
DICTIONARIES, DICTIONARY GRAMMARS AND DICTIONARY ENTRY PARSING

Mary S. Neff
IBM T. J. Watson Research Center, P. O. Box 704, Yorktown Heights, New York 10598

Branimir K. Boguraev
IBM T. J. Watson Research Center, P. O. Box 704, Yorktown Heights, New York 10598;
Computer Laboratory, University of Cambridge, New Museums Site, Cambridge CB2 3QG

Computerist: ... But, great Scott, what about structure? You can't just bang that lot into a machine
without structure. Half a gigabyte of sequential file ...
Lexicographer: Oh, we know all about structure. Take this entry for example. You see here italics
as the typical ambiguous structural element marker, being apparently used as an undefined
phrase-entry lemrna, but in fact being the subordinate entry headword address preceding the
small-cap cross-reference headword address which is nested within the gloss to a defined phrase
entry, itself nested within a subordinate (bold lower-case letter) sense section in the second branch
of a forked multiple part of speech main entry. Now that's typical of the kind of structural re-
lationship that must be made crystal-clear in the eventual database.

from "Taking the Words out of His Mouth" --
Edmund Weiner on computerising the Oxford English Dictionary

(The Guardian, London, March, 1985)

ABSTRACT

We identify two complementary p.ro.cesses in. the
conversion of machine-readable dmUonanes into
lexical databases: recovery of the dictionary
structure from the typographical markings which
persist on the dictionary distribution tapes and
embody the publishers' notational conventions;
followed by making explicit all of the codified and
ellided information packed into individual entries.
We discuss notational conventions and tape for-
mats, outline structural properties of dictionaries,
observe a range of representational phenomena
particularly relevant to dictionary parsing, and
derive a set of minimal requirements for a dic-
tionary grammar formalism. We present a gen-
eral purpose dictionary entry parser which uses a
formal notation designed to describe the structure
of entries and performs a mapping from the flat
character stream on the tape to a highly struc-
tured and fully instantiated representation of the
dictionary. We demonstrate the power of the
formalism by drawing examples from a range of
dictionary sources which have been processedand
converted into lexical databases.

I. INI"RODUCTION
Machine-readable dictionaries (MRD's) axe typi,
tally ayailable in the form of publishers
typesetting tapes, and consequently are repres-
ented by a fiat character stream where lexical data
proper is heavily interspersed with special (con-
trol) characters. These map to the font changes
and other notational conventions used in the
printed form of the dictionary and designed to
pack, and present in a codified compact visual
format, as much lexical data as possible.

To make maximal use of MRD's, it is necessary
to make their data, as well as structure, fully ex-

~ licit, in a data base format that lends itself to
exible querying. However, since none of the

lexical data base (LDB) creation efforts to date
fully addresses both of these issues, they fail to
offer a general framework for processing the wide
range of dictionary resources available in
machine-readable form. As one extreme, the
conversion of an M R D into an LDB may be
carried out by a 'one-off" program -- such as, for
example, used for the Longman Dictionary of
Contemporary English (LDOCE) and described
in Bogtbr_ aev and Briscoe, 1989. While the re-
suiting LDB is quite explicit and complete with
respect to the data in the source, all knowledge
of the dictionary structure is embodied in the
conversion program. On the other hand, more
modular architectures consisting of a parser and
a _grammar -- best exemplified by Kazman's
(1986) analysis of the Oxford English Dictionary
(OED) -- do not deliver the structurally rich and
explicit LDB ideally required for easy and un-
constrained access to the source data.

The majority of computational lexicography
projects, in fact, fall in the first of the categories
above, in that they typically concentrate on the
conversion of a single dictlonarv into an LDB:
examples here include the work l~y e.g. Ahlswede
et al., 1986, on The Webster's Seventh New
Collegiate Dictionary; Fox et a/., 1988, on The
Collins English Dictionary; Calzolari and Picchi,
1988, on H Nuovo Dizionario Italiano Garzanti;
van der Steen, 1982, and Nakamura, 1988, on
LDOCE. Even work based on multiple diction-
aries (e.g. in bilingual context: see Calzolari and
Picchi, 1986) appear to have used specialized
programs for eac~ dictionary source. In addition,
not an uncommon property of the LDB's cited
above is their incompleteness with respect to the
original source: there is a tendency_ to extract, in
a pre-processing phase, only some fragments (e.g.

91

part of speech information or definition fields)
while ignoring others (e.g. etymology, pronun-
ciation or usage notes).
We have built a Dictionary Entry Parser (DEP)
together with grammars for several different dic-
tionaries. Our goal has been to create a general
mechanism for converting to a common LDB
format a wide range of MRD's demonstrating a
wide range of phenomena. In contrast to the
OED project, where the data in the dictionary is
only tagged to indicate its structural character-
istics, we identify ,two processes which are crucial
for the 'unfolding, or making explicit, the struc-
ture of an MRD: identification of the structural
markers, followed by their interpretation in con-
text resulting in detailed parse trees for individual
entries. Furthermore, unlike the tagging of the
OED, carried out in several passes over the data
and using different grammars (in order to cope
with the highly complex, idiosyncratic and am-
biguous nature of dictionary entries), we employ
a parsing engine exploiting unification and back-
tracking, and using a single grammar consisting
of three different sets of rules. The advantages
of handling the structural complexities of M R D
sources and deriving corresponding LDB s in one
operation become clear below.
While DEP has been described in general terms
before (Byrd et al., 1987; Neff e ta / . , 1988), this
paper draws on our experience in parsing the
Collins German-English / Collins English-German
(CGE/CEG) and LDOCE dictionaries, which
represent two very different types of machine-
readable sources vis-~t-vis format of the
typesetting tapes and notational conventions ex-
ploited by the lexicographers. We examine more
closely some of the phenomena encountered in
these dictionaries, trace their implications for
MRD-to-LDB parsing, show how they motivate
the design of the DEP grammar formalism, and
discuss treatment of typical entry configurations.

2. STRUCTURAL PROPERTIES OF MRD'S
The structure of dictionary entries is mostly im-
plicit in the font codes and other special charac-
ters controlling the layout of an entry on the
printed page; furthermore, data is typically com-
pacted to save space in print, and it is common
for different fields within an entry to employ rad-
ically different compaction schemes and
abbreviatory devices. For example, the notation
T5a, b,3 stands for the LDOCE grammar codes
T5a;T5b;T3 (Boguraev and Briscoe, 1989, pres-
ent a detailed description of the grammar coding
system in this dictionary), and many adverbs are
stored as run-ons of the adjectives, using the
abbreviatory convention ~ly (the same conven-
tion appliesto ce~a~o types of atfixation in gen-
eral: er, less, hess, etc.). In CGE, German
compounds with a common first element appear
grouped together under it:

Kinder-: .~.ehor m children's choir; --doe nt children's [
village; - e h e f child marriage. I

Dictionaries often factor out common substrings
in data fields as in the following LDOCE and
CEG entries:

ia.cu.bLtor ... a machine for a keeping eggs warm until
they HATCH b keeping alive babies that are too small
to live and breathe in ordinary air

Figure I. Def'mition-initial common fragment

Bankrott m -(e)6, -e bankruptcy; (fig) breakdown,
collapse; (moralisch) bankruptcy. ~ machen to
become or go bankrupt; den - anmelden or ansagen or
erld~ren to declare oneself bankrupt.

Figure 2. Definition-final common fragment

Furthermore, a variety of conventions exists for
making text fragments perfo.,rm more than one
function (the capitalization o f ' HATCH above,
for instance, signals a close conceptual link with
the word being defined). Data of this sort is not
very useful to an LDB user without explicit ex-
pansion and recovery of compacted headwords
and fragments of entries. Parsing a dictionary to
create an LDB that can be easily queried by a
user or a program therefore implies not only tag-
g~ag the data in the entry, but also recovering
ellided information, both in form and content.

There are two broad types of machine-readable
source, each requiring a different strategy for re-
covery of implicit structure and content of dic-
tionary entries. On the one hand tapes may
consist of a character stream with no explicit
structure markings (as OED and the Collins bi-
linguals exemplify); all of their structure is iml~li.ed
in the font changes and the overall syntax ot the
entry. On the other hand, sources may employ
mixed r~presentation, incorporating both global
record delhniters and local structure encoded in
font change codes and/or special character se-
quences (LDOCE and Webster s Seventh).

Ideally, all MRD's should be mapped onto LDB
structures of the same type, accessible with a sin-
~le query language that preserves the user s intui-
tion about tile structure of lexical data (Neff et
a/., 1988; Tompa, 1986), Dictionary entries can
be naturally represented as shallov~ hierarchies
with a variable number of instances of certain
items at each level, e.g. multiple homographs
within an entry or multiple senses within a
homograph. The usual inlieritance mechanisms
associated with a hierarchical orgardsation of data
not only ensure compactness of representation,
but also fit lexical intuitions. The figures overleaf
show sample entries from CGE ,and LDOCE and
their LDBf o r ms with explicitly unfolded struc-
ture.

Within the taxonomy of normal forms .(NF) de-
freed by relational data base theo~, dictionary
entries are 'unnormalized relations in which at-
tributes can contain other relations, rather than
simple scalar values; LDB's, therefore, cannot be
correctly viewed as relational data bases (see Neff
et al., 1988). Other kinds of hierarchically struc-
tured data similarly fall outside of the relational

92

.'t~le [...] n (a) Titel m (also Sport); (o f chapter)
Uberschrift f ; (Film) Untertitel m; (form of address)
Am'ede f . what -- do yon give a bishop? wie redet or
spricht man ¢inen Bischof an? (b) (Jur) (right)
(Rechts)anspruch (to auf + acc), Titel (spec) m;
(document) Eigentumsurkunde f .

entry
+-hc:l~: title
t
• - $ u p e r t ' K ~

. . .

+-pos : n
~ - s l n s

• -seflsflclm: a
+ - t r a n ._qroup
l +-tran
I ÷ ~ r d : Titel
I +-gendmr: m
I + S i n : also Sport
I
÷ - t r a n _ g r o u p
I : - ~ _ r l o t e : of chapter
I
I • - w o r d : (lberschrift
I • - g e n d e r : f
I
+ - t ran_ .g roup
I +-domain : Film
I ÷ - t r i m
I +-woPd: Untertitel
I +-~r: m
I
÷-tran~r~3up
I +-usag l t_no te : form of address
I ÷-÷ ran
I + - ' N O N : Ant÷de I +-gende r : f

+ - c o l l o c a t
÷ - s o u r c e : what -- ¢o you give a bishop?

* - ~ r g e t
÷ - ~ e a s e : wie redet /or/ spricht

man ÷inert Bischof an?
÷-$11~1

÷-$ensllum: b
+-domain: Jur
÷-÷r-an_group

÷ - u s a g l _ n o t i : right
t - t r a i n

• -No rd : Rechtsanspruch
÷ ' - N o r d : Anspruch
+ - c o m l m m m t
I •-~r4)co~p: to
I + -~Poomp: auf + acc
÷ - g e f ~ B r : m

e - ÷ r a n
+-word: Titel
+ - s t y l e : spec
÷ - ~ n d l r : m

÷-÷ ran g roup
÷ -usage_no te : document
÷-÷ ran

+-Nord : Eigentumsurkunde
÷ -gende r : f

Figure 3. LDB for a C E G entry

NF mould; indeed recently there have been ef-
forts to design a generalized data model which
treats fiat relations, lists, and hierarchical struc-
Ures uniformly (Dadam et al., 1986). Our LDB

rmat and Lexical Query l_anguage (LQL) sup-
port the hierarchical model for dictionary data;
the output of the .parser, similar to the examples
in Figure 3 and Figure 4, is compacted, encoded,
and loaded into an LDB.

nei.~,.ce/'nju:s~ns II 'nu:-: n I a person or an÷real that
annoys or causes trouble, PEST: Don't make a
nuisance o f yourself." sit down and be quiet! 2 an action
or state of affairs which causes trouble, offence, or
unpleasantness: What a nuisance! I've forgotten my
ticket 3 Commit no nuisance (as a notice in a public
place) Do not use this place as a a lavatory b a T I P ~

e n t r y
• -I'wJb#: nuisance
I
+ - S U l m P h o m

÷ - p r i n t foist1: nui.sance

I +-primaw
I ÷-peon s t r i r ~ j : "nju:sFns II "nu:-
+ - s y n c a t : n
I
+-sensa_de f

+-sense_no: 1
• - d a r n
I • - i m p l i c i t _ x r f
I I +-to: pest
I ÷ - d e f s t r i l ~ : a person or animal that
| annoys or causes trouble:
I pest
÷-examp le

÷-eX s t r i l ~ : Don't make a nuisance of
yourself: sit down an¢
be quiet/

• - s e n s e _ d e f
• - s lmse .no: 2
+.-defn
I ÷ - d e f _ s t r i n g : an action or state of affairs
[which causes trouble, offence.
I or unpleasantness
+-example

• - e x _ s t r i r l g : What a nuisancel
i 've forgotten my ticket

+-sense_de f
÷ -sense no: 3
÷ - d e ~ -

÷-h¢~ j ~ r a s e : Commit no nuisance
+ - q u a i l § l e t : as a notice in a public place
+-sub d e f n
I a

I + - d e f _ s t r i l ~ : Do not use this place
I as a lavatory
÷-~.~b_dlfn

+-seq_no: b
÷--defn

* - i . ~ l i ¢ i t _ x r f
I * - t o : tip
I ÷ - h ¢ ~ n o : 4
÷-dQf s]ri l~J~: Do not use this place

as a tip

Figure 4. LDB for an L D O C E entry

3. DEP GRAMMAR FORMALISM
The choice of the hierarchical model for the rep-
resentation of the LDB entries (and thus the
output of DEP) has consequences for the parsing
mechanism. For us, parsing involves determining
the structure of all the data, retrieving implicit
information to make it explicit, reconstructing
ellided information, and filling a (recursive) tem-
plate, without any data loss. This contrasts with
a strategy that fills slots in predefmed (and finite)
sets of records for a relational system, often dis-
carding information that does not fit.
In order to meet these needs, the formalism for
dictionary entry grammars must meet at least
three criteria, in addition to being simply a nota-
tional device capable of describing any particular

93

dictionary format. Below we outline the basic
requirements for such a formalism.

3.1 Effects of context
The graham,_ .~ formalism should be capable of
handling mildly context sensitive' input streams,
as structurally identical items may have widely
differing functions depending on both local and
global contexts. For example, parts of speech,
field labels, paraphrases o f cultural items, and
many other dictionary fragments all appear in the
CEG in italics, but their context defines their
identity and, consequently, their interpretation.
Thus, in the example entry in Figure 3 above,
m, (also Sport), (of chapter), and (spec) acquire
the very different labels of pos, d o , in,
us=g=_not=, and sty1.=. In addition, to distin-
t~ish between domain labels, style labels, dialect

els, and usage notes, the rules must be able to
test candidate elements against a closed set of
items. Situations like this, involving subsidiary
application of auxiliary procedures (e.g. string
matching, or dictionary lookup required for an
example below), require that the rules be allowed
to selectively invoke external functions.

The assignment of labels discussed above is based
on what we will refer to in the rest of this paper
asglobal context. In procedural terms, this is
defined as the expectations of a particular gram-
mar fragment, reflected in the names of the asso-
dated rides, which will be activated on a given
pare through the grammar. Global context is a
dynamic notion, best thought of as a 'snapshot'
of the state of the parser at any_ point of process-
ing an entry. In contrast, local context is defined
by finite-length patterns of input tokens, ,arid has
the effect of Identifying typographic 'clues to the
structure of an entry. Finally, immediate context
reflects v.ery loc~ character patte12as which tend
t 9 drive the initial segmentatmn ot the 'raw' tape
character stream and its fragmentation into
structure- and information-carrying tokens.

These three notions underlie our approach to
structural analysis of dictionaries andare funda-
mental to the grammar formalism design.

3.2 Structure manipulation
The formalism should allow operations on the
(partial) structures delivered during parsing, and
not as.separate tree transtormations once proc-
essing is complete. This is needed, for instance,
in order to handle a variety of scoping phenom-
ena (discussed in section 5 below), factor out
items common to more than one fragment within
the same entry, and duplicate (sub-)trees as com-
plete LDB representatmns ~ being fleshed out.
Consider the CEG entry for abutment":

I abutment [.,.] n (Archit) Fltigel- or Wangenmauer f . I

Here, as well as in "title" (Figure 3), a copy of
the gender marker common to both translatmns
needs to migrate back to the ftrst tram. In addi-
tion, a copy of the common second compound
element -mauer also needs to migrate (note that

e • _ • : abutment
I
÷ - s u p e r h o m

, I . -$ens
÷ - t P a n _ g r o u p

+ - t r a n
I + - iNo rd : F/Ogelmauer
I *-~nd=r: f
÷ - t r a n

+.-t ,K)rd : Wangenmauer
÷ - g e n d e r : f

identifying this needs a separate noun compound
parser augmented with dictionary lookup).

An example of structure duplication is illustrated
by our treatment of (implicit) cross-references in
LDOCE, where a link between two closely re-
lated words is indicated by having one of {hem
typeset in small capitals embedded in, a definition
of the other (e.g. "PEST' and "TIP' in the deft-
nitions of "nuisance" in Figure 4). The dual
purpose such words serve requires them to appear
on at least two different nodes in the final LDB
structure: ¢~f_string and implicit_xrf. In or-
der to perform the required transformations, the

formalism must provide an explicit
dle on partial structures, as they are being

built by the parser, together with operations
which can mariipulate them -- both in terms of
structure decomposition and node migration.

In general, the formalism must be able to deal
witli discontinuous constituents, a problem not
dissimilar to the problems of discontinuous con-
stituents in natural language parsing; however in
dictionaries like the ones we discuss the phe-
nomena seem less regular (if discontinuous con-
stituents can be regarded as regular at all).

3.3 Graceful failure
The nature of the information contained in dic-
tionaxies is such that certain fields within entries
do not use any conventions or formal systems to
present their data. For instance, the "USAGE"
notes in LDOCE can be arbitrarily complex and
unstructured. . fragments, .c°mbining straaght text
with a vanety of notattonal devices (e.g. font
changes, item highlighting and notes segmenta-
tion) in such a way that no principled structure
may be imposed on them. Consider, for example,
the annotation of "loan":

loan 2 v esp. A m E to give (someone) the use of,
lend U S A G E It is perfectly good A m E to use
loan in the meamng of lend: He loaned me ten dollars.
The word is often used m BrE, esp. in the meaning 'to
lend formally for a long period': He loaned h/s
collection o f pictures to the public G A L L E R Y but many
people do not like it to be used simply in the meaning
of lend in BrE...

Notwithstanding its complexity, we would still
like to be able to process the complete entry, re-
covering as much as we can from the regularly
encoded information and only 'skipping' over its
truly unparseable fragment(s). Consequently, the
formalism and the underlying processing flame-

94

work should incorporate a suitable mechanism
for explicitly handling such data, systematically
occumng in dictionaries.
The notion of .graceful failure is, in fact, best re-
garded as 'seledive parsing'. Such a mechanism
has the additional benefit of allowing the incre-
mental development of dictionary grammars with
(eventually) complete coverage, and arbit .r-~.ry
depth of analysis, of the source data: a particular
grammar might choose, for instance, to treat ev-
erything but the headword, part of speech, and
pronunciation as 'junk', and concentrate on
elaborate parsing of the pron.u:n, ciation fields,
while still being able to accept all input without
having to assign any structure to most of it.

4. OVERVIEW OF DEP
DEP uses as input a collection of 'raw'
typesetting images of entries from a dictionary
0.e. a typesetting .tape. with begin-end' bounda-
ries of entries explicitly marked) and, by consult-
ing an externally supplied .gr-qmmar s.p~." c for
that particular dictionary, produces explicit struc-
tural representations for the individual entries,
which are either displayed or loaded into an LDB.
The system consists of a rule compiler, a parsing
nDg~Be, a dictionary entry template generator, an

loader, and various development facilities,
all in a PROLOG shell. User-written PROLOG
functions and primitives are easily added to the
system. The fdrmalism and rule compiler use the
Modular Logic Grammars of McCo/'d (1987) as
a point of d ~ u r e , but they have been sub-
stantially modified and extended to reflect the re-
quirements of parsing dictionary entries.
The compiler accepts three different kinds of rules
corresponding to the three phases of dictionary
entry analysis: tokenization, retokenization, and

proper. Below we present informally
ghts of the grammar formalism.

4.1 Tokenization
Unlike in sentence parsing, where tokenization
(or lexical analysis) is driven entirely by blanks
and punctuation, the DEP grammar writer ex-
plicitly defines token delimiters and token substi-
tutions. Tokenixation rules specify a one-to-one
mapping from a character substring to a rewrite
token; the mapping is applied whenever the
specified substring is encountered in the original
typesetting tape character stream, and is only
sensitive to immediate context. Delimiters are
usually font change codes and other special char-
acters or symbols; substitutions axe atoms (e.g.
i t a l _ c o r r e c t i o n , f i e l d _ m) or structured terms
be.g. f m t l i t a l i c l, ~ ! " 1 " I). Tokenization

reaks the source character stream into a mixture
of tokens and strings; the former embody the
notational conventions employed by the printed
dictionary, and are used by tlae parser to assign
structure to an entry; the latter carry the textual
(lexical) content of the dictionary. Some sample
rules for the LDOCE machine-readable source,
marking the beginning and end of font changes,
or making explicit special print symbols, are

shown below (to facilitate readability, (*AS) re-
presents the hexadecimal symbol x 'AS ') .

d o l i m (" (~ i) " , f o n t (i ~ a l i c }) .
d o l i a (" (U C A) " , f o n t (b e g i n l s a m l l _ c a p s) I) .
do l im(I I {~mS) i i f~r~t (end(s m a l l _ c a p s))) .
d o l i m ! " (~) " , i t a l c o r r e c t i o n) .
d e l i l l (" O q l O) " , h y l ~ i n _ m a r k).

Immediate context , as well as local string rewrite,
" can be specified by more elaborate tokenization

rules, in which two additional arguments specify
strings to be 'glued' to the strings on the left and
right of the token delimiter, respectively. For
CEG, for instance, we have

d o t i m l " . >u4<" , f ~ t ; ~ l ;) > ~) . < ° ') . d e l i m (" :>u~<",
d e l i m (">uS<", f o n t (roman)) .

Tokenization opeEates recursively on the string
fragments formed by an active rule; thus, appli-
catton of the first two rules above to the stnng
,,mo~. :~a,: ~r~" results in the following token
l ist : " x x x " . lad . f o n t l b o l d) , " y~¢" .

4.2 Retokenization
Longer_-range (but still local) context sensitivity~
is irfiplemented via retokenization, the effect ot
which is the 'normalization' of the token list.
Retokenization rules conform to a general rewrite
format -- a pattern on the left-hand side defines
a context as a sequence of (explicit or variable
place holder) tokens, in which the token list
should be adlusted as indicated by the right-hand
side -- and can be used to .perform a range of
cleaning up tasks before parsing proper.

Streamlining the token list. Tokens without in-
formation- or structure-bearing content; such as
associated with the codes for fialic correction or
thin space, are removed:

i t a l c o r r e c t i o n : ,Seg <:> ÷Seg.

Superfluous font control characters can be simply
deleted, when they follow or precede certain
data-can'ying tokens which also incorporate
typesetting information (such as a homogra.ph
superscript symbol or a pronunciation marker
indicating the be~finning of the scope of a pho-
netic font):

r k f o n t ! p h o n e t i c) < • r k .
supl N) < • R

(Re)adjusting the token list. New tokens can be
introduced in place of certain token sequences:

b r a : f o n t t i t a l i c) <=> b e g i n l r e s t r i c ~ i o n) .
f ~ ' t t (r ~ m ~ ' t) : k e t < • ~ w l (r ~ s t r i c t i ~ ' b) .

Reconstruction of string segments. Where the
initial (blind) tokenization has produced spurious
lragraentation, string sewnents can be suitably
reconstructed. For instance, a hyphen-delimited
sequence of syllables in place o f the print form
of a headword, created by tokeni~ation on
~ , - r g) , can be 'glued' back as follows:

* S y l _ l : ~ mark : +$ 1 Z
t s t r xngpTSy l 1) : $s~r~ngp(S¥1 2)

<=> w~oin(Seg, S~1_1. ' $ y l _ 2 . n : l " I
t ~ .

This rule demonstrates a characteristic property.
of the DEP formalism, discussed in more detail

95

later: arbitrary Prolog predicates can be invoked
to e.g. constrain rule application or manipulate
strings. Thus, the rule oialy applies to string to-
kens surrounding a hyphen character; it manu-
factures, by string concatenation, a new segment
which replaces the triggering pattern.

Further segmentation. Often strings need to be
split, with new tokens inserted between the
pseces, to correct infelicities in the tapes, or to
insert markers between recognizably distinct con-
tiguous segments that appear in the same font.
The rule below implements the CGE/CEG con-
vention that a swung dash is an implicit switch
to bold if the current font is not bold already.

f o n t I X } : $ (- X = b o l d) : ¢E : t s t r i n g p l E }
t c m ~ = a t (A , B , E) t c o n c a t (" ~ ' , r e , B } :

<=> r a n t (X) : ÷A : f o n t (b o l d } : +B.

Dealing with irregular input. Rules that rear-
range tokens are o~ten needed to correct errors in
the tapes. In CEG/CGE, parentheses surround-
ing italic items often appear (erroneously) in a
roman font. A suite ofiaxles detaches the stray
parentheses from the surrounding tokens, moves
them around the font marker, and glues them to
the item to which they belong.

+E : $ s t r i r ~ p i E) : t ¢ o n c a t (") " ~ E 1 , E I
<=> t0)n- : + E l . / * d e t a c h * /

f o n t (F) : ") " < • .,),o : : r e t o K e n (f o n t (F)) . / * m o v e * /
+E : S s t r i r t g l = i E) : ") " : t o c ~ : a t (E , ") " ~ E 1 }

< : > ÷ E l . / ~ g l u o * /

eot~um invokes retokenization recursively on the
sublist beginning with fontt e) and including all
tokens to its right. In p "nneiple, the three rules
can be subsumed by a single one; in practice,
separate rules also 'catch' other types o f errone-
ous or nots), input.

Although retokenization is conceptually a sepa-
rate process, it is interleaved in practice with
tokemzation, bringing imp .rovements in perform-
ance. Upon completion, the tape stream corre-
sponding, for instance, to the LDOCE entry

non-trivial manipulation of (partial) trees, as im-
plicit and/or ellided information packed in the
bntries is being recovered and reor-gaxxized. Pars-
ing is a top-down depth-first operation, and only
the first successful parse is used. This strategy,
augmented by a 'junk collection' mechanism
(discussed below) to recover from parsing failures,
turns out to be adequate for handling all of the
phenomena encountered while assigning struc-
tural descriptions to dictionary entries.

Dictionary grammars follow the basic notational
conventions of logic grammars; .however, we use
additional operators tailored to the structure ma-
nipulation requirements of dictionary parsing. In
pLrticular, the right-hand side of grammar rules
admits the use of-four different types ot operators,
designed to deal with token list consumption, to-
ken list manipulation, structure assignment, and
(local) tree transformations. These operators
suitably modify the expansions of grammar rules;
ultimately, all rules are compiled into Prolog.

Token consumption. Tokens axe removed from
the token list by the + and - operators; + also as-
signs them as terminal nodes under the head of
the invoking rule. Typically, delimiters intro-
duced by tokenization (and retokenization) are
removed once they serve their primary function
of identifying local context; string segments of the
token list are assigned labels and migrate to ap-
propriate places in the final structural represen-
iation ot an entry. A simple rule for the part of
speech fields in CEG (Figure 3) would be:

l o s : : > - f z n t l i t a l i c) = + S a g .

A structured term stpos, " n " . n i l) is built as a
result of the rule consuming, for instance, the to-
ken "n", Rule names are associated with attri-
butes in the LDB representation for a dictionary
entry; structures built by rules are pairs of the
f o r m s i r e , V i i = l , where velt~ is a list of one
or more elements (strings or further structures
'returned' by reeunively invoked rules).

au.tit.fi¢ ;¢¢'tistik, adj suffering f rom AUTISMI: I
autistic chlld/behaviour -- ...ally adv [Wa4] I
F < w t i s t i c < F < > w O ~ O } t i t C * 8 0 } ~ i c P < C : " f i s t
Z kH<adj<S<OOOO<O<suf q e r i n g f r o m { ~ C A) a u t i s
m ¢ ~ B) { * S A) : £ u ~ 6 } a u t i s t i c c h i l d r m ~ b e h a v i
o u r (~) R<OZ<R<-nmlZy<R<><adv<N~<

is converted into the following token list:
m a H t a r

f l d ~ . p@ m a H t e r .
p r o ~ _ w m r k e r -
~sd_--rker
d o ~ marker
f o n t . T ~ , i n l m l l c a p s) } .
~ t . .1-1 . b a g i n ~ e ~ m) .

" a u t i s t i c "
" a u - t i s - t i c "
"C : " t l s t l k " -adp 0
" 0 0 0 0 "
" s u f f e r i n g f r o m "
"a~ut i~a#'
"amtisti¢

a h i l d / b e ~ v i o u r "
" 0 1 "

Token list manipulation. Adjustment of the to-
ken list may be required in, for instance, simple
cases of recovering ellided information or reor-
dering tokens in the input stream. This is
achieved by the tm and ir~x operators, which
respectively insert single, or sequences of, tokens
into the token list at the current position; and the
++ operator, which inserts tokens (or arbitrary
tree fragments) directly into the structure under
construction. Assuming a global variable, .rod,
bound to the headword of the current entry, and
the ability to invoke a Prolog string concat-
enation tunction trom within a rule (~a the *
operator; see below), abbreviated morphological
derivations stored as run-ons might be recovered ~ l ~ e lt lqc~r

i n ~ d o r i v | . " a u t i s t i (a l l y " b y :
! d o r i v) . f l d _ s e p . " a d v "

f l d _ s e p . " H a 4 " . f l d _ s e p . r u n _ o n = : > - r u r m n m a r k : - f o n ~ l b o l d } : - S a g :
..e~x~=~l,,-,,~ X, Seg)
w i . I X . s u f f i x)

4.3 Pars ing t~ ,n~ ' l : te ,m, : l , x , O e r i v l
++Ooriv. Parsing proper makes use of unification and

backtrracking to handle identification of segments (i tin is separately defined to test for membership
by context, and is heavily augmented with some of a closed class of suffixes.)

96

Structure assignment. The ++ operator can only
assign arbitrary structures directly to the node in
the tree which is currently under construction. A
more general mechanism for retaining structures
for future use is provided by allowing variables to
be (optionally) associated with grammar rules: in
this way the grammar writer can obtain an ex-
plicit handle on tree fragments, in contrast to tlae
default situation where each rule implicitly
'returns' the structure it constructs to its caller.
The following rule, for example, provides a skel-
eton treatment to the situation exemplified in
Figure 4, where a definition-initial substring is
common to more than one sub-definition:

dofs = • (S a g) :
s

s t j x k a f s (X) ==> s u b d o f (X) : o p t (s u b d o f s (X)) .
s u b d o f (X) = = > - f o n t (b o l d) :

s d l e t t e r : - f o n t l r o l ~ n) :

~ n c a t l X , Seg , D e f S t r ~ n g) :
i n s (D e f S t r i n g) : d o f _ s t r x n g .

S d : F l e t t e r ==> *Sag ~ v e r i ~ (S e g , " a b e ") .
d e _ s i r i n g = : > +Sag ~ e s t r i n g p (S e g) .

The defs rule removes the defmition-irtitial string
segment and passes: it on to the repeatedly in-
voked ~ s . This manufactures the complete
definition string by concatenating the common
initial segment, available as an argument
instantiated two levels higher, with the continua-
tion string specific to any given sub-definition.

Tree transformations. The ability to refer, by
name, to fragments of the tree being constructed
by an active grammar rule, allows arbitrary tree
transformations using the complementary opera-
tors -z. and +~.. They can only be applied to
non-terminal grammar rules, an d require the ex-
plicit specification of a place-holder variable as a
rule argument; this is bound to the structure
constructed by the rule. The effect of these op-
erators on the tree fragments constructed by the
rules they modify is to prevent their incorporation
into the local tree (in the case of -z), to explicitly
splice it in (in the case of ÷z), or simply to capture
it (z). The use of this mechanism in conjunction
with the structure naming facility allows both
permanent deletion of nodes, as well as their
practically unconstrained migration between, and
within, different levels of grammar (thus imple-
menting node raising and reordering). It is also
possible to write a rule which builds no structure
(the utility of such rules, in particular for con-
trolling token consumption and junk collection,
is discussed in section 5).

Node-raising is illustrated by the grammar frag-
ment below, which might be used to deal with
certain collocation phenomena. Sometimes dic-
tionaries choose to explain a word in the course
of defining .another related word by arbitrarily in-
setting mm~-entnes in their defmitmns:

lach.ry.mal 'l~kfimal adj [Wa51 of or concerning tears
of the organ (lach~mai gland/'_ . /) of the body that
produces them

The potentially complex structure associated with
the embedded entry specification does not belong
to the definition string, and should be factored
out as a separate node moved to a higher level of
the tree, or even used to create a new tree entirely.
The rule for parsi.n.g the definition fields of an
entry makes a provmon for embedded entries; the
structure built as an ~ entry is bound to
the str,ac argument in the aofn rule. The -z op-
erator prevents the ~ _ e n t r y node from
being incorporated as a daughter to ae~n: how-
ever, by finification, it beghas its ,mi',gr, ation
'upwards' through the tree, till it is 'caught by the
entry rule several levels ~gher and inserted (via
• x) in its logically appropnate place.
entry : : > h e a d : t o n : p o s : c o d e :

d e f n (E m ~ f l e d) :
+ X e m b e d d e d _ e n t r y l Embedded) .

c k a f n (S t r I J c) = = > - S e g l : S s t r i n g p (S e g l) :
-Ze~=~KJded e n t r y (S t r u c)
- S e g 2 : $ s ~ r i n g p (Seg2)
$ c o n c a t { S e g l , S ~ 2 ,

D e ÷ S t r i n g) :
* + O e f S t r i n g .

e m b e d d e d _ e n t r y = = > - b r a : : - k e t .

Capturing generalizations / execution control.
The expressive power of the system is further en-
hanced by allowing optionality (via the opt oper-
ator), alternations (I) and conditional constructs
in the gra'--:nar rules; the latter are useful both for
more co~:::,.,ct rule specification and to control
backtracking while parsing. Rule application
may be constrained b y arbitrary tests (revoked,
as Prolog predicates, via a t operator), and a
s t r i n g operator is available for sampling local
context. The mechanism of escaping to Prolog,
the motivation for which we discuss below, can
also be invoked when arbitrary manipulation of
lexical data -- ranging from e.g. simple string
processing to complex morphological analysis --
Is required during parsing.

Tree structures. Additional control over the
shape of dictionary" entry trees is provided by
having two types of non-terminal nodes: weak
and strong ones. The difference is in the explicit
presence or absence of nodes, corresponding to
the rule names, in the final tree: a structure frag-
ment manufactu~d by a weak non-terminal is
effectively spliced into the higher level structure,
without an intermediate level of naming. One
common use of such a device is the 'flattening'
of branching constructions, typically built by re-
cursive rules: the declaration

s t r ~ ; , - , ~ _ n o n t e r m i n a l s (c l e f s . s u b d e ¢ . n i l 1.

when applied to the sub-definitions fragment
above, would lead to the creation of a group of
sister ~ f nodes, immediately dominated bv a
aefs node. Another use of the distinction be-
wcteen weak and strong non-terminals is the ef-

ive mapping from typographically identical
entry segments to appropriately named structure
fragments, with global context driving the name
assignment. Thus, assuming a weak label rule
which captures the label string for further testing,
analysis of the example labels discussed in 3.1
could be achieved as follows (also see Figure 3):

97

l a b e l l X I = : > - b e g i n l r e s t r i c t i o n } : . ÷ X :
$ s t r i r ~ p (X] : - e n d f r e s x r i c t i o n l .

t r ~ n ==> o p t I d o a m i n I s t y l e I d i a Z I
usaga_note -) : word.

~ o ~ e n ==> l a b e l t X } i , i , , X , ~ _ ! a b) .
==> l a b e l (X } S i s a l X , l a b] .

d i a l = • l a b e l l X } $ i s a l X , d i a l - l a b) .
u s a g e n o t e ==> l a b e l l X) .

Such a mechanism captures g~aeralities in
typograp~tc conventions employed across any
given dictionary, and yet preserves the distinct,
name spaces required for a meaningful unfolding
of a dictionary entry structure.

5. RANGE OF PHENOMENA TO HANDLE
Below we describe some typical phenomena en-
countered in the dictionaries we have parsed and
discuss their treatment.

5.1 Messy token lists: controlling token
consumption

The unsystematic encoding of font changes be-
fore, as well as after, punctuation marks (com-
mas, semicolons, parentheses) causes blind
tokenization to remove punctuation marks from
the data to which they are visually and concep-
tually attached. As already discussed (see 4.2),
most errors of this nature can be corrected by
retokenization. Similarly, the confusing effects
of another pervasive error, namely the occurrence
of consecuti, e font changes, can be avoided by
having a retokenization rule simply remove all
but the last one. In general, context sensitivity is
handled by (re)adjusting the token list;
retokenization, however, is only sensitive to local
context. Since global context cannot be deter-
mined unequivob.ally till parsing, the grammar
writer is given complete control over the con-
sumption and addition of tokens as parsing pro-
ceeds from left to right -- this allows for
motivated recovery of ellisions, as well as dis-
carding of tokens in local transformations.
For instance, spurious occurrences of a font
marker before a print symbol such as an opening
parenthesis, which is not affected by a font dec-

' laration, clearly cannot be removed by a
retokenization rule

f o n t ! roman] : b r a <=> b r a .

(The marker may be genuinely closing a font
segment prior to a different entry fragment which
commences with, e.g., a left parenthesis). Instead,
a grammar rule anticipating a br~ token within its
scope can readiust the token list using either of:

. . . ==> . . . : - f o n t l r o m a n) : - b r a : i n s l b r - a) .

. . . ==> . . . : - f a n t l r o m a n l : s t r i n g l b r a . *] .

(The $*ri-e operator tests for a token list with
br~ as its first element.)

5.2 The Peter-1 principle: scoping phenomena
Consider the entry for "Bankrott" in Figure 2.
Translations sharing the label (fig) ("breakdown,
collapse ') are grOUl>ed together ~6ith commas and
separated from other lists with semicolons. The
restnctlon (context or label) precedes the llst and

can be said to scope 'right' to the next semicolon.
We place the righ-t-scoping labels or context un-
der the (semicolon-delimited) t~,n_group as sister
nodes to the multiple (comma-delimited) tr--~
nodes (see also the representation of "title" in
Figure 3). Two principles ate at work here:
meiintaining implicit e~dence of synonymy
among terms in the target langtmge responds to
the "do not discard anything" philosophy; placing
common data items as high as possible in the tree
(the 'Peter-minus-1 princaple') is in the spirit of
Flickinger et al. (1985), and implements the
notion of placing a t ~ a l node at the hi~. est
position hi tlae tree wlaere its value is valid in
combination with the values at or below its sister
nodes. The latter principle also motivates sets of
rules like

~ r m ~ ==> " ' " pr~n . . . : homograph
==> p r a t t

used to account for entries in English where the
pronunciation differs for different homographs.

5.3 Tribal memory: rule variables
Some compaction or notational conventions in
dictionaries require a mechanism for a rule to re,-
member (part of) its ancestry or know its sister s
descendants. Consider the l~roblem of determin-
ing the scope of gender or labels immediately
following variants of the headword:

Advolmturbfiro nt (Sw) , Advokaturskanzlei f (Aus)
lawyer's offize.
Tippfr~ein nt (lnf), ~ p p s e f -, -n (pej) typist.
Alchemic (esp Aus) , Akhimief alchemy.

The first two entries show forms differing, re-
spectively, in dialect and gender, and register and
gender. The third illustrates other combinations.
The rule accounting for labels after a variant must
know whether items of like type have already
been found after the hcadword, since items before
the variant belong to the headword, different
items of identical type following both belong in.-
dividuaUy, and all the rest are common to botla.
This 'tribal' memory is implemented using rule
variables:

e n t r y : : > . . . (I d i a l : $ (N : d i a l)) I
(N = f - , ~ d i a l }) :

. . . : o p t (s u b h m ~ l N) |
subhamd lN } ==> o p t ($ (N = n o d i a l) :

o p t l d i a l)) :

In addition to enforcing rule constraints via
unification, rule arguments also act as 'channels'
for node raising and as a mcchanisrn for control-
ling rule behaviour depending on invocation
context.

This latter need stems from a pervasive phenom-
enon in dictionaries: the notational conventions
for a logical unit within an entry persist across
different contexts, and the sub-grammar for such
a unit should be aware of the environment it is
activated in. Implicit cross-references in LDOCE
are consistently introduced by fontl s t a l l csos],
independent o f whether the runnin 8 text is a de-
fmiuon (roman font), example (italic), or an era-

98

bedded phrase or idiom (bold); by enforcing the
return to the font active before the invocation of
i a q) i i o i t = x r f , w e a l l o w t h e analysis of cross-
references to be shared:

i m p l i c i t x r f t X) ==> -1Font(b e g i n (s t a l l cams))
- : . . . : - ¢ o n t (X) . -

d f t x * ==> . . . i m p l i c i t x r f l r o a a n) :
e x - t x t =ffi> i m p l i c i t - x r f (i t a l i c)
id_-_tx* ==> . . . i m p l i o i t - x v f l b o l d)

5.4 Unpacking, duplication and movement of
structures: node migration

The whole range of phenomena requiring explicit
manipulation of entry fragment trees is handled
by the mechanisms for node raising, reordering,
and deletion. Our analysis of implicit cross-
references in LDOCE factors them out as sepa-
rate structural units participatingin the make-up
of a word sense definition, as well as reconstructs
a 'text image' of the definition text, with just the
orthography of the cross-reference item 'spliced
in' (see Figure 4).

d a r n ==> .dof_segs.! O _ S t r i n g) . :
o o T _ s z r i n g C D _ S t r t r i g J.

c le f s e g s l S t r _ l) = • d e f _ n u g g e t (S e g)
(d ~ f s e g s l S t r O)

S t r - O : " ") -
t c o n (~ * (S e g , S t r _ O , S t r _ l) .

d e f _ n u g g e t (P t r) ==> 7 . i a t P l i c i t x r ¢
(s (i m p l i E i t x r f , .

s (t o , P t r . R i l) . R e s x)) .
d e f _ n u g g o t ! Seg) ==> - S e g : S s t r i n g p t Seg) .

d e f _ s t r l n g i D o f) ==> ÷ + O e f .

The rules build a definition string from any se-
quence of substrings or lexical items used as
cross-references: by invoking the appropriate
de¢_nusmat rule, the simple segments are retained
only for splicing the complete definition text;
cross-reference pointers are extracted from the
structural representation of an implicit eross-
r e f e r e n c e ; a n d i t m l i c i t . _ x e f nodes are propagated
up to a sister position to the dab_string. The
string image is built incrementally (by string con-
catenation, as the individual a-¢_nutmts are
parsed); ultim, ately the ~¢_s t r i r~ rule simply
incorporates tt into the structure for ae~. De-
claring darn, def s t r ing and imp l ic i t_x r f to be
strong non-terminals ultimately results in a dean
structure similar to the one illustrated in
Figure 4.

Copying and lateral migration of common gender
labels in CEG translations, exemplified by title'
(Figure 3) and "abutment" (section 3.2), makes
a differ r- ent use of the ¢z operator. To capture the
leftward scope of gender labels, in contrast to
common (right-scoping) context labels, we create,
for each noun translatton (tran), a gender node
with an empty value. The comma-delimited *ran
nodes are collected by a recursive weak non-
terminal *fans rule.

t r a m s ==> t r a n (G) : o p t (- c a : t r a n s (G)) .
t r a n (G) : = > . . . w o r d . . . :

o p t (-Zoenektr! G)) : *7 .gendor (G) .

The (conditional) removal of gander" in the sec-
ond rule followed by (obligatory) insertion of a

~ne~r node captures the gender if present and
'digs a hole' for it if absent. Unification on the
last iteration of tear~ fills the holes.

Noun compound fragments, as in "abutment"
can be copied and migrated forward or backward
using the same mechknism. Since we have not
implemented the noun compound parsing mech-
amsm required for identification of segments to
be copied, we have temporized by naming the
fragments needing partners alt_.=¢x or alt_sex.

5.5 Conflated lexical entries: homograph
unpacking

We have implemented a mechanism to allow
creation of additional entries out of a single one,
for example from orthographic, dialect, or
morphological variants of the original headword.
Some CGE examples were given in sections 2 and
5.3 above. To handle these, the rules build the
second entry inside the main one and manufac-
ture cross reference information for both main
form and variant, in anticipation of the imple-
mentation of a splitting mechanism. Examples
of other types appear in both CGE and CEG:

vampire [...] n (lit) Vampir, Blutsauger (old~ m; (fig)
Vampir m. - hat Vampir, Blutsauger (old) m.

wader [...] n (a) (Orn) Watvogel m. (b) ~ s pl (boots)
Watstiefel pl.

house in cpd~ HaLts-; ~ arrest n Hausarrest m; ~ boat
n Hausboot n~ - baund adj ans Haus gefesselt;

house:. --hunt vi auf Haussuche sein; they have started
--hunting sic haben angefangen, nach einem Haus zu
suchen; -hunt ing n Haussuche n;

The conventions for morphological vari,'ants, used
heavily in e.g. LDOCE and Webster s Seventh,
are different and would require a different mech-
anism. We have not yet developed a generalized
rule mechanism for ordering any kind of split;
indeed we do not know if it ts possible, given the
wide variation ~, seemingly aa hoc conventions
for 'sneaking in logically separate entries into re-
lated headword definitions: the case of "lachrymal
gland" in 4.3 is iust one instance of this phe-
nomena; below we list some more conceptually
similar, but notationally different, examples,
demonstrating the embedding of homographs in
the variant, run-on, word-sense and example
fields of LDOCE.

daddy long.legs .da~i l o t ~ j z also (/'m/) crane fly -- n
... a type of flying insect with long legs

ac.rLmo.ny ... n bitterness, as of manner or language
-- -nious ~,kri'maunias/ adj: an acrimonious quarrel --
-niously adv

c r a s h I ... v ... 6 infml also gatecrash -- to join (a party)
without having been invited ...

folk et.y.mol.o.gy ,,.. '--~ n the changing of straage or
foreign words so that they become like quite common
ones: some people say ~parrowgrass instead o f
ASPARAGUS: that ia an example o f folk etymology

99

5.6 Notational promiscuity: selective
tokenization

Often distinctly different data items appear con-
tiguous in the same font: the grammar codes of
LDOCE (section 2) are just one example. Such
run-together segments clearly need their own
tokenization rules, which can only be applied
when they are located during parsing. Thus,
commas and parentheses take on special meaning
in the string "X(to be)l,7", indicating, respec-
tively, ellision of data and optionality of p~ase.
This is a different interpretation from e.g. alter-
nation (consider the meaning of "adj, noun")or
the enclosing of italic labels m parentheses (Fig-
ure 3). Submission of a string token to further
tokemzation is best done by revoking a special
purpose pattern matching module; thus we avoid
global (and blind) tokenization on common (and
ambiguous) characters such as punctuation
marks. The functionality required for selective
tokenization is provided'by a ~ e primitive;
below we demonstrate the construction of a list
of sister synca* nodes from a segment like "n,
v, adj", repetitively invoking oa)-~a) to break a
string into two substrings separated by a comma:

-Seg : $ s t r i () :
s y r ~ a t s ==> $ t ~ r s e (H d . " ~n~.Re~s . n i l , Se9) :

i n s 1 (Hd. R e s t . n i l) :
s t s y n c a t • , ~ a : : o p t t s y n c a t s) . == t i n (Seg, p o r t o f s p e e c : h 1.

5.7 Parsing failures: junk collection
The systematic irregularity of dictionary data (see
section 3.3) is only one problem when parsing
dictionary entries. Parsing failures in general are
common during .gr-,~maar development; more
specifically, they tmght arise due to the format of
an entry segment being beyond (easy) capturing
within the grammar formalism, or requiring non-
trivial external functionality (such as compound
word parsing or noun/verb phrase analysis).
Typically, external procedures o~. rate on a newly
constructed string token which represents a
'packed' unruly token list. AlternaUvely, if no
format need be assigned to the input, the graxn. -
mar should be able to 'skip over' the tokens m the
list, collecting them under a 'junk' node.

If data loss is not an issue for a specific applica-
tion, there is no need even to collect tokens from
irregular token lists; a simple rule to skip over
USAGE fields might be wntten as

usacje ==> - u s a g e nmrk : use f i e l d .
use f i e l d ==> -U ToKen : Snot iee~d u f i e l d } :

o p t (u s e _ f i e l d) . -

(Rules like these, building no structure, are espe-
cially convenient when extensive reorganizatmn
of tile token list is required -- typically in cases
of grammar-driven token reordering or token de-
letion without token consumption.)

In order to achieve skipping over unparseable in-
put without data loss, we have implemented a
ootlezt ive rule class. The structure built by such
rules the (transitive) concatenation of all the
character strings in daughter segments. Coping
with gross irregularities is achieved by picking up
any number of tokens and 'packing' them to-

ther. This strategy is illustrated by a grammar
phrases conjoined with italic 'or' in example

sentences and/or their translations (see Figure 3).
The italic conjunction is surrounded by slashes in
the resulting collected string as an audit trail. The
extra argument to e~n$ ehforces, following the
strategy outlined in section 5.3, rule application
only m the correct font context.

s t r o n ~ n o n t e r m i n a l s (s o u r c e . t a r g . hill.
colle~ives !conj . nil).

source ==> ¢on~(bo].d).
r ~ ==> (:~rl..11 rOllli lr~ J. -

I X) : : > - T O r t ~ | X) + ~ - f o r t ~ (i ~ l 1 } :
44'* /" 4 , " O r " ~ ++"/ "
- f o n t I X) +Seg.

Finally, for the most complex cases of truly ir-
regular input, a mechanism exists for constraining
juiak collection to operate only as a last resort and
only at the point at which parsing can go no fur-
ther.

5.8 Augmenting the power of the formalism:
escape to Prolog

Several of the mechanisms described above, such
as contextual control of token consumption (sec-
tion 5.1), explicit structure handling (5.4), or se-
lective toke/fization (5.6), are implemented as

• separate Prolo~z modules. Invoking such extemai
functionality from the grammar rules allows the
natural integration of the form- and content-
recovery procedures into the top-down process
of dictionary entry analysis. The utility of this
device should be clear from the examples so far.

Such escape to the underlying implementation
language goes against the grain of recent devel-
opments of declarative gran3m_ ar formalisms. (the
procedural ramifications of, for instance, being
able to call arbitrary LISP functions from the arcs
of an ATN grammar have been discussed at
length: see, for instance, the opening chapters in
Whitelock et al., 1987). However, we feel justi-
fied in augmenting, the formalism in such a way,
as we are dealing with input which Is different m
nature from, and on occasions possibly more
complex than, straight natural language. Unho-
mogeneous mixtures of heavily formal notations
and annotations in totally free format, inter-
spersed with (occasionally incomplete) fragments
of natural language phrases, can easily defeat any
attempts at 'cleafi' parsing. Since the DEP sys-
tem is designed to deal with an open-ended set
of dictionaries, it must be able to corffront a sim-
ilarly open-ended set of notational conventions
and abbreviatory devices. Furthermore. dealing
in full with some of these notations requires ac-
cess to mechanisms and theories well beyond the
power of any grammar formalism: consider, for

stance, what i s involved in analyzing pronun-
ciation fields in a dictionary, where alternative
pronunciation patterns are marked only for
syllable(s) which differ from the primar3 ~ pronun-
caation (as in arch.bish.op: /,a:tfbiDp II ,at-/);
where the pronunciation string itself ts not
marked for syllable structure; and where the as-
signment of syllable boundaries is far from trivial
(as in fas.cist: / ' f=ej'a,st/)!

100

6. CURRENT STATUS
The run-time environment of DEP includes
gr .ammar debugging utilities, and a number of
opttons. All facilities have been implemented,
except where noted. We have very detailed
grammars for CGE (parsing 98% of the entries),
CEG (95%), and LDOCE (93%); less detailed
grammars for Webster s Seventh (98%), and both
laalves of the Collins French Dictionary (approxi-
mately 90%).
The Dictionary Entry Parser is an integra.1, part
of a larger system designed to recover dictionary
structure to an arbitrary depth of detail, convert
the resulting trees into LDB records, and make
the data av/tilable to end users via a flexible and
powerful lexical query language (LQL). Indeed,
we have built LDB's for all dictionaries we have
parsed; further development of LQL and the ex-
ploitation of the LDB's via query for a number
of lexical studies are separate projects.
Finally, we note that, in the light of recent efforts
to develop an interchange standard for (English
mono-lingual) dictionaries (Amsler and Tompa,
1988), DEP acquires additional relevance, since
it can be used, given a suitable annotation of the
grammar rules for the machine-readable source,
to transduce a typesetting tape into an inter-
changeable dictionary source, available to a larger
user commumty.

ACILNOWLEDGEMENTS .

We would like to thank Roy Byrd, Judith
Klavans and Beth Levin for many discussions
concerning the Dictionary Entry Parser system in
general, and this paper in particular. Any re-
maining errors are ours, and ours only.

REFERENCES
Ahlswede, T, M Evens, K Rossi and J Markowitz
W1986) "Building a Lexical Database by Parsing

ebster's Seventh New Collegiate Dictionary '~,
Advances in Lexicology, Second Annual Confer-
ence of the UW Centre for the New Oxford
English Dictionary, 6 5 - 78.
Amsler, R and F Tompa (1988) "An
SGML-Based Standard for English Monolingual
Dictionaries", Information in Text, Fourth An-
nual Conference of the L'W Centre for the New
Oxford English Dictionary, 61 - 79.
Boguraev, B, and E Briscoe (Eds) (1989) Com-
putational Lexicography for Natural Language
Processing, Longman, Harlow.
.~yrd, R, N Calzolari, M Chodorow, J Klavans,

Neff and O Rizk (1987) "Tools and Methods
for Computational Lexicology", Computational
Linguistics, vol. 13(3 - 4), 219 - 240.
Calzolari~ N and E Picchi (1986) "A Project for
a Bilingual Lexical Database System", Advances
in Lexicology, Second ~ u a l Conference of the
L.'W Centre for the New Oxford English Dic-
tionary, 79 - 92.

Calzolari, N and E Picchi (1988) "Acquisition of
Semantic Information from an On-Line
Dictionary.", Proceedings of the 12th Interna-
tional Conference on Computational Linguistics,
8 7 - 92.
Collins (1980) Collins German Dictionary:
German- English, English- German, Collins
Publishers, Glasgow.
Gaxzanti (1984) II Nuovo Dizionario Italiano
Garzanti, Garzanti, Milano.
Longman (1978) Longman Dictionary of Con-
temporary English, Longman Group, London.
Dadam, P, K Kuespert, F Andersen, H Blanken,
R Erbe, J Guenauer, V Lure, P Pistor and G
Walsh (1986) "A DBMS Prototype to Support
Extended NF2 Relations: An ~tegrated View on
Flat Tables and Hierarchies, Proceedings of
A CM SIGMOD'86: International Conference on
Management of Data, 356- 367.
Flickinger, D, C Pollard, T Wasow (1985)
"Structure Sharing in Lexical Representation",
Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics,
262- 267.
Fox, E, T Nutter, T Alhswede, M Evens and J
Markowitz (1988) "Building a Large Thesaurus
for Information Retrieval", Proceedings of the
Second Conference on Applied Natural Language
Processing, 101 - 108.
Kazman, R (1986) "Structuring the Text of the
Oxford Engl!s,h Dictionary through Finite State
Transduction , University of Waterloo Technical
Report No. TR - 8 6 - 20.
McCord, M (1987} "Natural Language Process-
ing and Prolog", m A Walker, MMcCord , J
Sowa and W Wilson (Eds) Knowledge Systems
and ' Prolog, Addison-Wesley, Waltham,
Massachusetts, 291 - 402.
Nakamura, J and Makoto N (1988) "Extraction
of Semantic Information from an Ordinary Eng-
lish Dictionary and Its Evaluation", Proceedings
of the 12th International Conference on Computa-
tional Linguistics, 459 - 464.
Neff, M, R Byrd and O Rizk (1988) "Creat~g
and Querying Hierarchical Lexical Data Bases ,
Proceedings df the Second Conference on Applied
Natural Language Processing, 84- 93.
van der Steen, G J (1982) "A Treatment of Que-
ries in Large Text Corpora", in S Johansson (Ed)
Computer Corpora in English Language
Research, Norwegian Computing Centre for the
Humanities, Bergen, 49 - 63".
Tompa, F (1986) "'Database Design for a Dic-
tionary of the Future', University of Waterloo,
unpublished.
W7 (1967) Webster's Seventh New Collegiate
Dictionary, C.&C. Merriam Company,
Springfield, Massachussetts.
Whitelock, P, M Wood, H Somers, R Johnson
and P Bennett (Eds) (1987) Linguistic Theory and
Computer Applications, Academic Press, New
York.

1 0 1

