than the lucky 48,620.) Adding a parse can
therefore take exponential time.

n

(i) . . . S/S S/S S/S S S\S S\S S\S .. .

Structure sharing does not appear to help: parses that
are grouped in a parse forest have only their syntactic
category in common, not their meaning. Karttunen's ap-
proach must tease such parses apart and compare their
various meanings individually against each new candi-
date. By contrast, the method proposed below is purely
syntactic--just like any "ordinary" parser--so it never
needs to unpack a subforest, and can run in polynomial
time.

standard constituents are allowed when necessary:
(8c) is in normal form (cf. (1)).

(8) a. S-OT

S / (S ~ ~ I P - O T

John (S\NP)/NP-OT ~P-OT
I I

likes Mary

b. .forward application blocked by (Ta)
(eq,,i.alently, nofi~X..~itted b~ (10a))

S/NP-FC I~P-OT
[

Mary
S/(S"\NP)-OT (S\NP)/IIP-OT

I I
John likes

81

c. N\N-OT

(N\N) / (S/NP)-OT S/NP-FC

I s ~ p whom
S / ()/NP-OT

I l
John likes

It is not hard to see that (7a) eliminates all but
right-branching parses of "forward chains" like A/B
B/C C or A/B/C C/D D/E/F/G G/H, and that (Tb)
eliminates all but left-branching parses of "backward
chains." (Thus every functor will get its arguments,
if possible, before it becomes an argument itself.)
But it is hardly obvious that (7) eliminates all of
CCG's spurious ambiguity. One might worry about
unexpected interactions involving crossing compo-
sition rules like A/B B\C--~ A\C. Significantly, it
turns out that (7) really does suffice; the proof is
in §4.2.

It is trivial to modify any sort of CCG parser
to find only the normal-form parses. No seman-
tics is necessary; simply block any rule use that
would violate (7). In general, detecting violations
will not hurt performance by more than a constant
factor. Indeed, one might implement (7) by modi-
fying CCG's phrase-structure grammar. Each ordi-
nary CCG category is split into three categories that
bear the respective tags from (9). The 24 templates
schematized in (10) replace the two templates of (4).
Any CFG-style method can still parse the resulting
spuriosity-free grammar, with tagged parses as in
(8). In particular, the polynomial-time, polynomial-
space CCG chart parser of (Vijay-Shanker & Weir,
1993) can be trivially adapted to respect the con-
straints by tagging chart entries.

(9) -FC output of >Bn, some n > 1 (a forward composition rule)
-BC output of <Bn, some n > 1 (a backward composition rule)
-OT output of >B0 or <B0 (an application rule), or lexical item

(10) a. Forward application >BO: ~ x/y-OT y-Be t -'+ x--OT
y-OT)

b. Backward application <B0: y-Be ~ x\y-OT j" ~ x-OT
9-O'1")

y l,,z,, l~z~ llz1-BC ---, x l,z,~..-]2z2 llz1-FC c. Fwd. composition >Bn (n > 1): x/y-OT Y Inz,~ 12z2 IlZl-OT

d. Bwd. composition <Bn (n >_ 1): Y I,~z~ 12z2 Ilzl-BC ---, x I n z , ' ' " I~.z2 Ilzl--BC
y I ,z , I~.z2 IlZl-OT x\y-OT

(ii) a. Syn/sem for >Bn (n _> 0): =/y y • I . z

f g ~Cl~C2...~Cn.f(g(Cl)(C2)'"(Cn))

b. Syn/sem for <B, (, > 0): y I.z.--- 12z2 - - * x I .z 12z2 [lZX

g f)~Cl~C2...ACn.f(g(Cl)(C2)''" (Cn))

(12) a. A/C/F

AIClD D/F

AIB BICID DIE ElF

b. AIClF

A/C/E E/F

A/C/D D/E

A/B B/C/D

C.
~y.l(g(h(k(~)))(y))

A/c/F

A/B B/C/D
f g h k

It is interesting to note a rough resemblance be-
tween the tagged version of CCG in (10) and the
tagged Lambek cMculus L*, which (Hendriks, 1993)
developed to eliminate spurious ambiguity from the
Lambek calculus L. Although differences between
CCG and L mean that the details are quite different,
each system works by marking the output of certain
rules, to prevent such output from serving as input
to certain other rules.

4.1 Semantic equivalence
We wish to establish that each semantic equivalence
class contains exactly one NF parse. But what does
"semantically equivalent" mean? Let us adopt a
standard model-theoretic view.

For each leaf (i.e., lexeme) of a given syntax tree,
the lexicon specifies a lexical interpretation from the
model. CCG then provides a derived interpretation
in the model for the complete tree. The standard
CCG theory builds the semantics compositionally,
guided by the syntax, according to (11). We may
therefore regard a syntax tree as a static "recipe" for
combining word meanings into a phrase meaning.

82

One might choose to say that two parses are se-
mantically equivalent iff they derive the same phrase
meaning. However, such a definition would make
spurious ambiguity sensitive to the fine-grained se-
mantics of the lexicon. Are the two analyses of
VP/VP VP VP\VP semantically equivalent? If the
lexemes involved are "softly knock twice," then yes,
as softly(twice(knock)) and twice(softly(knock)) ar-
guably denote a common function in the semantic
model. Yet for "intentionally knock twice" this is
not the case: these adverbs do not commute, and
the semantics are distinct.

It would be difficult to make such subtle distinc-
tions rapidly. Let us instead use a narrower, "inten-
sional" definition of spurious ambiguity. The trees in
(12a-b) will be considered equivalent because they
specify the same "recipe," shown in (12c). No mat-
ter what lexical interpretations f , g, h, k are fed into
the leaves A/B, B/C/D, D/E, E/F, both the trees end
up with the same derived interpretation, namely a
model element that can be determined from f, g, h, k
by calculating Ax~y.f(g(h(k(x)))(y)).

By contrast, the two readings of "softly knock

twice" are considered to be distinct, since the parses
specify different recipes. That is, given a suitably
free choice of meanings for the words, the two parses
can be made to pick out two different VP-type func-
tions in the model. The parser is therefore conser-
vative and keeps both parses. 4

4.2 N o r m a l - f o r m p a r s i n g is safe & c o m p l e t e

The motivation for producing only NF parses (as
defined by (7)) lies in the following existence and
uniqueness theorems for CCG.

T h e o r e m 1 Assuming "pure CCG," where all pos-
sible rules are in the grammar, any parse tree ~ is se-
mantically equivalent to some NF parse tree NF(~).

(This says the NF parser is safe for pure CCG: we
will not lose any readings by generating just normal
forms.)

T h e o r e m 2 Given distinct NF trees a # o/ (on the
same sequence of leaves). Then a and a t are not
semantically equivalent.

(This says that the NF parser is complete: generat-
ing only normal forms eliminates all spurious ambi-
guity.)

Detailed proofs of these theorems are available on
the cmp-lg archive, but can only be sketched here.
Theorem 1 is proved by a constructive induction on
the order of a, given below and illustrated in (13):

• For c~ a leaf, put NF(c~) = a.
• (<R, ~, 3'> denotes the parse tree formed by com-

bining subtrees/~, 7 via rule R.)
If ~ = <R, fl, 7> , then take NF(c~) =
<R, gF(f l) , N F (7) > , which exists by inductive
hypothesis, unless this is not an NF tree. In
the latter case, WLOG, R is a forward rule and
NF(fl) = <Q,~l , f lA> for some forward com-
position rule Q. Pure CCG turns out to pro-
vide forward rules S and T such that a~ =
<S, ill, NF(<T, ~2, 7 >) > is a constituent and
is semantically equivalent to c~. Moreover, since
fll serves as the primary subtree of the NF tree
NF(fl),/31 cannot be the output of forward com-
position, and is NF besides. Therefore a~ is NF:
take NF(o 0 = o/.

(13) If NF(/3) not output of fwd. composition,
R R
--* --* def

= A = NF()

7 iF(Z) NF(7)
R R

_..+ - - #

else ~ : ~ : : ~
7 N F ~ " 7

t(Hepple 8z Morrill, 1989; Hepple, 1990; Hendriks,
1993) appear to share this view of semantic equivalence.
Unlike (Karttunen, 1986), they try to eliminate only
parses whose denotations (or at least A-terms) are sys-
tematically equivalent, not parses that happen to have
the same denotation through an accident of the lexicon.

8 3

R S

: : ~ ~ def

= Q - ~ 7 ~ 1 ~ 1 ~ ' / 7 2 NF (/ 7 2 ~ 7) = NF(~)

This construction resembles a well-known normal-
form reduction procedure that (Hepple & Morrill,
1989) propose (without proving completeness) for a
small fragment of CCG.

The proof of theorem 2 (completeness) is longer
and more subtle. First it shows, by a simple induc-
tion, that since c~ and ~' disagree they must disagree
in at least one of these ways:

(a) There are trees/?, 3' and rules R # R' such that
<R, fl, 7> is a subtree of a and <R',/3, 7> is a
subtree of a ' . (For example, S/S S\S may form
a constituent by either <Blx or >Blx.)

(b) There is a tree 7 that appears as a subtree of
both c~ and cd, but combines to the left in one
case and to the right in the other.

Either condition, the proof shows, leads to different
"immediate scope" relations in the full trees ~ and ~'
(in the sense in which f takes immediate scope over
9 in f (g(x)) but not in f(h(g(x))) or g(f (z))) . Con-
dition (a) is straightforward. Condition (b) splits
into a case where 7 serves as a secondary a rgument
inside both cr and a ' , and a case where it is a primary
argument in c~ or a ' . The latter case requires consid-
eration of 7's ancestors; the NF properties crucially
rule out counterexamples here.

The notion of scope is relevant because semantic
interpretations for CCG constituents can be written
as restricted lambda terms, in such a way that con-
stituents having distinct terms must have different
interpretations in the model (for suitable interpreta-
tions of the words, as in §4.1). Theorem 2 is proved
by showing that the terms for a and a ' differ some-
where, so correspond to different semantic recipes.

Similar theorems for the Lambek calculus were
previously shown by (Hepple, 1990; ttendriks, 1993).
The present proofs for CCG establish a result that
has long been suspected: the spurious ambiguity
problem is not actually very widespread in CCG.
Theorem 2 says all cases of spurious ambiguity
can be eliminated through the construction given
in theorem 1. But that construction merely en-
sures a right-branching structure for "forward con-
stituent chains" (such as h/B B/C C or h/B/C C/D
D/E/F/G G/H), and a left-branching structure for
backward constituent chains. So these familiar
chains are the only source of spurious ambiguity in
CCG.

5 E x t e n d i n g t h e A p p r o a c h t o

" R e s t r i c t e d " C C G

The "pure" CCG of §4 is a fiction. Real CCG gram-
mars can and do choose a subset of the possible rules.

For instance, to rule out (14), the (crossing) back-
ward rule N/N ~I\N ---* I~/N must be omitted from
English grammar.

(14) [theNP/N [[bigN/N [that likes John]N\N]N/N
galootN]N]NP

If some rules are removed from a "pure" CCG
grammar, some parses will become unavailable.
Theorem 2 remains true (< 1 NF per reading).
Whether theorem 1 (>_ 1 NF per reading) remains
true depends on what set of rules is removed. For
most linguistically reasonable choices, the proof of
theorem 1 will go through, 5 so that the normal-form
parser of §4 remains safe. But imagine removing
only the rule B/a C --~ B: this leaves the string A/B
B/C C with a left-branching parse that has no (legal)
NF equivalent.

In the sort of restricted grammar where theorem 1
does not obtain, can we still find one (possibly non-
NF) parse per equivalence class? Yes: a different
kind of efficient parser can be built for this case.

Since the new parser must be able to generate a
non-NF parse when no equivalent NF parse is avail-
able, its method of controlling spurious ambiguity
cannot be to enforce the constraints (7). The old
parser refused to build non-NF constituents; the new
parser will refuse to build constituents that are se-
mantically equivalent to already-built constituents.

This idea originates with (Karttunen, 1986).
However, we can take advantage of the core result
of this paper, theorems 1 and 2, to do Kart tunen's
redundancy check in O(1) t ime- -no worse than the
normal-form parser's check for -FC and -Be tags.
(Kart tunen's version takes worst-case exponential
t ime for each redundancy check: see footnote §3.)

The insight is that theorems 1 and 2 estab-
lish a one-to-one map between semantic equivalence
classes and normal forms of the pure (unrestricted)
CCG:

(15) Two parses a, ~' of the pure CCG are
semantically equivalent iff they have the
same normal form: g F (a) = gF(a ') .

The NF function is defined recursively by §4.2's
proof of theorem 1; semantic equivalence is also
defined independently of the grammar. So (15) is
meaningful and true even if a, a ' are produced by
a restricted CCG. The tree NF(a) may not be a
legal parse under the restricted grammar. How-
ever, it is still a perfectly good data structure that
can be maintained outside the parse chart, to serve

5For the proof to work, the rules S and T must be
available in the restricted grammar, given that R and Q
are. This is usually true: since (7) favors standard con-
stituents and prefers application to composition, most
grammars will not block the NF derivation while allow-
ing a non-NF one. (On the other hand, the NF parse of
A/B B/C C/D/E uses >B2 twice, while the non-NF parse
gets by with >B2 and >B1.)

as a magnet for a 's semantic class. The proof of
theorem 1 (see (13)) actually shows how to con-
struct NF(a) in O(1) time from the values of NF on
smaller constituents. Hence, an appropriate parser
can compute and cache the NF of each parse in O(1)
time as it is added to the chart. It can detect redun-
dant parses by noting (via an O(1) array lookup)
that their NFs have been previously computed.

Figure (1) gives an efficient CKY-style algorithm
based on this insight. (Parsing strategies besides
CKY would Mso work, in particular (Vijay-Shanker
& Weir, 1993).) The management of cached NFs in
steps 9, 12, and especially 16 ensures that duplicate
NFs never enter the oldNFs array: thus any alter-
native copy of a.nfhas the same array coordinates
used for a.nfi tself , because it was built from identi-
cal subtrees.

The function Pre : fe rab leTo(~ , r) (step 15) pro-
vides flexibility about which parse represents its
class. P r e f e r a b l e T o may be defined at whim to
choose the parse discovered first, the more left-
branching parse, or the parse with fewer non-
standard constituents. Alternatively, P r e f e r a b l e T o
may call an intonation or discourse module to pick
the parse that better reflects the topic-focus divi-
sion of the sentence. (A variant algorithm ignores
PreferableTo and constructs one parse forest per
reading. Each forest can later be unpacked into in-
dividual equivalent parse trees, if desired.)

(Vijay-Shanker & Weir, 1990) also give a method
for removing "one well-known source" of spurious
ambiguity from restricted CCGs; §4.2 above shows
that this is in fact the only source. However, their
method relies on the grammaticali ty of certain inter-
mediate forms, and so can fail if the CCG rules can
be arbitrarily restricted. In addition, their method
is less efficient than the present one: it considers
parses in pairs, not singly, and does not remove any
parse until the entire parse forest has been built.

6 E x t e n s i o n s t o t h e C C G F o r m a l i s m

In addition to the Bn ("generalized composition")
rules given in §2, which give CCG power equivalent
to TAG, rules based on the S ("substi tut ion") and
T ("type-raising") combinators can be linguistically
useful. S provides another rule template, used in
the analysis of parasitic gaps (Steedman, 1987; Sz-
abolcsi, 1989):

(16) a. >s: x / y l l z y l l z • Ilz

/ g
b. <S: y l l z x \ y I l z --* x I l z

Although S interacts with Bn to produce another
source of spurious ambiguity, illustrated in (17), the
additional ambiguity is not hard to remove. It can
be shown that when the restriction (18) is used to-
gether with (7), the system again finds exactly one

8 4

1. f o r / : = l t o n
2. C[i - 1, i] := LexCats(word[i]) (* word i stretches from point i - 1 to point i *)
3. fo r width := 2 to n
4. fo r start := 0 to n - width
5. end := start + width
6. f o r mid := start + 1 to e n d - 1
7. fo r each parse tree ~ = <R,/9, 7> that could be formed by combining some

/9 6 C[start, miaq with some 7 e C[mid, ena~ by a rule/~ of the (restricted) grammar
8. a.nf := NF(a) (* can be computed in constant time using the .nf fields of fl, 7, and

other constituents already in C. Subtrees are also NF trees. *)
9. ezistingNF := oldNFs[~.nf .rule, c~.nf .leftchild.seqno, a.nf .rightchild.seqno]

10. i f undefined(existingNF) (* the first parse with this NF *)
11. ~.nf.seqno := (counter := counter + 1) (* number the new NF ~ add it to oldNFs *)
12. oldNFs[c~.nf .rule, c~.nf .leflchild.seqno, a.nf .rightchild.seqno] := a.nf
13. add ~ to C[start, ena~
14. a.nf.currparse := c~
15. e l s i f P r e f e r a b l e T o (a , ezistingNF.currparse) (* replace reigning parse? *)
16. a.nf:= existingNF (* use cached copy of NF, not new one *)
17. remove a.nf. currparse from C[start, en~
18. add ~ to C[start, enaq
19. ~.nfocurrparse :=
20. r e t u r n (a l l parses from C[0, n] having root category S)

Figure 1: Canonicalizing CCG parser that handles arbitrary restrictions on the rule set. (In practice, a
simpler normal-form parser will suffice for most grammars.)

parse from every equivalence class.

(17) a. VPo/NP (<Bx)

VPI/NP (<Sx)

VP2~P2/NP yesterday
filed [without-reading]

b. VPo/NP (<Sx)

VP2/NP VP0\VP2/NP (<B2)

VPI\V~VPI
(18) a. No constituent produced by >Bn, any

n _> 2, ever serves as the primary (left)
argument to >S.

b. No constituent produced by <Bn, any
n > 2, ever serves as the primary (right)
argument to <S.

Type-raising presents a greater problem. Vari-
ous new spurious ambiguities arise if it is permit-
ted freely in the grammar. In principle one could
proceed without grammatical type-raising: (Dowty,
1988; Steedman, 1991) have argued on linguistic
grounds that type-raising should be treated as a
mere lexical redundancy property. That is, when-
ever the lexicon contains an entry of a certain cate-

85

gory X, with semantics x, it also contains one with
(say) category T/(T\X) and interpretation Ap.p(z).
As one might expect, this move only sweeps the
problem under the rug. If type-raising is lexical,
then the definitions of this paper do not recognize
(19) as a spurious ambiguity, because the two parses
are now, technically speaking, analyses of different
sentences. Nor do they recognize the redundancy in
(20), because--just as for the example "softly knock
twice" in §4.1--it is contingent on a kind of lexical
coincidence, namely that a type-raised subject com-
mutes with a (generically) type-raised object. Such
ambiguities are left to future work.

(19) [JohnNp lefts\NP]S vs. [Johns/(S\NP) lefts\NP]S
(20) [S/(S\NPs) [S\NPs/NPo/NP I T\(T/NPo)]]S/SI

VS. [S/(S\NPs) S\NPs/NPo/NPI] T\(T/NPO)]S/S I

7 Conclusions

The main contribution of this work has been formal:
to establish a normal form for parses of "pure" Com-
binatory Categorial Grammar. Given a sentence,
every reading that is available to the grammar has
exactly one normal-form parse, no mat ter how many
parses it has in toto.

A result worth remembering is that, although
TAG-equivalent CCG allows free interaction among
forward, backward, and crossed composition rules of
any degree, two simple constraints serve to eliminate
all spurious ambiguity. It turns out that all spuri-
ous ambiguity arises from associative "chains" such
as A/B B/C C or A/B/C C/D D/E\F/G G/H. (Wit-

tenburg, 1987; Hepple & Morrill, 1989) anticipate
this result, at least for some fragments of CCG, but
leave the proof to future work.

These normal-form results for pure CCG lead di-
rectly to useful parsers for real, restricted CCG
grammars. Two parsing algorithms have been pre-
sented for practical use. One algorithm finds only
normal forms; this simply and safely eliminates spu-
rious ambiguity under most real CCG grammars.
The other, more complex algorithm solves the spu-
rious ambiguity problem for any CCG grammar, by
using normal forms as an efficient tool for grouping
semantically equivalent parses. Both algorithms are
safe, complete, and efficient.

In closing, it should be repeated that the results
provided are for the TAG-equivalent Bn (general-
ized composition) formalism of (Joshi et al., 1991),
optionally extended with the S (substitution) rules
of (Szabolcsi, 1989). The technique eliminates all
spurious ambiguities resulting from the interaction
of these rules. Future work should continue by
eliminating the spurious ambiguities that arise from
grammatical or lexical type-raising.

R e f e r e n c e s

Gosse Bouma. 1989. Efficient processing of flexible
categorial grammar. In Proceedings of the Fourth
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, 19-26, Uni-
versity of Manchester, April.

David Dowty. 1988. Type raising, functional com-
position, and non-constituent conjunction. In R.
Oehrle, E. Bach and D. Wheeler, editors, Catego-
rial Grammars and Natural Language Structures.
Reidel.

Mark Hepple. 1987. Methods for parsing combina-
tory categorial grammar and the spurious ambi-
guity problem. Unpublished M.Sc. thesis, Centre
for Cognitive Science, University of Edinburgh.

Mark Hepple. 1990. The Grammar and Process-
ing of Order and Dependency: A Categorial Ap-
proach. Ph.D. thesis, University of Edinburgh.

Mark Hepple and Glyn Morrill. 1989. Parsing and
derivational equivalence. In Proceedings of the
Fourth Conference of the European Chapter of the
Association for Computational Linguistics, 10-18,
University of Manchester, April.

Herman Hendriks. 1993. Studied Flexibility: Cate-
gories and Types in Syntax and Semantics. Ph.D.
thesis, Institute for Logic, Language, and Compu-
tation, University of Amsterdam.

Aravind Joshi, K. Vijay-Shanker, and David Weir.
1991. The convergence of mildly context-sensitive
grammar formalisms. In Foundational Issues in
Natural Language Processing, MIT Press.

Lauri Karttunen. 1986. Radical lexicalism. Report
No. CSLI-86-68, CSLI, Stanford University.

E. KSnig. 1989. Parsing as natural deduction. In
Proceedings of the 27lh Annual Meeting of the As-
sociation for Computational Linguistics, Vancou-
ver.

J. Lambek. 1 9 5 8 . The mathematics of sen-
tence structure. American Mathematical Monthly
65:154-169.

Michael Moortgat. 1990. Unambiguous proof repre-
sentations for the Lambek Calculus. In Proceed-
ings of the Seventh Amsterdam Colloquium.

Michael Niv. 1994. A psycholinguistically moti-
vated parser for CCG. In Proceedings of the 32nd
Annual Meeting of the Association for Computa-
tional Linguistics, Las Cruces, NM, June.

Remo Paresehi and Mark Steedman. A lazy way to
chart parse with eombinatory grammars. In Pro-
ceedings of the P5th Annual Meeting of the As-
sociation for Computational Linguistics, Stanford
University, July.

Scott Prevost and Mark Steedman. 1994. Specify-
ing intonation from context for speech synthesis.
Speech Communication, 15:139-153.

Mark Steedman. 1990. Gapping as constituent coor-
dination. Linguistics and Philosophy, 13:207-264.

Mark Steedman. 1991. Structure and intonation.
Language, 67:260-296.

Mark Steedman. 1987. Combinatory grammars and
parasitic gaps. Natural Language and Linguistic
Theory, 5:403-439.

Anna Szabolcsi. 1989. Bound variables in syntax:
Are there any? In R. Bartsch, J. van Benthem,
and P. van Emde Boas (eds.), Semantics and Con-
textual Expression, 295-318. Forts, Dordrecht.

K. Vijay-Shanker and David Weir. 1990. Polyno-
mial time parsing of combinatory ¢ategorial gram-
mars. In Proceedings of the P8th Annual Meeting
of the Association for Computational Linguistics.

K. Vijay-Shanker and David Weir. 1993. Parsing
some constrained grammar formalisms. Compu-
tational Linguistics, 19(4):591-636.

K. Vijay-Shanker and David Weir. 1994. The equiv-
alence of four extensions of context-free gram-
mars. Mathematical Systems Theory, 27:511-546.

Kent Wittenburg. 1986. Natural Language Pars-
ing with Combinatory Calegorial Grammar in a
Graph-Unification-Based Formalism. Ph.D. the-
sis, University of Texas.

Kent Wittenburg. 1987. Predictive combinators:
A method for efficient parsing of Combinatory
Categorial Grammars. In Proceedings of the 25th
Annual Meeting of the Association for Computa-
tional Linguistics, Stanford University, July.

86

