
A UNIFICATION-BASED PARSER FOR RELATIONAL
GRAMMAR

David E. Johnson

IBM Research Division
P.O. Box 218

York town Heights , NY 10598

dj ohns @ war son. ibm. com

A d a m Meyers

Linguis t ics D e p a r t m e n t
New York Univers i ty

New York, NY 10003

meyers@acf2 .nyu .edu

Lawrence S. Moss

M a t h e m a t i c s D e p a r t m e n t
I n d i a n a Univers i ty

B looming ton , IN 47401

lmoss@indiana .edu

A b s t r a c t

We present an implemented unification-based
parser for relational grammars developed within
the s t ra t i f ied f ea tu re g r a m m a r (SFG) frame-
work, which generalizes Kasper-Rounds logic to
handle relational grammar analyses. We first in-
troduce the key aspects of SFG and a lexicalized,
graph-based variant of the framework suitable for
implementing relational grammars. We then de-
scribe a head-driven chart parser for lexicalized
SFG. The basic parsing operation is essentially
ordinary feature-structure unification augmented
with an operation of label unification to build the
stratified features characteristic of SFG.

I N T R O D U C T I O N

Although the impact of relational grammar
(RG) on theoretical linguistics has been substan-
tial, it has never previously been put in a form
suitable for computational use. RG's multiple syn-
tactic strata would seem to preclude its use in the
kind of monotonic, unification-based parsing sys-
tem many now consider standard ([1], [11]). How-
ever, recent work by Johnson and Moss [2] on a
Kasper-Rounds (KR) style logic-based formalism
[5] for RG, called St ra t i f ied Fea ture G r a m m a r
(S FG), has demonstrated that even RG's multiple
strata are amenable to a feature-structure treat-
ment.

Based on this work, we have developed a
unification-based, chart parser for a lexical ver-
sion of SFG suitable for building computational
relational grammars. A lexicalized SFG is sim-
ply a collection of s t ra t i f ied fea tu re graphs (S-
graphs) , each of which is anchored to a lexical
item, analogous to lexicalized TAGs [10]. The ba-

sic parsing operation of the system is S-graph
unif icat ion (S-unification): This is essentially
ordinary feature-structure unification augmented
with an operation of label unification to build the
stratified features characteristic of SFG.

R E L A T E D W O R K

Rounds and Manaster-Ramer [9] suggested en-
coding multiple strata in terms of a "level" at-
tribute, using path equations to state correspon-
dences across strata. Unfortunately, "unchanged'
relations in a stratum must be explicitly "car-
ried over" via path equations to the next stra-
tum. Even worse, these "carry over" equations
vary from case to case. SFG avoids this problem.

S T R A T I F I E D F E A T U R E G R A M -

M A R

SFG's key innovation is the generalization of
the concept]eature to a sequence of so-called re-
la t ional signs (R-signs). The interpretation of
a s t ra t i f ied fea ture is that each R-sign in a se-
quence denotes a primitive relation in different
strata. 1

For instance, in Joe gave Mary tea there are,
at the clause level, four sister arcs (arcs with the
same source node), as shown in Figure h one
arc labeled [HI with target gave, indicating gave
is the head of the clause; one with label [1] and
target Joe, indicating Joe is both the predicate-
argument, and surface subject, of the clause; one
with label [3,2] and target Mary, indicating that

l We use the following R-signs: 1 (subject), 2 (direct
object), 3 (indirect object), 8 (chSmeur), Cat (Category),
C (comp), F (flag), H (head), LOC (locative), M (marked),
as well as the special Null R-signs 0 and/, explainedbelow.

97

[Ca~] s

[1] Joe

[Hi save

[3, 2] Mary

[2, 8] t e a

Figure 1: S-graph for Joe gave Mary tea.

Mary is the predicate-argument indirect object,
but the surface direct object, of the clause; and
one with label [2,8] and target tea, indicating tea
is the predicate-argument direct object, but sur-
face ch6meur, of the clause. Such a structure is
called a s t r a t i f i e d f e a t u r e g r a p h (S-graph) .

This situation could be described in SFG logic
with the following formula (the significance of the
different label delimiters (,), [,] is explained be-
low):

R I : - - [Hi :gave A [1) : Joe

A [3, 2) : Mary A [2, 8) : t e a .

In RG, the clause-level syntactic information
captured in R1 combines two statements: one
characterizing gave as taking an initial 1, initial
2 and initial 3 (Di t rans l t ive) ; and one character-
izing the concomitant "advancement" of the 3 to
2 and the "demotion" of the 2 to 8 (Dat ive) . In
SFG, these two statements would be:

D i t r a n s i t i v e : :

[H i : ga ve A [1) :T A . [2) :T A [3):T ;

D a t i ve :---- (3, 2): T ~ (2, 8_): T.

Ditransitive involves standard Boolean con-
junction (A). Dative, however, involves an opera-
tor, &, unique to SFG. Formulas involving ~ are
called e~tension formulas and they have a more
complicated semantics. For example, Dative has
the following informal interpretation: Two dis-
tinct arcs with labels 3 and 2 may be "extended"
to (3,2) and (2,8) respectively. Extension formulas
are, in a sense, the heart of the SFG description
language, for without them RG analyses could not
be properly represented. 2

2We gloss over many technicalities, e.g., the SFG notion
data justification and the formal semantics of stratified fea-
tures; cf. [2].

RG-style analyses can be captured in terms of
rules such as those above. Moreover, since the
above formulas state positive constraints, they can
be represented as S-graphs corresponding to the
minimal satisfying models of the respective formu-
las. We compile the various rules and their com-
binations into R u l e G r a p h s and associate sets of
these with appropriate lexical anchors, resulting
in a lexicalized grammar, s

S-graphs are formally feature structures: given
a collection of sister arcs, the stratified labels are
required to be functional. However, as shown in
the example, the individual R-signs are not. More-
over, the lengths of the labels can vary, and this
crucial property is how SFG avoids the "carry
over" problem. S-graphs also include a strict par-
tial order on arcs to represent linear precedence
(cf. [3], [9]). The SFG description language in-
cludes a class of l i nea r p r e c e d e n c e statements,
e.g., (1] -4 (Hi means that in a constituent "the
final subject precedes the head".

Given a set 7Z,9 of R-signs, a (s t r a t i f i ed) fea-
t u r e (or label) is a sequence of R-signs which may
be closed on the left or right or both. Closed sides
are indicated with square brackets and open sides
with parentheses. For example, [2, 1) denotes a la-
bel that is closed on the left and open on the right,
and [3, 2, 1, 0] denotes a label that is closed on both
sides. Labels of the form [-.-] are called (t o t a l l y)
closed; of the form (. . .) (t o t a l l y) open; and
the others p a r t i a l l y c losed (open) or closed
(open) on t h e r i g h t (lef t) , as appropriate.

Let B£ denote the set of features over 7Z•*. B£
is partially ordered by the smallest relation C_ per-
mitting eztension along open sides. For example,

(3) ___ (3,2) U [3,2,1) C [3,2, 1,0].

Each feature l subsuming (C) a feature f provides
a partial description of f . The left-closed bracket [
allows reference to the "deepest" (initia~ R-sign of
a left-closed feature; the right-closed bracket] to
the "most surfacy" (fina~ R-sign of a right-closed
feature. The totally closed features are maximal
(completely defined) and with respect to label uni-
fication, defined below, act like ordinary (atomic)
features.

Formal definitions of S-graph and other defini-
tions implicit in our work are provided in [2].

s We ignore negative constraints here.

98

A N E X A M P L E

Figure 2 depicts the essential aspects of the S-
graph for John seemed ill. Focus on the features
[0,1] and [2,1,0], both of which have the NP John
as target (indicated by the ~7's). The R-sign 0 is
a member of Null, a distinguished set of R-signs,
members of which can only occur next to brackets
[or]. The prefix [2,1) of the label [2,1,0] is the
SFG representation of RG's unaccusative analysis
of adjectives. The suffix (1,0] of [2,1,0]; the prefix
[0,1) of the label [0,1] in the matrix clause; and the
structure-sharing collectively represent the raising
of the embedded subject (cf. Figure 3).

Given an S-graph G, Nul l R-signs permit the
definitions of the p r e d i c a t e - a r g u m e n t g raph ,
and the sur face g raph , of G. The predicate-
argument graph corresponds to all arcs whose la-
bels do not begin with a Nul l R-sign; the rele-
vant R-signs are the first ones. The surface graph
corresponds to all arcs whose labels do not end
with a Nul l R-sign; the relevant R-signs are the
final ones. In the example, the arc labeled [0,1]
is not a predicate-argument arc, indicating that
John bears no predicate-argument relation to the
top clause. And the arc labeled [2,1,0] is not a
surface arc, indicating that John bears no surface
relation to the embedded phrase headed by ill.

The surface graph is shown in Figure 4 and
the predicate-argument graph in Figure 5. No-
tice that the surface graph is a tree. The t ree -
h o o d of sur face g raphs is part of the defini-
tion of S-graph and provides the foundation for
our parsing algorithm; it is the SFG analog to
the "context-free backbone" typical of unification-
based systems [11].

L E X I C A L I Z E D SFG

Given a finite collection of rule graphs, we could
construct the finite set of S-graphs reflecting all
consistent combinations of rule graphs and then
associate each word with the collection of derived
graphs it anchors. However, we actually only con-
struct all the derived graphs not involving extrac-
tions. Since extractions can affect almost any arc,
compiling them into lexicalized S-graphs would be
impractical. Instead, extractions are handled by
a novel mechanism involving multi-rooted graphs
(of. Concluding Remarks).

We assume that all lexically governed rules such
as Passive, Dative Advancement and Raising are
compiled into the lexical entries governing them.

[Cat] vP

[0,11

[HI seemed

[Cat] AP

[c] [2,1,0]

[n] in

Figure 2: S-graph for John seemed ill

[o,1)

(1,o] m
[el

Figure 3: Raising Rule Graph

[cat]

(1]

[H]

[c]

VP

~John

seemed

[Cat] AP

[HI in

Figure 4: Surface Graph for John seemed ill

[Cat] VP

[H] seemed

[c t] AP

[c] [2) John

[H] iJ.J.

Figure 5: Predicate-Argument Graph for John
seemed ill

9 9

Thus, given has four entries (Ditransitive, Ditran-
sitive + Dative, Passive, Dative + Passive). This
aspect of our framework is reminiscent of LFG
[4] and HPSG [7], except that in SFG, relational
structure is transparently recorded in the stratified
features. Moreover, SFG relies neither on LFG-
style annotated CFG rules and equation solving
nor on HPSG-style SUBCAT lists.

We illustrate below the process of constructing
a lexical entry for given from rule graphs (ignor-
ing morphology). The rule graphs used are for
Ditransitive, Dative and (Agentless) Passive con-
structions. Combined, they yield a ditransitive-
dative-passive S-graph for the use of given occur-
ring in Joe was given ~ea (cf. Figure 6).

D l t r ans i t ive :

[H] given

[3)

[2)

[I)

DATive:

(2, 8)

(3,2)

DI tl DAT:

[H] given

[3, 2)

[2, 8)

[1)

PASsive:

(2,1)

[1, 8, 0]

[Cat] s

[0,11 m Joe

[H] was

[c]

[Cat] vP

[H] given

[3,2,1,0] m

[2, 8] tea

[1,8,0]

Figure 6: S-graph for Joe was given iea.

D113 D A T) U PAS:

[H] given

[3,2, i)

[2, 8)

[1, s, 0]

The idea behind label unif ication is that
two compatible labels combine to yield a label
with m a x i m a l n o n e m p t y overlap. Left (right)
closed labels unify with left (right) open labels to
yield left (right) closed labels. There are ten types
of label unification, determined by the four types
of bracket pairs: totally closed (open), closed only
on the left (right). However, in parsing (as op-
posed to building a lexicalized grammar), we stip-
ulate that successful label unification must result
in a ~o~ally closed label. Additionally, we assume
that all labels in well-formed lexicalized graphs
(the input graphs to the parsing algorithm) are at
least partially closed. This leaves only four cases:

Case 1. [or] Ll [o~1 = [Or]

Case 2. [~) u [~#] = [~#1

Case 3. (o~] LI [~] : [~c~]

Case 4. [+#) u (#+] = [+#+]

Note: c~, fl, 7 @ T~S+ and/3 is the longest com-
mon, nonempty string.

100

The following list provides examples of each.

1. [1,0] U [1,0] = [1,0]

2. [1) U [1,0] = [1,0]

3. (~,0] U [2,1,0] = [2,1,0]

4. [2,1) U (1,0] = [2,1,0]

Case 1 is the same as ordinary label unifica-
tion under identity. Besides their roles in unifying
rule-graphs, Cases 2, 3 and 4 are typically used
in parsing bounded control constructions (e.g.,
"equi" and "raising") and extractions by means
of "splicing" Null R-signs onto the open ends of
labels and closing off the labels in the process. We
note in passing that cases involving totally open
labels may not result in unique unifications, e.g.,
(1, 2) U (2, 1) can be either (2,1,2) or (1,2,1). In
practice, such aberrant cases seem not to arise.
Label unification thus plays a central role in build-
ing a lexicalized grammar and in parsing.

T H E P A R S I N G A L G O R I T H M

S-unification is like normal feature structure
unification ([1], [11]), except that in certain cases
two arcs with distinct labels 1 and l' are replaced
by a single arc whose label is obtained by unifying
1 and l'.

S-unification is implemented via the procedures
U n i f y - N o d e s , U n i f y - A r c s , and Un i fy -Se t s -o f -
Arcs :

1. U n i f y - N o d e s (n , n ') consists of the steps:

a. Unify label(n) and label(n'), where node
labels unify under identity

b. Unify-Sets-of-Arcs(Out-Arcs(n), Out-
Arcs(n'))

2. Un i fy -Arcs (A ,A ') consists of the steps:

a. Unify label(A) and label(A')

b. Unify-Nodes(target (A),target (A'))

3. U n i f y - S e t s - o f - A r c s (S e Q , Set2),
where Sett = { A j , . . . , A ~ } and Set2 =
{Am,..., An}, returns a set of a r c s Set3, de-
rived as follows:

a. For each arc Ai • SeQ, at tempt to find
some arc A~ • Set2, such that Step 2a
of Unify-arcs(Ai,A~) succeeds. If Step
2a succeeds, proceed to Step 2b and re-
move A~ from Sets. There are three pos-
sibilities:

i. If no A~ can be found, Ai • Set3.
ii. If Step 2a and 2b both succeed, then

Unify-arcs(Ai, A~) • Set3.
iii. If Step 2a succeeds, but Step 2b

fails, then the procedure fails.

b. Add each remaining arc in Set2 to Set3.

We note that the result of S-unification can be a
set of S-graphs. In our experience, the unification
of linguistically well-formed lexical S-graphs has
never returned more than one S-graph. Hence,
S-unification is stipulated to fail if the result is
not unique. Also note that due to the nature of
label unification, the unification procedure does
not guarantee that the unification of two S-graphs
will be functional and thus well-formed. To insure
functionality, we filter the output.

We distinguish several classes of Arc: (i) Sur-
face Arc vs. Non-Surface, determined by absence
or presence of a Null R-sign in a label's last
position; (ii) Structural Arc vs. Constraint Arc
(stipulated by the grammar writer); and (iii) Re-
lational Arc vs. Category Arc, determined by the
kind of label (category arcs are atomic and have
R-signs like Case, Number, Gender, etc.). The
parser looks for arcs to complete that are Sur-
face , S t r u c t u r a l a n d R e l a t i o n a l (S S R) .

A simplified version of the parsing algorithm
is sketched below. It uses the predicates Lef t -
P r e c e d e n c e , R i g h t - P r e c e d e n c e and Com-
p le te :

. P r e c e d e n c e : Let Q~ = [n~,Li, R~], F
• SSR-Out-Arcs(n~) such that Target(F)
= Anchor(Graph(n~)), and A • SSR-Out-
Arcs(ni) be an incomplete terminal arc.
Then:

A. L e f t - P r e c e d e n c e (A , n~) is true iff:

a. All surface arcs which must follow
F are incomplete.

b. A can precede F.

c. All surface arcs which must both
precede F and follow A are com-
plete.

B. R i g h t - P r e c e d e n c e (A , n~) is true iff:

a. All surface arcs which must precede
F are complete.

b. A can follow F.

c. All surface arcs which must both
follow F and precede A are com-
plete.

1 0 1

2. C o m p l e t e : A node is complete if it is either
a lexical anchor or else has (obligatory) out-
going SSR arcs, all of which are complete. An
arc is complete if its target is complete.

The algorithm is h e a d - d r i v e n [8] and was in-
spired by parsing algorithms for lexicalized TAGs
([6], [10]).

S imp l i f i ed P a r s i n g A l g o r i t h m :

I n p u t : A string of words Wl , . . . , w~.

O u t p u t : A chart containing all possible parses.

M e t h o d :

A. Initialization:

1. Create a list of k state-sets
$ 1 , . . . , Sk, each empty.

2. For c = 1 , . . . , k , for each
Graph(hi) of Wc, add [ni, c - 1, c]
to Se.

B. C o m p l e t i o n s :

For c = 1 , . . . , k, do repeatedly until no
more states can be added to Se:

1. L e f t w a r d Completion:

For all

= ¢] Se ,

Qj = [nj, Lj, L~] E SL,, such that
Complete(nj) and

A E SSR-Out-Arcs(ni), such that
Left-Precedence(A, hi)

I F Unify-a~-end-of-Path(ni, nj, A)
n~,

2.
T H E N Add [n~,Lj,c] to So.

R i g h t w a r d Completion:

For all

Qi = [n/, L~, R~] E SR,,

Qj = [nj,Pq, c] 6 Sc such that
Complete(nj), and

A E SSR-Out-Arcs(ni), such that
Right-Precedence(A, hi)

IF Unify-at-end-of-Path(n~, nj, A)

T H E N Add [n~, Li, el to So.

To illustrate, we step through the chart for John
seemed ill (cf. Figure 7). In the string 0 John 1
seemed 2 ill 3, where the integers represent string

positions, each word w is associated via the lexi-
calized grammar with a finite set of anchored S-
graphs. For expository convenience, we will as-
sume counterfactually that for each w there is only
one S-graph G~ with root r~ and anchor w. Also
in the simplified case, we assume that the anchor
is always the target of an arc whose source is the
root. This is true in our example, but false in
general.

For each G~, r~ has one or more outgoing
SSR arcs, the set of which we denote SSR-Out-
Arcs(r~). For each w between integers x and y
in the string, the Initialization step (step A of the
algorithm) adds [n~, x, y] to state set y. We de-
note state Q in state-set Si as state i:Q. For an
input string w = Wl, . . . ,w,~, initialization cre-
ates n state-sets and for 1 < i < n, adds states
i : Qj ,1 _< j < k, to Si , one for each of the k
S-graphs G~. associated with wi. After initializa-
tion, the example chart consists of states 1:1, 2:1,
3:1.

Then the parser traverses the chart from left to
right starting with state-set 1 (step B of the algo-
rithm), using left and right completions, according
to whether left or right precedence conditions are
used. Each completion looks in a state-set to the
left of Sc for a state meeting a set of conditions.
In the example, for c = 1, step B of the algorithm
does not find any states in any state-set preced-
ing S1 to test, so the parser advances c to 2. A
left completion succeeds with Qi = state 2:1 =
[hi, 1, 2] and Qj = state 1:1 = [nj, 0, 1]. State 2:2
= [n~, 0, 2] is added to state-set $2, where n~ =
Unify-at-end-of-Path(n,, nj, [0, 1)). Label [0, 1) is
closed off to yield [0, 1] in the output graph, since
no further R-signs may be added to the label once
the arc bearing the label is complete.

The precedence constraints are interpreted as
strict partial orders on the sets of outgoing SSR
arcs of each node (in contrast to the totally or-
dered lexicalized TAGs). Arc [0, 1) satisfies left-
precedence because: (i) [0, 1) is an incomplete ter-
minal arc, where a t e r m i n a l arc is an SSR arc,
the target of which has no incomplete outgoing
surface arcs; (ii) all surface arcs (here, only [C])
which must follow the [H] arc are incomplete; (iii)
[0 1) can precede [H]; and (iv) there are no (incom-
plete) surface arcs which must occur between [0 1)
and [H]. (We say can in (iii) because the parser
accomodates variable word order.)

The parser precedes to state-set $3. A right
completion succeeds with Q~ = state 2:2 = [n~, 0, 2]
and Q~ = state 3:1 = [n~,2,3]. State 3:2 -
[n~', 0, 3] is added to state set $3, n~' = Unify-at-

102

1..11

LP=0 RP=I L.P=I RP=2
VP

[H] • [o,
/ seemed AP

John seemed

=:=J

LP:0 RP:2
VP"

OlJl ,
[H] ~.

John

John seemed

3:1J

LP:2 RP=3
AP"

' ~ [."]
NP ill

ill
3:2]

LP=0 RP=3

VP"

John

John seemed ill

Figure 7: Char t for John seemed ill.

end-of-Path(n~, n~, [C]). State 3:2 is a successful
parse because n~' is complete and spans the entire
input string.

To sum up: a completion finds a state Qi =
[hi, L,, R~] and a state Qj = [nj, Lj, Rj] in adja-
cent state-sets (Li = Rj or P~/ = Lj) such that
ni is incomplete and nj is complete. Each success-
ful completion completes an arc A E SSR-Out-
Arcs(n~) by unifying nj with the target of A. Left
completion operates on a state Qi = [ni,Li, c]
in the current state-set Sc looking for a state
Qj = [nj, Lj, L~] in state-set SL, to complete some
arc A E SSR-Out-Arcs(ni). Right completion is
the same as left completion except that the roles
of the two states are reversed: in both cases, suc-
cess adds a new state to the current state-set So.
The parser completes arcs first leftward from the
anchor and then rightward from the anchor.

C O N C L U D I N G R E M A R K S

The algorithm described above is simpler than
the one we have implemented in a number of ways.
We end by briefly mentioning some aspects of the

VP

//~[LOC]

V pp

[F J J ~ [M I

/ \
in NP

[/,Q]

Figure 8: Example: in

P

~ [c]

d

w h a t

Figure 9: Example: What

general algorithm.
O p t i o n a l Arc s : On encountering an optional

arc, the parser considers two paths, skipping the
optional arc on one and a t tempting to complete it
on the other.

C o n s t r a i n t A r c s These are reminiscent of
LFG constraint equations. For a parse to be good,
each constraint arc must unify with a structural
arc.

M u l t i - t i e r e d S - g r a p h s : These are S-graphs
having a non-terminal incomplete arc I (e.g., the
[LOC] arc in Figure 8. Essentially, the parser
searches I depth-first for incomplete terminal arcs
to complete.

P s e u d o - R - s i g n s : These are names of sets of
R-signs. For a parse to be good, each pseudo-R-
sign must unify with a member of the set it names.

E x t r a c t i o n s : Our approach is novel: it uses
pseudo-R-signs and m u l t i r o o t e d S-graphs, illus-
t rated in Figure 9, where p is the primary root and
d, the dangling root, is the source of a "slashed
arc" with label of the form (b , /] (b a pseudo-
R-sign). Since well-formed final parses must be

103

single-rooted, slashed arcs must eventually unify
with another arc.

To sum up: We have developed a unification-
based, chart parser for relational grammars based
on the SFG formalism presented by Johnson and
Moss [2]. The system involves compiling (combi-
nations) of rules graphs and their associated lexi-
cal anchors into a lexicalized grammar, which can
then be parsed in the same spirit as lexicalized
TAGs. Note, though, that SFG does not use an
adjunction (or substitution) operation.

[10] Yves Schabes. Mathematical and Compu-
tational Properties of Lezicalized Grammars.
PhD thesis, University of Pennsylvania, 1990.

[11] Stuart Shieber. Constraint-Based Grammar
Formalisms. MIT Press, 1992.

R e f e r e n c e s

[1] Bob Carpenter. The Logic of Typed Feature
Structures. Cambridge UP, Cambridge, 1992.

[2] David E. Johnson and Lawrence S. Moss.
Some formal properties of stratified feature
grammars. To appear in Annals of Mathe-
matics and Artificial Intelligence, 1993.

[3] David E. Johnson and Paul M. Postal. Are
Pair Grammar. Princeton University Press,
1980.

[4] Ronald Kaplan and Joan Bresnan. Lexical-
functional grammar, a formal system for
grammatical representation. In J. Bresnan,
editor, The Mental Representation of Gram-
matical Relations. MIT Press, 1982.

[5] Robert Kasper and William C. Rounds. The
logic of unification in grammar. Linguistics
and Philosophy, 13:35-58, 1990.

[6] Alberto Lavelli and Giorgio Satta. Bidirec-
tional parsing of lexicalized tree adjoining
grammars. In Proceedings of the 5th Confer-
ence of the European Chapter of the Associa-
tion of Computational Linguistics, 1991.

[7] Carl Pollard and Ivan Sag. Information-based
Syntaz and Semantics. CSLI Lecture Notes.
University of Chicago Press, Chicago, 1987.

[8] Derek Proudian and Carl Pollard. Parsing
head-driven phrase structure grammar. In
Proceedings of the 23rd Annual Meeting of the
ACL, 1985.

[9] William C. Rounds and Alexis Manaster-
Ramer. A logical version of functional gram-
mar. In Proceedings of The 25th Annual
Meeting of the Association for Computational
Linguistics, 1987.

104

