
U N D E R S T A N D I N G OF J A P A N E S E

IN A N I N T E R A C T I V E P R O G R A M M I N G S Y S T E M

Kenji Sugiyama I, Masayuki Kameda, Kouji Akiyama, Akifumi Makinouehi

Software Laboratory

Fujitsu Laboratories Ltd.

1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, JAPAN

A B S T R A C T

KIPS is an automatic programming system which generates
standardized business application programs through interactive
natural language dialogue. KIPS models the program under
discussion and the content of the user's statements as organizations
of dynamic objects in the object*oriented programming sense. This
paper describes the statement*model and the program-model, their
use in understanding Japanese program specifications, and bow they
are shaped by the linguistic singularities of Japanese input sentences.

I I N T R O D U C T I O N

KIPS, an interactive natural language programming system,
that generates standardized business application programs through
interactive natural language dialogue, is under development at
Fujitsu (Sugiyama, 1984). Research on natural language
programming systems ('NLPS ') (l-leidorn, 1976, McCune, 1979) has
been pursued in America since the late 1960's and some results of
prototype systems are emerging (Biermaun, 1983). But in Japan,
although Japanese-like programming languages (Ueda, 1983) have
recently a p p e a r e d , there is no natural language programming
system.

Generally, for a Net~PS to understand natural language
specifications, modeling of both the program under discussion and of
the content of the user's s tatement: is required. In conventional
systems (Heidorn, 1970, McCune, 1979), programs and rules
encoding linguistic knowledge first govern parsing procedures which
extract from the user's input a statement*model; then "program
model building rules" direct procedures which update or modify the
program-model in light of what the user has stated. There are thus
two separate models and two separate procedural components.

However, we believe that knowledge about semantic parsing
and program model building should be incorporated into the
statement*model and the program-model, respectively. In the NLPS
we are working on, these two models are organizations of objects (in
the object-oriented programming sense (Bobrow, 1981)), each
possessing local knowledge and procedures. The user's input is first
parsed by a syntactic analysis procedure which communicates sub-
trees to the statement*model objects for semantic judgments and
annotations, such that the completed parse tree is trivially
transformable into the statement model. In the second stage, the
statement model is sent to an object in the program model
(#PROGRAM) which sends messages to other program-model
objects corresponding to components of the user's statement; it is
these objects which perform the updating and modification
operations.

This paper describes the statement*model and the program-
model, their use in understanding Japanese program specifications,
and how they have been shaped by the linguistic singularities of the
Japanese input sentences dealt with so far.

Isuglyams's current address k Advanced Computer Systems Department,
SRI InternatlonsJ, Menlo Park, CA 94028.

II M O D E L S

A.. P r o l [r a m .Model

To get a better understanding of the way users describe
programs, we asked programmers to specify programs in a short
paragraph, and sampled illustrative descriptions of simple programs
from a Hyper COBOL user's manual (Fujitsu, 1981) (Hyper COBOL
is the target programming language of KIPS). This resulted in a
corpus of 60 program descriptions, comprising about 300 sentences.

The program model we built to deal with this corpus is divided
into a model of files and a model of processes (Figure I).

. model o f p r o c e s s e s m o d e l o f files

. ~" " r " r - b ~ C I~ ,U

B

~ file-type ', '

....... /,,,,,,\'/ / I,,..-
I #s'rATEI ~ ~ / #S~A~ / Ityp,,

. i n u t m m c u

c proper ty
~ - . - - 8upurlsub r e l a t i o n

. . . . c l a n s / i n s t a n c e r e l a t i o n
=~-~= coapouitu object8

F l ~ r e 1. The p r o g r ~ aod,l

385

The model of files comprises in turn several sub-models,
objects containing knowledge about file types, record types and item
types. A particular file is represented by an object which is an
instance of all three of these. Class-level objects have such
properties as bearing a certain relation to other class-level objects,
having a name, and so forth. For example, the object #RECORD-
TYPE has ITEM-TYPES relations with the #1TEM-TYPE object,
and DATA-LENGTH and CHARACTER-CLASS properties.
Objects on the instance level have such properties as z specific data
length and a specific name.

The model of processes is a taxonomy of objects bearing
super/subset relations to one another. On the highest level we find
such objects as #OPERATION, #DATA, #PROGRAM,
#CONDITION, and #STATE.

The specific program-model, which is built up through a
dialogue with the user, is a set of instance-level objects belonging to
both file and process classes.

B. S t a t e m e n t Mode l

In a NLPS system, it is necessary to represent the content of
the user's input sentences in an intermediary form, rather than
incorporating it directly into the program model, because the user's
statements may either contradict what was said previously, or omit
some essential information. The statement model provides this
intermediary representation, whose content must be checked for
consistency, and sometimes augmented, before it is assimilated and
acted upon.

The sentences in the corpus can, for the purpose of statement*
model building, be classified into operations sentences, parameter
sentences, and item*condition sentences (Figure 2). Their semantic
components can be divided into nominal phrases and relations
- names or descriptions of operations, parameters, data classes, and
specific pieces of data (e.g. the item "Hinmei'), and relations
between these 2 (Figure 3). Naming these elements, identifying
subclasses of operations, and categorizing the dependencies yields the
statement model (Figure 4): subcomponents of the sentence
correspond to class-level objects organised in a super/sub hierarchy,
and the content of the sentence as a whole corresponds to a system
of instance-level objects, descendants from those classes.

o p e r a t i o n
sontenco

pea'smnCer
8entente

£ t n n - c o n d £ t £ o n
8un~oncn

5 o r t ~ a ~ account ~ e w i t h a k ~ ' H i n m ~ ¶
then outp~ ~totheacco~nt ~ e l .

~ e k ~ e m ~ a ~ i # ' H i n m ~

Figure 2. Three 8ontnnce typos

sort's key item "Hinmei " is
operat ion , spnctf.t¢ dat&

d&ta clams
/

paxannter

Figure 3. The 8emmtlc nlununts

H I U n d e r s t a n d i n g o f J a p a n e s e

KIPS understands Japanese program specifications in two
phases. The sentence analysis phase analyzes an input and
generates an instance of a statement model. The specification
acquisition phase builds an instance of the program model from the
extracted semantics.

A k, I m p l e m e n t i n g t h e M o d e l s

T o real ize a natural language understanding system using the
models we are developing, objects in the models have to be dynamic
as well as static, in the sense that the objects should express, for
instance, how to instantiate themselves as well as static relations
such as super/sub relations. Object-oriented and data-oriented
program structures (Bobrow, 1981) are good ways to express
dynamic objects of this sort. KIPS uses FRL (Roberts, 1977)
extended by message passing functions to realize these programming
styles.

B. S e n t e n c e Anal},s is

The sentence analysis phase performs both syntactic and
sematic analysis. As described above, the semantics is represented
in the statement model. Syntax in KIPS is expressed by rules of
TEC (Sugiyama, 1982) which is an enhancement of
PARSIFAL (Marcus, 1980). The fundamental difference is that
TEC has look-back buffers whereas PARSIFAL has an attention
shift mechanism. This change was made in order to cope with two
important aspects of Japanese, viz., (1) the predicate comes last in a
sentence, and (2) bunsetsu s sequences are otherwise relatively
arbitrary.

The basic idea of TEC is as follows• To determine the
relationship between a noun bnnsetstt, which comes early in the
sentence, and the predicate, the predicate bunsetsu has to be parsed.
Since it comes last in the sentence, the noun bnnsetsn has to be
stored for later use to form an upper grammatical constituent. The
arbitrary number of noun bunsetsus are stored in look-back buffers,
and are later used one by one in a relatively sequence-independent
way.

1. O v e r v i e w

The syntactic characteristics of the sample sentences, which
were found to be useful in designing the sentence analysis, are that
(1) the semantic elements, which are stated above, correspond
closely to bunsetsu, (2) parameter sentences and item-condition
sentences can be embeded in operation sentences and tend to be
expressed in noun sentences (sentences like "A is B'), and (3)
operation sentences tend to be expressed in verb sentences (sentences
like "do A'). Guided by these observations, parsing rules are
divided into three phases; bunsetsu parsing, operand parsing, and

[*0e~TZOil

,r~- t
t. rATx rxcs I.i icA 0

0 e ~ r I 0 S I ?
\ , / \ ~ I \.

. . . . ~" . ¢ lUn

F£guro 4. The st&tonnn~ node1

2Subordinstlnz sententls] conjunctions m fret.ted u relations between states
or operations, seen u described by seutentisl clauseS,

8A linguistic constituent which zpproximltely corresponds to "phrue" in
English.

386

operation parsing. Bunsetsn parsing identifies from the input word
sequence a set of bunsetsu structures, each of which contains at
most one semantic element. Operand parsing makes up such
operands as parameter and item-condition specifications that may be
governed directly by operations. Operation parsing determines the
relations between an operation and various operands that have been
found in the input sentence. Each of these phases sends messages to
the statement model, so that it can add to a parse tree information
necessary for building the semantic structure of an input or can
determine the relationship between the partial trees built so far. An

The
neuron.at
model

rule

*USEF
÷ . •

l TO-GET $vlAun SAS:GET l

. L

l ITDfS lunar *ITEM I
l ORDBI Susef *ORDER l

"T0-GET , r r l ~ . • I ' I "D~ ,

(-1 ; * IS lOT DECLIllABLE]
[C; (S ~ < S i d l e F~iX,q~ OF c

'T0-GET
<Sl~tgrIC FEARUTE OF - lST>)] -> . . .

I I

I Jm I
c t / ~ J

I & - ~ I
I key I

-1 s t 1st

I ms I I e s I

I ~ f , ~ I I c ~ - ~ , ~ . , I
I "Hinmei" I I earl I

Figure 6. Syntax and Semantic In te rac t ion

instance of the statement model b extracted from the semantic
information attached to the final parse tree.

2. S) ' n t a x a n d S e m a n t l c n I n t e r a c t i o n

Figure ,5 shows how message passing between the syntactic
component (rules) and the semantic component (model) occurs in
order to determine the semantic relationship between the bunaetgus
('Hinmei" and key), The boxes denoted by -lst, C, 1st are
grammatical constituent storages called look-back buffer, look-up
stack, and look-ahead buffer in TEC (Sugiyama, 1982), respectively.
One portion of the rule's patterns (viz. [-1;...]) checks if the
constituent iu the -lst buffer is not declinable. Another portion (viz.
[C;...]) sends the message "TO-GET *ITEM" to the semantic
component (*KEY) asking it to perform semantic analysis.

On receiving the message from the syntax rule, *KEY
determines the semantic relation with *ITEM, and returns the
answer =ITEMS = . The process is as follows. The message activates
a method corresponding to the first argument of the message (viz.
TO-GET). Since the corresponding method is not defined in *KEY
itself, it inherits the method SAS:GET from the upper frame *USEF.
This method searches for the slot names that have the facet $usef
with *ITEM, and finds the semantic relation ITEMS.

As illustrated in the example, the syntax and semantics
interaction results in a syntactic component free from semantics,
and a semantic component free from syntax. Knowledge of
semantic analysis can be localized, and duplication of the same
knowledge can be avoided through the use of an inheritance
mechanism. Introducing a new semantic element is easy, because a
new semantic frame can be defined on the basis of semantic
characteristics shared with other semantic elements.

O.. S p e c i f i c a t i o n A c q u i s i t i o n

Filling the slots which represent a user's program specification
is considered as a set of subgoals and completing a frame as a goal.
Program models are built through message passing among program
model objects in a goal-oriented manner.

1 . S u b g o . d i n g

[Strucure of subgoaling knowledge]

The input semantic structure to the acquisition (1) is
fragmentary, (2) varies in specifying the same program, and (3) the
sequence of specifying program functions is relatively arbitrary. To
deal these phenomena, several subgoaling methods, each of which
corresponds to a different way of specifing a piece of program
information, are defined in different facets under n same slot. For
example, u program model object #CHECK in Figure 6 has Stile
and $acquire facets under the slot INPUT.

ingtffince8 of
the statement model

• TO-ACqUIRE *CHECKI"

(The #emantic #truc~ure for
the Japanese cent.nee each ae

"make the account f i le an input,
and check it. ")

The p r o g r n model
instance clanu

8PROGRAMI I gPSF
4' ~ • 4' . 4"

- ' ~ J PROCESSES gvalue 8C!.!~1 I J J TO-ACQUIRE gvalue RULE-INTPR i
• " - - - r J "

A
\ \

"TO-INSTAETIATE" ~ /
mTO-ACQUIRE eCHECgl = ~ * •

I I ~ J *RULE1 Spat ISAC:PATI I
J ~ #CHE~I ~ - ~ l Sexuc (IRPUT h c q u l r e) l

+ - - Y . * I I
I IIII~T gvtlue IFII, E3 I I IgPUT S t i l e ISAC:IIIFILE I
• . * I Sucquire ISAC: INPUT I

A J OUTPUT I l l -added SAME-RECORD I
"TO-ACQUIRE eFILEI ° * . *

.

I I

Figure g. Subgotltng

387

In order to select one of the different subgoaling methods,
depending on the input semantic structure, a rule-like structure is
introduced. A pattern for a rule (e.g. "RULE1 in #CHECK) is
defined under Spat which tests the input semantic structure, and an
action part of a rule is defined under Sexec which shows the
subgoal's names (slots) to be filled and the subgoaling methods
(facets) to do the job. The message "TO-ACQUIRE u s triggers a
rule interpreter. The interpreter is physically defined in the highest
frame of the process model (#PSF), since it expresses overall
common knowledge.

#PROGRAMI has a discourse model in order to acquire
information provided relatively arbitrarily. The current model
depends on the kind of operations and the sequence in which they
are defined. Usually, the most currently defined or referred to
operation gets first attention.

[Process of subgoaling]

The example of acquisition of the semantic structure in Figure
6 begins with sending the message "TO-ACQUIRE *CHECKI" to
#PROGRAMI. On receiving the message, #PROGRAMI
eventually instantiates the #CHECK operation, makes the instance
(#CIIECKI) one of the processes, and then send it another message
"TO-ACQUIRE *CHECKI" which specifies what semantic structure
it must acquire (viz. the structure under *CHECKI).

The me~sage sent to #CHECKI then activates the rule
interpreter defined in #PSF. The interpreter finds *RULEI as
appropriate, and executes the subgoaling methods specified as
(INPUT $acquire) and so forth. One of the methods (ISAC:INPUT)
creates #FILE3, makes it INPUT of the current frame (#CHECKI),
and asks it to acquire the remaining semantic structure (*FILEI).

2. I n t e r n a l S u b g o a l l n ~

As explained before, some inputs lack the information
necessary to complete the program model. This information is
considered to be in subgoals internal to the system and
supplemented by either defaults, demons (Roberts, 1977) or
composite objects (Bobrow, 1981). For example, the default is used
to supplement the sorting order unless stated otherwise explicitly.

Demons are used to build a record type automatically. The
input sentence seldom specifies the record types. This is because
output record type is automatically calculable from the input record
type depending on the operation employed. However, the program
model needs explicit record type descriptions. This is accomplished
by the demons defined under the OUTPUT slot in the operation
frames. For example, when a output file is created for the operation
#CHECK in Figure 6, the sir-added demon (viz. SAME-RECORD)
is activated to find a record type for the output file. As shown in
Figure 1, this results in finding the same record type (#ACCOUNT-
RECORD) for the output files (#FILEI, #FILE2) as that of the
input file (#FILE3).

Specification of output files is implicit in many cases. For
example, the CHECK operation assumes that it creates a valid file
which satisfies the constraints, and an invalid file which does not.
As a natural way of implementation, composite objects are
employed, and the output files as well as the files' states are also
instantiated as a part of #CHECK's instantiation (Figure 1).

3. D i s c u s s i o n

Program specification acquisition is realized using the program
model, which is a natural representation of the user's program
intage. This is accomplished through message passing, default usage,
demon activation and composite objects instantiation. Knowledge
in an object in the model is localized and hence easy to update.
Inheritance makes it possible to eliminate duplicate representation of
the same knowledge, and adding a new object is easy because of the
knowledge localization.

IV CONCLUSION

This paper discussed the problems encountered when
implementing a Japanese understanding subsystem in an interactive
programming system, KIPS, and proposed an "object-centered"
approach. The subsystem consists of sentence analysis and
specification acquisition, and the task domain of each is modeled

using dynamic objects. The "obj~t-centered" approach is shown to
be useful for making the system flexible. A prototype system is now
operational on M-series machines and has successfully produced
several dozens of programs from the Japanese specification. Our
next research will be directed toward understanding Japanese
sentences that contain other than the process specifications.

V A C K N O W L E D G E M E N T S

The authors would like to express their thanks to Tatsuya
Hayashi, Manager of Software Laboratory, for providing a
stimulating place in which to work. We would also like to thank Dr.
Don Walker, Dr. Robert Amsler and Mr. Armar Archbold of SRI
International, who have provided valuable help in preparing this
paper.

VI R E F E R E N C E S

Biermann,A.W.; Ballard,B.W.; Sigmou,A.H. An Experimental Study
of Natural Language Programming. Int. J. Mun-Machine
Studies, 1083, (18), 71-87.

Bobrow,D.G; Stefik,M. The LOOPS Manual. Technical Report,
Xerox PARC, 1981. KB-VLSI-81-13.

Fujitsu Ltd. Hyper COBOL Programming Manual V01. , 1081. [in
Japanese].

Heidorn,G.E. Automatic Programming Through Natural Language
Dialogue: A Survey. IBM J. Res. ~/ Develop., 1976, £0(~),
302-313.

Marcus,M.P. A Theory of Syntactic Recognition for Natural
L4nguage. : MIT Press 1980.

MeCune,B.P. Building Program Model lncrementall~ from
Informal Descriptions. PhD thesm, Stanford Univ., 1979.
AIMo333.

Roberts,R.B.; Goldstcin,l.P. The FRL Manual. Technical Report,
MIT, AI Lab., 1977. memo 409.

Sugiyama,K.; Yachida,M.; Makinouchi,A. A Tool for Natural
Language Analysis: TEC. £5th Annual Convention,
Information Processing Societal of Japan, 1982, , 1033-1034.
[in Japanese].

Sugiyama,K.; Akiyama,K.; Kameda,M.; Makinouchi,A. An
Experimental Interactive Natural Language Programming
System. The Transactions of the Institute of Electronics and
Communication Engincerings of Japan, 1984, J67-D(3),
297-304. [in Japanese, and is being translated into English by
USC Information Sciences Institute].

Ueda; Kanno; Honda. Development of Japanese Programming
Language on Personal Computer. Nikkci Computer, 1983,
(34), 110-131. [in Japanese].

388

