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ABSTRACT 

We apply a complexity theoretic notion of feasible 
learnability called "polynomial learnabillty" to the eval- 
uation of grammatical formalisms for linguistic descrip- 
tion. We show that a novel, nontriviai constraint on the 
degree of ~locMity" of grammars allows not only con- 
text free languages but also a rich d ~ s  of mildy context 
sensitive languages to be polynomiaily learnable. We 
discuss possible implications, of this result t O the theory 
of naturai language acquisition. 

1 Introduction 

Much of the formai modeling of natural language acqui- 
sition has been within the classic paradigm of ~identi- 
fication in the limit from positive examples" proposed 
by Gold [7]. A relatively restricted class of formal lan- 
guages has been shown to be unleaxnable in this sense, 
and the problem of learning formal grammars has long 
been considered intractable. 1 The following two contro- 
versiai aspects of this paradigm, however, leave the im- 
plications of these negative results to the computational 
theory of language acquisition inconclusive. First, it 
places a very high demand on the accuracy of the learn- 
ing that takes place - the hypothesized language must 
be exactly equal to the target language for it to  be con- 
sidered "correct". Second, it places a very permissive 
demand on the time and amount of data that may be 
required for the learning - all that is required of the 
learner is that it converge to the correct language in the 
limit. 2 

Of the many alternative paradigms of learning pro- 
posed, the notion of "polynomial learnability ~ recently 
formulated by Blumer et al. [6] is of particular interest 
because it addresses both of these problems in a unified 

" S u p p o r t e d  by a n  IBM g r a d u a t e  fellowship. T h e  a u t h o r  
gra te fu l ly  acknowledges  his advisor ,  Sco t t  Weinstein,  for  his 
gu idance  and  e n c o u r a g e m e n t  t h r o u g h o u t  th is  research.  

1 Some in te res t ing  lea rnab le  subclasses  of  regu l anguages  
have been d iscovered  a n d  s tud ied  by  Ang lu in  [3]. l a r  

2Fo r  a comprehens ive  survey  of  var ious  p a r a d i g m s  re la ted  to  
" ident i f ica t ion in the  l imit"  t h a t  have  been p roposed  to  address  
the  first  issue,  see Oshe raon ,  S tob  and  Weinste in  [12]. As for  t he  
l a t t e r  issue, Anglu in  ([5], [4]) inves t iga tes  the  feasible learnabi l -  
i ty of  formal  l anguages  wi th  the  use of  powerful  oracles  such as 
" M E M B E R S H I P "  and  " E Q U I V A L E N C E " .  

way. This paradigm relaxes the criterion for learning by 
ruling a class of languages to be learnable, if each lan- 
guage in the class can be approximated, given only pos- 
itive and negative examples, a with a desired degree of 
accuracy and with a desired degree of robustness (prob- 
ability), but puts a higher demand on the complexity 
by requiring that the learner converge in time polyno- 
mini in these parameters (of accuracy and robustness) 
as well as the size (complexity) of the language being 
learned. 

In this paper, we apply the criterion of polynomial 
learnability to subclasses of formal grammars that are of 
considerable linguistic interest. Specifically, we present 
a novel, nontriviai constraint on gra~nmars called "k- 
locality", which enables context free grammars and in- 
deed a rich class of mildly context sensitive grammars to 
be feasibly learnable. Importantly the constraint of k- 
locality is a nontriviai one because each k-locai subclass 
is an exponential class 4 containing infinitely many infi- 
Rite languages. To the best of the author's knowledge, 
~k-locaiity" is the first nontrivial constraint on gram- 
mars, which has been shown to allow a rich cla~s of 
grammars of considerable linguistic interest to be poly- 
nomiaily learnable. We finally mention some recent neg- 
ative result in this paradigm, and discuss possible im- 
plications of its contrast with the learnability of k-locai 
classes. 

2 Polynomial Learnability 

"Polynomial learnability" is a complexity theoretic 
notion of feasible learnability recently formulated by 
Blumer et al. ([6]). This notion generalizes Valiant's 
theory of learnable boolean concepts [15], [14] to infinite 
objects such as formal languages. In this paradigm, the 
languages are presented via infinite sequences of pos- 

3We hold no  p a r t i c u l a r  s t ance  on  the  the  val id i ty  of the  c la im 
t h a t  chi ldren make  n o  use  of nega t ive  examples .  We do, however,  
maintain that the investigation of learnability of grammars from 
both positive and negative examples is a worthwhile endeavour 
for  a t  least  two reasons:  F i r s t ,  i t  has  a po ten t i a l  app l ica t ion  for  
the  des ign of n a t u r a l  l anguage  sy s t ems  t h a t  learn .  Second,  it is 
possible  t h a t  ch i ldren  d o  make  use  of  indirect negat ive  informa-  
t ion.  

4A class of g r a m m a r s  G is an  exponential class i f  each sub-  
class of G wi th  bounded  size con ta ins  exponen t i a l ly  (in t h a t  size) 
m a n y  g r a m m a r s .  
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itive and negative examples 5 drawn with an arbitrary 
bu t  time invariant distribution over the entire space, 
that  is in our case, ~T*. Learners are to hypothesize 
a grammar at each finite initial segment of such a se- 
quence, in other words, they are functions from finite se- 
quences of members of ~2"" x {0, 1} to grammars. 6 The 
criterion for learning is a complexity theoretic, approx- 
imate, and probabilistic one. A learner is s~id to learn 
if it  can, with an arbitrarily high probability (1 - 8), 
converge to an arbitrari ly accurate (within c) grammar 
in a feasible number  of examples. =A feasible num- 
ber of examples" means, more precisely, polynomial in 
the size of the grammar it  is learning and the degrees 
of probabili ty and accuracy that  it achieves - $ -1 and 
~-1. =Accurate within d'  means, more precisely, tha t  
the output  grammar can predict, with error probability 
~, future events (examples) drawn from the same dis- 
tribution on which it  has been presented examples for 
learning. We now formally state this criterion. 7 

D e f i n i t i o n  2.1 ( P o l y n o m i a l  L e a r n a b i l i t y )  A col- 
lection of languages £ with an associated 'size' f~nction 
with respect to some f~ed representation mechanism is 
polynomially learnable if and onlg if: s 

3 f E ~  
3 q: a polynomial function 

Y L t E £  
Y P:  a probability measure on ET* 

Ve, 6>O 
V m >_. q (e - ' ,  8 -~,  s i z e ( L d )  
[ P ' ( { t  E CX(L~) I P ( L ( f ( t ~ ) ) A L ~ )  < e}) 

>_1-6 
and f is computable in time polynomial 
in the length of input] 

Identi f icat ion in the Limi t  

Error 

Time 

| t ro t  

• Tlmo 

Figure 1: Convergence behaviour 

in the limit" and =polynomial learnabili ty ", require dif- 
ferent kinds of convergence behavior of such a sequence, 
as is i l lustrated in Figure 1. 

Blumer et al. ([6]) shows an interesting connection 
between polynomial learnabili ty and da ta  compression. 
The connection is one way: If there exists a polyno- 
mial t ime algorithm which reliably •compresses ~ any 
sample of any language in a given collection to a prov- 
ably small consistent grammar for it, then such an al- 
ogorlthm polynomially learns tha t  collection. We state 
this theorem in a slightly weaker form. 

D e f i n i t i o n  2.2 Let £ be a language collection with an 
associated size function "size", and for each n let c,~ = 
{L E £ ] size(L) ~ n}. Then .4 is an Occam algorithm 
for £ with range size ~ f ( m ,  n) if  and only if: 

If in addition all of f ' s  output grammars on esample 
sequences for languages in c belong to G, then we say 
that £ is polynomially learnable by G. 

Suppose we take the sequence of the hypotheses 
(grammars) made by a ]earner on successive initial  fi- 
nite sequences of examples, and plot the =errors" of 
those grammars with respect to the language being 
learned. The two ]earnability criteria, =identification 

a w e  let £X(L) denote  the  set  of infinite sequences which con- 
ta in  only pos i t ive  and negat ive  examples  for L, so indicated.  

a w e  let  ~r denote  the  set  of all such functions.  
7The following presenta t ion  uses concepts  and nota t ion  of 

formal  learning theory,  of. [12] 
aNote  the  following nota t ion .  The  in i ta l  segment  of a se- 

quence t up to the  n- th  e lement  is denoted by t-~. L denotes  some 
fixed mapp ing  from g rammars  to  languages:  If G is a g rammar ,  
L(G) denotes  the language  genera ted  by-it.  If  L I is a | anguage ,  
s l z s ( L l )  denotes  the size of a min imal  g r a m m a r  for LI. A&B 
denotes  the symmet r i c  difference, i.e. (A--B)U(B -A).  Finally,  
if P is a probabi l i ty  measure  on ~-T °, then  P °  is the  cannonical  
product  extension of P. 

V n E N  
VLE£n  

Vte e.X(L) 
V i n e  N 

[.4(~.) is consistent .ith~°rng(~..) 
and .4(~..) ¢ £ I ( - , - )  
and .4 runs in time polynomial in [ tm [] 

T h e o r e m  2.1 ( B l u m e r  e t  al .)  I1.4 is an Oceam al- 
gorithm .for £ with range size f ( n ,  m) ----. O(n/=m =) for 
some k >_ 1, 0 < ct < 1 (i.e. less than linear in sample 
size and polynomial in complexity of language), then .4 
polynomially learns f-. 

91n [6] the notion of "range dimension" is used in place of 
" r a n g e  size",  which is the  Vapmk-Chervonenkis  dlmension of the 
hypothesis  class. Here, we use the  fact  t h a t  the dimension of a 
hypothesis  class wi th  a size bound is a t  most  equal  to  t h a t  size 
bound. 

10Grammar  G is consis tent  wi th  a sample  $ if  {= [ (=, 0) E 
s}  g L(G) ~ r.(a) n {= I (=, 1) ~ s}  = ~. 
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3 K - L o c a l  C o n t e x t  F r e e  G r a m m a r s  

The notion of "k-locality" of a context free grammar is 
defined with respect to a formulation of derivations de- 
fined originally for TAG's by Vijay-Shanker, Weir, and 
Josh, [16] [17], which is a generalization of the notion 
of a parse tree. In their formulation, a derivation is a 
tree recording the history of rewritings. Each node of 
a derivation tree is labeled by a rewriting rule, and in 
particular, the root must be labeled with a rule with 
the starting symbol as its left hand side. Each edge 
corresponds to the application of a rewriting; the edge 
from a rule (host rule) to another rule (applied rule) is 
labeled with the aposition ~ of the nonterminal in the 
right hand side of the host rule at which the rewriting 
ta~kes place. 

The degree of locality of a derivation is the num- 
ber of distinct kinds of rewritings in it - including the 
immediate context in which rewritings take place. In 
terms of a derivation tree, the degree of locality is the 
number of different kinds of edges in it, where two edges 
axe equivalent just in case the two end nodes are labeled 
by the same rules, and the edges themselves are labeled 
by the same node address. 

Def in i t ion  3.1 Let D(G) denote the set of all deriva. 
tion trees of G, and let r E I)(G). Then, the 
degree of locality of r, written locality(r), is defined as 
follows, locality(r) ---- card{ (p,q, n) I there is an edge in 
r from a node labeled with p to another labeled with q, 
and is itself labeled with ~} 

The degree of locality of a grammar is the maximum of 
those of M1 its derivations. 

Def in i t ion  3.2 A CFG G is called k.local if  
ma={locallty(r) I r e V(G)} < k. 
We write k.Local.CFG = {G I G E CFG and G is k. 
Local} and k.Local.CFL = {L(G) I G E k.Local.CFG 

E x a m p l e  3.1 La = { a"bnambm I n , m  E N}  E 
J.LocaI.CFL since all the derivations of G1 = 
({S,,-,¢l}, {a,b}, 
S, {S - -  SaS1, $1 "* aSlb, Sa - -  A}) generating La have 
degree of locality at most J. For example, the derivation 
for the string aZba ab has degree of locality J as shown 
in Figure ~. 

A crucical property of k-local grammars, which we 
will utilize in proving the learnability result, is that 
for each k-local grammar, there exists another k-local 
grammar in a specific normal form, whose size is only 

r "  locality(r) = 4 

S --481 S1 

2 
! 

Sl  - m  SI b SI --m S1 b 

2 

SI ---m SI b S1 

2 

Sl --m Sl  b 

2 

$1 -~. 

S --~1 SI S -~I SI 

I I 
1 2 

I I 
SI -st S1 b S --#a S1 b 

Sl --~ Sl b Sl -m Sl b 

I l 
2 2 

I l 
Sl --m Sl b Sl -0. 

Figure 2: Degree of locality of a derivation of aSb3ab by 
Ga 

polynomially larger than the original grammar. The 
normal form in effect puts the grammar into a disjoint 
union of small grammars each with at most k rules and 
k nontenninal occurences. By ~the disjoint union" of 
an arbitrary set of n grammaxs, gl,..., gn, we mean the 
grammax obtained by first reanaming nonterminals in 
each g~ so that the nonterminal set of each one is dis- 
joint from that of any other, and then taking the union 
of the rules in all those grammars, and finally adding 
the rule S -* Si for each staxing symbol S~ of g,, and 
making a brand new symbol S the starting symbol of 
the grAraraar 80 obtained. 

L e m m a  3.1 (K-Loca l  N o r m a l  Form)  For every k- 
local.CFG H, if n = size(H),  then there is a k-loml- 
CFG G such that 

I. Z ( G ) =  L(H). 

~. G is in k.local normal form, i.e. there is an index 
set I such that G = (I2r, U i ¢ ~ i ,  S, {S -* Si I i E 
I} U (Ui¢IRi)), and if we let Gi -~ (~T, ~,,  Si, Ri) 
for each i E I ,  then 

(a) Each G~ is "k.simple"; Vi E I [ Ri [<_ 
k &: NTO(R~) <_ k. 11 

(b) Each G, has size bounded by size(G); Vi E 
I size(G,) = O(n) 

(c) All Gi's have disjoint nonterminal sets; 
vi,  j ~ I(i  # j)  - -  r., n r~, = ¢,. 

s. size(G) = O(nk+:). 

Def in i t ion  3.3 We let ~ and ~ to be any maps that 
satisfy: I f  G is any k.local-CFG in kolocal normal form, 

11If R is a set  of p roduc t i on  r~nlen,ith~oNeTruOl(eaR.i) denotee  the  
number ol nontermlnm occurre ea 
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then 4(G) is the set of all of its k.local components (G 
above.) If 0 = {Gi [ i G I} i s  a set of k-simple gram. 
mars, then ~b(O) is a single grammar that is a "disjoint 
union" of all of the k-simple grammars in G. 

4 K - L o c a l  C o n t e x t  F r e e  L a n g u a g e s  

A r e  P o l y n o m i a l l y  L e a r n a b l e  

In this section, we present a sketch of the proof of our 
main leaxnability result. 

T h e o r e m  4.1 For each k G N;  
k-iocal.CFL is polynomially learnable. 12 

Proof." 
We prove this by exhibiting an Occam algorithm .A for 
k-local-CFL with some fixed k, with range size polyno- 
mial in the size of a minimal grammar and less than 
linear in the sample size. 

We assume that ,4 is given a labeled m-sample 13 
SL for some L E k-local-CFL with s ize(H) = n where 
H is its minimal k-local-CFG. We let length(SL) ffi 
E,Es length(s) = I. 14 We let S~L and S~" denote 
the positive and negative portions of SL respectively, 
i.e., Sz + = {z [ 3s E SL such that s = (z, 0)) and 
S~" = {z [ 3s E Sr such that s= (z, I)}. We fix a mini- 
mal grammar in k-local normal form G that is consistent 
with SL with size(G) ~_ p(n) for some fixed polynomial 
p by Lemma 3.1. and the fact that a minimal consis- 
tent k-local-CFG is not larger than H. Further, we let 
0 be the set of all of "k-simple components" of G and 
define L(G) = UoieoL(Gi ). Then note L(G) = L(G). 
Since each k-simple component has at most k nonter- 
minals, we assume without loss of generality that each 
G~ in 0 has the same nonterminal set of size k, say 
Ek = {A1 ..... Ak}. 

The idea for constructing .4 is straightforward. 
Step 1. We generate all possible rules that may be 
in the portion of G that is relevant to SL +. That is, 
if we fix a set of derivations 2), one for each string in 
SL + from G, then the set of rules that we generate will 
contain all the rules that paxticipate in any derivation 
in /). (We let ReI(G,S+L) denote the restriction of 0 
to S + with respect to some/ )  in this fashion.) We use 

12We use the  size of a min imal  k-local CFG u the  size of a 
kolocal-CFL, i.e., VL E k- iocal -CFL size(L) = rain{size(G) 
G E k-local-CFG L- L(G) = L}. 

13S£ iS a labeled m-sample  for L if  S _C graph(char(L)) and 
cm'd(S) = m. graph(char(L))  is the  grap~ of the  character is t ic  
function of L, ~.e. is the set  {(#, 0} ] z E L} tJ {(z ,  1} I z I~ L}. 

14In the  sequel, we refer to  the  number  of s t r ings  in ~ sample  
as the  sample  size, and the  to ta l  length of the  s t r ings  in a sample  
as the sample  length.  

k-locality of G to show that such a set will be polyno- 
mially bounded in the length of SL +. Step 2. We then 
generate the set of all possible grammars having at most 
k of these rules. Since each k-simple component of 0 
has at most k rules, the generated set of grammars will 
include all of the k-simple components of G. Step 3. 
We then use the negative portion of the sample, S L to 
filter out the "inconsistent" ones. What we have at this 
stage is a polynomially bounded set of k-simple gram- 
mars with varying sizes, which do not generate any of 
S~, and contain all the k-simple grammars of G. Asso- 
dated with each k-simple grammar is the portion of SL + 
that it "covers" and its size. Step 4. What an Occam 
algorithm needs to do, then, is to find some subset of 
these k-simple grammmm that "covers" SL +, and has a 
total size that is provably only polynomially larger than 
a minimal total size of a subset that covers SL +, and is 
less than linear is the sample size, m. We formalize 
this as a variant of "Set Cover" problem which we call 
"Weighted Set Cover~(WSC), and prove the existence of 
an approximation algorithm with a performance guar- 
antee which suffices to ensure that the output of .4 will 
be a grammar that is provably only polynomially larger 
than the minimal one, and is less than linear in the 
sample size. The algorithm runs in time polynomial in 
the size of the grammar being learned and the sample 
length. 

Step  1. 
A crucial consequence of the way k-locality is defined 
is that the "terminal yield" of any rule body that is 
used to derive any string in the language could be split 
into at most k + 1 intervals. (We define the "terminal 
yield" of a rule body R to be h(R), where h is a homo- 
morphism that preserves termins2 symbols and deletes 
nonterminal symbols.) 

Def in i t ion  4.1 (Subyle lds)  For an arbitrary i E N,  
an i-tuple of members of E~ u~ = (vl, v2 ..... vi) is said 
to be a subyield of s, i f  there are some uz ..... ui, ui+z E 
E~. such that s = uavzu2~...ulviu~+z. We let 
SubYields(i ,a) = {w E (E~) ffi [ z ~_ i ~ w is a sub- 
yield of s}. 

We then let SubYieldsk(S+L) denote the set of all 
subyields of strings in S + that may have come from 
a rule body in a k-local-CFG, i.e. subyields that axe 
tuples of at most k + 1 strings. 

Def in i t ion  4.2 
SubYieldsk(S +) = U ,Es+Subyields(k + 1, s). 

Claim 4.1 ca~d(SubYie/dsk(S,+)) = 0(12'+3). 

Proof ,  
This is obvious, since given a string s of length a, there 
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are only O(a 2(k+~)) ways of choosing 2(k -i- 1) differ- 
ent positions in the string. This completely specifies all 
the elements of SubYieidsk+a(s). Since the number of 
strings (m) in S + and the length of each string in S + 
are each bounded by the sample length (1), we have at 
most O(l) × 0(12(k+1)) strings in SubYields~(S+L ). r~ 

Thus we now have a polynomially generable set of 
possible yields of rule bodies in G. The next step is 
to generate the set of all possible rules having these 
yields. Now, by k-locality, in may derivation of G we 
have at most k distinct "kinds" of rewritings present. 
So, each rule has at most k useful nonterminal oc- 
currences mad since G is minimal, it is free of useless 
nonterminals. We generate all possible rules with at 
most k nonterminal occurrences from some fixed set of 
k nonterminals (Ek), having as terminal subyields, one 
of SubYieldsh(S+). We will then have generated all 
possible rules o f  Rel(G,S+). In other words, such a 
set will provably contain all the rules of ReI(G,S+). 
We let TFl~ules(Ek) denote the set of "terminal free 
rules" {Aio -'* zlAiaz2....znAi,,Z.+l [ n < k & Vj < 
n A~ E Ek} We note that the cardinality of such a set 
is a function only of k. We then "assign ~ members of 
SubYields~(S +) to TFRules(Eh), wherever it is possi- 
ble (or the arities agree). We let CRules(k,  S +) denote 
the set of "candidate rules ~ so obtained. 

Def in i t ion  4.3 C Rules( k, S +) = 
{R(wa/za ..... w , / z , )  I a E TFRnles(Ek) & w E 
SubYieldsk(S +) ~ arity(w) = arity(R) = n} 

It is easy to see that the number of rules in such a set 
is also polynomially bounded. 

Claim 4.2 card(ORulea(k, S+ )) = O(l 2k+3) 

S t e p  2. 
Recall that we have assumed that they each have a non- 
terminal set contained in some fixed set of k nontermi- 
nMs, Ek. So if we generate all subsets of CRules(k,  S +) 
with at most k rules, then these will include all the k- 
simple grammars in G. 

Def in i t ion  4.4 
ccra,.~(k, st) = ~'~(CR~les(k, S t ) ) .  's 

Step  3. 
Now we finally make use of the negative portion of the 
sample, S~', to ensure that we do not include any in- 
consistent grammars in our candidates. 

1 5 ~ k ( X )  in general  deno tes  t he  set  of all subse t s  of X wi th  
ca rd ina l i t y  a t  mos t  k. 

Def in i t ion  4.5 FGrams(k ,  Sz)  = {H [ H E 
CGra,ns(k, S +) ~, r .(a) n S~ = e~} 

This filtering can be computed in time polynomial in 
the length of St., because for testing consistency of each 
grammar in CGrams(k,  + S z ), all that is involved is the 
membership question for strings in S~" with that gram- 
m a r .  

Step  4. 
What we have at this stage is a set of 'subcovers' of SL +, 
each with a size (or 'weight') associated with it, and we 
wish to find a subset of these 'subcovers' that cover the 
entire S +, but has a provably small ' total weight'. We 
abstract this as the following problem. 

~ / E I G H T E D - S E T - C O V E R ( W S C )  
INSTANCE: (X, Y, w) where X is a finite set and Y is 
a subset of ~ (X)  and w is a function from Y to N +. 
Intuitively, Y is a set of subcovers of the set X, each 
associated with its 'weight'. 

NOTATION: For every subset Z of Y, we let couer(g) = 
t3{z [ z E Z}, and totahoeight(Z) = E,~z  w(z). 

QUESTION: What subset of Y is a set-cover of X with 
a minimal total weight, i.e. find g C_ Y with the follow- 
ing properties: 

(i) toner(Z) = X.  
(ii) VZ' C_ Y if cover(Z') = X then totalweight(Z') >_ 
totahoeig ht( Z ). 

We now prove the existence of an approximation 
algorithm for this problem with the desired performance 
guarantee. 

L e m m a  4.1 There is an algorithm B and a polyno- 
mial p such that given an arbitrary instance (X, Y, w) 
of WEIGHTED.SET.COVER with I X I = n, always 
outputs Z such that; 

1. Z C _ Y  

2. Z is a cover for X ,  i.e. UZ = X 

8. If  Z'  is a minimal weight set cover for (X, Y, w), 
then E ~ z  to(y) <_ p(Ey~z, w(y)) × log n. 

4. B runs in time polynomial in the size of the in- 
stance. 

Proof :  To exhibit an algorithm with this property, we 
make use of the greedy algorithm g for the standard 
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set-cover problem due to Johnson ([8]), with a perfor- 
mance guarantee. SET-COVER can be thought of as a 
special case of WEIGHTED-SET-COVER with weight 
function being the constant funtion 1. 

T h e o r e m  4.2 (David  S. JohnRon) 
There is a greedy algorithm C for SET.COVER such 
that given an arbitrary instance (X, Y)  with an optimal 
solution Z', outputs a solution Z, such that card(Z) = 
O(log [ X [ xcard(Z')) and runs in time polynomial in 
the instance size. 

Now we present the algorithm for WSC. The idea 
of the algorithm is simple. It applies C on X and suc- 
cessive subclasses of Y with bounded weights, upto the 
maximum weight there is, but using only powers of 2 as 
the bounds. It then outputs one with a minimal total 
weight araong those. 

A l g o r i t h m  B: ((X, Y, w)) 

mazweight := maz{to(y) [ Y E Y )  
m :-- [log mazweight] 
/* this loop gets an approximate solution using C 
for subsets of Y each defined by putting an upperbound 
on the weights */ 
F o r i - - 1  t o m d o :  

Y[i] :=  {lr/[ Y E Y & to(Y) < 2'} 
s[,] := c((x, Y[,])) 

E n d / *  For */ 
/* this loop replaces all 'bad '  (i.e. does not cover X) 
solutions with Y - the solution with the maximum 
total weight */ 
F o r i =  l t o m d o :  
s[,] := s[,] if cover(s[i]) ---- X 

:= Y otherwise 
E n d / *  For */ 
~intotaltoelght := ~i.{totaltoeight(s[j]) I J ¢ [m]} 
Return s[min { i I totaltoeig h t( s['l) --- mintotaitoeig ht } ] 
End /* Algorithm B */ 

T i m e  Ana lys i s  

Clearly, Algorithm B runs in time polynomial in 
the instance size, since Algorithm C runs in time poly- 
nomial in the instance size and there are only m ---- 
~logmazweight] cMls to it, which certainly does not 
exceed the instance size. 

P e r f o r m a n c e  G u a r a n t e e  

Let (X, Y, to) be a given instance with card(X) = 
n. Then let Z* be an optimal solution of that in- 
stance, i.e., it is a minimal total weight set cover. Let 

totalweight(Z*) = w ' .  Now let m" ---- [ log maz {w(z )  I 
z E Z ° } ] .  Then m* ~_ rain(n, [logrnazweight]). So 
when C is called with an instance (X, Y[m']) in the 
m ' - th  iteration of the first 'For'-loop in the algorithm, 
every member of Z" is in Y[m*]. Hence, the optimal 
solution of this instance equals Z ' .  Thus, by the per- 
formance guarantee of C, s[m*] will be a cover of X 
with cardinality at most card(Z °) × log n. Thus, we 
have card(s[m*]) ~_ card(Z*) × l o g n .  Now, for every 
member t of sire*l, w(t) ~ 2 '~" _< 2 pOs~'I _~ 2w*. 
Therefore, totalweight(s[m*]) = card(Z') x logn x 
O(2w*) = O(w*) × l o g n  x O(2w'),  since w" certainly 
is at least as large as card(Z'). Hence, we have 
totaltoeight(s[m*]) = O(w *= x log n). Now it is clear 
that the output of B will be a cover, and its total weight 
will not exceed the total weight of s[m']. We conclude 
therefore that  B( (X ,  Y, to)) wi l l  be a set-cover for X, 
with total weight bounded above by O(to .= x log n), 
where to* is the total weight of a minimal weight cover 
and n f l X  [. 
r l  

Now, to apply algorithm B to our learning problem, 
we let Y = {S+t. nL(H)  [ H E FGrams(k, SL)) and de- 
fine the weight function w : Y --* N + by Vy E Y w(y )  = 
rain{size(H) [ H E FGrams(k, S t )  & St = L(H)N S + } 
and call B on (S+,Y,w). We then output the gram- 
mar 'corresponding' to B((S +, Y, w)). In other words, 
we let ~r = {mingrammar(y)  [ y E IJ((S+L,Y,w))} 
where mingrammar(g) is a minimal-size grammar H 
in FGrams(k, SL) such that L(H)N S + = y. The 
final output 8ra~nmar H will be the =disjoint union" 
of all the grammars in /~, i.e. H ---- Ip(H). H is 
clearly consistent with SL, and since the minimal to- 
tal weight solution of this instance of WSC is no larger 
than Rel(~, S+~), by the performance guarantee on the 
algorithm B, size(H) ~_ p(size( Rel( G, S + ))) x O(log m) 
for some polynomial p, where m is the sample size. 
size(O) ~_ size(Rei(G, S+)) is also bounded by a poly- 
nomial in the size of a minimal grammar consistent with 
SL. We therefore have shown the existence of an Occam 
algorithm with range size polymomlal in the size of a 
minimal consistent grammar and less than linear in the 
sample size. Hence, Theorem 4.1 has been proved. 

Q.E.D. 

5 E x t e n s i o n  t o  M i l d l y  C o n t e x t  S e n -  

s i t i v e  L a n g u a g e s  

The learnability of k-local subclasses of CFG may ap- 
pear to be quite restricted. It turns out, however, that 
the ]earnability of k-local subclasses extends to a rich 
class of mildly context sensitive grsmmars which we 

230 



call "Ranked Node Rewriting Grammaxs" (RNRG's). 
RNRG's are based on the underlying ideas of Tree Ad- 
joining Grammars (TAG's) :e, and are also a specical 
case of context free tree grammars [13] in which unre- 
stricted use of variables for moving, copying and delet- 
ing, is not permitted. In other words each rewriting 
in this system replaces a "ranked" nontermlnal node of 
say rank ] with an "incomplete" tree containing exactly 
] edges that have no descendants. If we define a hier- 
archy of languages generated by subclasses of RNRG's 
having nodes and rules with bounded rank ] (RNRLj), 
then RNRL0 = CFL, and RNRL1 = TAL. 17 It turns 
out that each k-local subclass of each RNRLj is poly- 
nomially learnable. Further, the constraint of k-locality 
on RNRG's is an interesting one because not only each 
k-local subclass is an exponential class containing in- 
finitely many infinite languages, but also k-local sub- 
classes of the RNRG hierarchy become progressively 
more complex as we go higher in the hierarchy. In pax- 
t iculax, for each j, RNRG~ can "count up to" 2(j + 1) 
and for each k _> 2, k-local-RNRGj can also count up 
to 20' + 1)? s 

We will omit a detailed definition of RNRG's (see 
[2]), and informally illustrate them by some examples? s 

E x a m p l e  5.1 L1 = {a"b" [ n E N} E C F L  is gen- 
erated by the following RNRGo grammar, where a is 

shown in Figure 3. G: = ({5'}, {s ,a ,b} , | ,  (S},  {S - *  
~, s - ~(~)}) 

E x a m p l e S . 2  L2 = {a"b"c"d" [ n E N}  E 
T A L  is generated by the following RNRG1 gram- 
mar, where [$ is shown in Figure 3. G2 = 
( {s } ,  {~, a, b, ~, d}, ~, {(S(~))} ,  {S - -  ~, S - -  ,(~)}) 

E x a m p l e  5.3 Ls = {a"b"c"d"e"y" I n E N}  f~ 
T A L  is generated by the ]allowing RNRG2 gram- 
mar, where 7 is shown in Figure 3. G3 = 
( { S } , { s , a , b , c , d , e , f } , ~ , { ( S ( A , A ) ) } , { S  .-* 7, S "-" 
s(~, ~)}). An example of a tree in the tree language of 
G3 having as its yield 'aabbccddee f f '  is also shown in 
Figure 3. 

16Tree ad jo in ing  g r m n m a r s  were  in t roduced  as a fo rmal i sm 
for  l inguis t ic  descr ip t ion  by Joehi e t  al. [10], [9]. Var ious  formal  
and  c o m p u t a t i o n a l  p rope r t i e s  of T A G ' •  were s tud ied  in [16]. I ts  
l inguis t ic  re levance was  d e m o n s t r a t e d  in [11]. 

IZThi •  h ie ra rchy  is dif ferent  f rom the  h ie ra rchy  of  "me te ,  
T A L ' s "  invented  a n d  s tud ied  extensively by Weir  in [18]. 

18A class  of  _g~rammars G is sa id  to  be  ab le  to  "count  u p  to"  
j, j u s t  in case -{a~a~...a~ J n 6. N} E ~L(G) [ G E Q} bu t  
{a~a~...a~'+1 1 n et¢} ¢ {L(a) I G e ¢}. 

19Simpler  t rees  are represen ted  as t e rm  s t ruc tu re s ,  whereas  
more  involved trees are shown in the  figure. Also note  tha~ we 
use uppe rca se  le t ters  for  non te rmina l s  a n d  lowercase for  te rmi-  
nals.  Note  the  use of  the  special  symbol  | to  ind ica t e  an edge 
wi th  no descendent .  

~: 7: derived: 

• S b s $ f 

| 

b # © d # e 

• S d 

I 

b # ¢ 

$ 

A 
a s f 

a s f 

s $ 

b s c d s e 

b ~. c d ~. e 

Figure 3: ~, ~, 7 and deriving 'aabbceddeeff' by G3 

We state the learnabillty result of R N R L j ' s  below 
as a theorem, and again refer the reader to [2] for details. 
Note that this theorem sumsumes Theorem 4.1 as the 
case j = 0. 

T h e o r e m  5.1 Vj, k E N k-local-RNRLj is poignomi. 
ally learnable? ° 

6 S o m e  N e g a t i v e  R e s u l t s  

The reader's reaction to the result described above may 
be an illusion that the learnability of k-local grammars 
follows from "bounding by k". On the contrary, we 
present a case where ~bounding by k" not only does 
not help feasible learning, but in some sense makes it 
harder to learn. Let us consider Tree Adjoining Gram- 
mars without local constraints, TAG(wolc) for the sake 
of comparison. 2x Then an anlogous argument to the one 
for the learn•bUlly of k-local-CFL shows that k-local- 
TAL(wolc) is polynomlally learnable for any k. 

T h e o r e m  6.1 Vk E N + k-loeal-TAL(wolc) is polyno. 
mially learnable. 

Now let us define subclasses of TAG(wolc) with 
a bounded number of initial trees; k-inltial-tree- 
TAG(wolc) is the class of TAG(wolc) with at most k 
initial trees. Then surprisingly, for the case of single 
letter alphabet, we already have the following striking 
result. (For fun detail, see [1].) 

T h e o r e m  6.2 (i) TAL(wolc) on l-letter alphabet is 
polynomially learnable. 

2°We  use  the  size of a min imal  k- local  R N R G j  as the  size of 
a k-local  R N R L j ,  i.e., Vj E N VL E k - l oca l -RNRLj  s i z e ( L )  = 
m l n { s l z • ( G )  [ G E k- loca l -RNRG~ & L ( G )  = L } .  

21Tree Ad jo in ing  G r a m m a r  fo rmal i sm was  never  defined wi th -  
o u t  local cons t ra ins .  
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(ii) Vk >_ 3 k.initial.tree-TAL(wolc) on 1.letter al- 
phabet is not polynomially learnable by k.initial.tres. 
YA G (wolc ). 

As a corollary to the second part  of the above theorem, 
we have that  k-initial-tree-TAL(wolc) on an arbitrary 
alphabet is not polynomiaJ]y learnable (by k-initial-tree- 
TAG(wolc)). This is because we would be able to use 
a learning algorithm for an arbitrary alphabet to con- 
struct one for the single letter alphabet case. 

C o r o l l a r y  6.1 k.initial.tree-TAL(wolc) is not polyno- 
mially learnable by k-initial.tree- TA G(wolc). 

The learnability of k-local-TAL(wolc) and the non- 
learnability of k-initial-tree-TAL(wolc) is an interesting 
contrast. Intuitively, in the former case, the "k-bound" 
is placed so that  the grammar is forced to be an ar- 
bitrarily ~wide ~ union of boundedly small grammars, 
whereas, in the latter,  the grammar is forced to be a 
boundedly "narrow" union of arbitrarily large g:am- 
mars. It is suggestive of the possibility that  in fact 
human infants when acquiring her native tongue may 
start  developing small special purpose grammars for dif- 
ferent uses and contexts and slowly start  to generalize 
and compress the large set of similar grammars into a 
smaller set. 

7 Conc lus ions  

We have investigated the use of complexity theory to 
the evaluation of grammatical systems as linguistic for- 
malisms from the point of view of feasible learnabil- 
ity. In particular, we have demonstrated that  a single, 
natural and non-trivial constraint of "locality ~ on the 
grammars allows a rich class of mildly context sensi- 
tive languages to be feasibly learnable, in a well-defined 
complexity theoretic sense. Our work differs from re- 
cent works on efficient learning of formal languages, 
for example by Angluin ([4]), in that  it  uses only ex- 
amples and no other powerful oracles. We hope to 
have demonstrated that  learning formal grammars need 
not be doomed to be necessaxily computationally in- 
tractable, and the investigation of alternative formula- 
tions of this problem is a worthwhile endeavour. 
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