
Knowledge Structures in UC, the UNIX* Consul tan t t

David N. Chin

Division of Computer Science
Department of EECS

University of California, Berkeley
Berkeley, CA. 94720

A B S T R A C T

The knowledge structures implemented in UC, the UNLX
Consultant are sufficient for UC to reply to a large range
of user queries in the domain of the UNIX operating sys-
tem. This paper describes how these knowledge struc-
tures are used in the natural language tasks of parsing,
reference, planning, goal detection, and generation, and
~ow they are organized to enable efficient access even
with the large database of an expert system. The struc-
turing of knowledge to provide direct answers to common
queries and the high usability and efficiency of knowledge
structures allow UC to hold an interactive conversation
with a user.

1. In troduct ion
UC is a natural language program that converses in
English with users in the domain of the UNIX operating
system. UC provides information on usage of system
utilities, UNIX terminology, and plans for accomplishing
specific tasks in the UNIX environment, all upon direct
query by the user. In order to accomplish these tasks,
UC must perforce have a considerable knowledge base, a
large part of which is particular to the UNIX domain.
The specific representations used in this knowledge base
are essential to the successful operation of UC. Not only
are the knowledge structures used in parsing, inference,
planning, goal detection, and generation, but also the for-
mat of representation must permit the high efficiency in
access and processing of the knowledge that is required in
an interactive system like UC. This paper describes the
details of this representation scheme and how it manages
to satisfy these goals of usability and efficiency. Other
aspects of the UC system are described in Arens (1982},
Faletti (1982}, Jacobs (1983}, Rau {1983), and Wilensky
and Arens (1980a and b). An overview of the UC system
can be found in Wilensky (1982).

• UNIX is Lradem,trk of Bell Labor~.tone$

t This research w u sponsored ia part by the O~¢e of NavLl Re~etrcb under coBtrLct
N00014-80-C-0732 ~ad the NLt,oa=d Scieace Foaadztiou =ader grant MCSTg-06543.

2. Speei f leat ions for the Representa t ion
The first step in the design of knowledge structures
involves determining what forms of knowledge will be
needed. In this case, the domain of conversation for a
UNIX consultant is specific enough that it reduces the
range of knowledge structures necessary for the task.
Some insight into the kinds of knowledge structures that
are needed can be gleaned from looking at the variety of
questions which users actually ask. Since UC is aimed at
the naive user of UNIX, a majority of the queries UC
receives are of the following forms (taken from actual UC
sessions}:

User: How can [change the write protection on my termi-
nal?

UC: To turn on write permission on your terminal, type
'mesg y'.
To turn off write permission on your terminal, type
'mesg n'.

User: What is a search path?

UC: A search path in UNIX is a list of directories in
which the operating system searches for programs
to execute.

User: Why can't I remove the directory Trap?

UC: The directory Trap must he empty before the direc-
tory can be deleted.

Questions of the first form, asking how to do something,
are usually requests for the names and/or usage of UNIX
utilities. The user generally states the goals or results
that are desired, or the actions to be performed and then
asks for a specific plan for achieving these wishes. So to
respond to how questions, UC must encode in its data-
base a large number of plans for accomplishing desired
results or equivalently, the knowledge necessary to gen-
erate those plans as needed.

The second question type is a request for the definition of
certain UNL~ or general operating systems terminology.
Such definitions can be provided easily by canned textual
responses. However UC generates all of its output. The
expression of knowledge in a format that is also useful for
generation is a much more difficult problem than simply
storing canned answers.

In the third type of query, the user describes a situation
where his expectations have failed to be substantiated
and asks UC to explain why. Many such queries involve

159

plans where preconditions of those plans have been

violated or steps omitted from the plans. The job that
UC has is to determine what the user was attempting to
do and then to determine whether or not preconditions
may have been violated or steps left out by the user in
the execution of the plans.

Besides the ability to represent all the different forms of
knowledge that might be encountered, knowledge struc-
tures should be appropriate to the tasks for which they
will be used. This means that it should be easy to
represent knowledge, manipulate the knowledge struc-
tures, use them in processing, and do all that efficiently
in both time and space. In UC, these requirements are
particularly hard to meet since the knowledge structures
are used for so many diverse purposes.

3. T h e Choice

Many different representation schemes were considered
for UC. In the past, expert systems have used relations
in a database (e.g. the UCC system of Douglass and
Hegner, 1982), production rules and/or predicate calculus,
for knowledge representation. Although these formats
have their strong points, it was felt that none provided
the flexibility needed for the variety of tasks in UC.
Relations in a database are good for large amounts of
data, but the database query languages which must be
used for access to the knowledge are usually poor
representation languages. Production rules encode pro-
cedural knowledge in an easy to use format, but do not
provide much help for representing declarative
knowledge. Predicate calculus provides built-in inference
mechanisms, but do not provide sufficient mechanism for
representing the linguistic forms found in natural
language. Also considered were various representation
languages, in particular KL-one (Schmolze and Brach-
man, 1981). However at the time, these did not seem to
provide facilities for efficient access in very large
knowledge bases. The final decision was to use a frame-
like representation where some of the contents are based
on Schank's conceptual dependencies, and to store the
knowledge structures in PEARL databases (PEARL is an
AI package developed at Berkeley that provides efficient
access to Lisp representations through hashing mechan-
isms, c.f. Deering, et. al., 1981 and 1982).

4. The Implementa t ion

Based on Minsky's theory of frames, the knowledge struc-
tures in UC are frames which have a slot-filler format.
The idea is to store all relevant information about a par-
ticular entity together for efficient access. For example
the following representation for users has the slots user-
id, home-directory, and group which are filled by a user-
id, a directory, and a set of group-id's respectively.

(create expanded person user
(user-id user-id)
(home-directory directory)
{group setof group-id))

In addition, users inherit the slots of person frames such
as a person's name.

To see how the knowledge structures are actually used, it
is instructive to follow the processing of queries in some
detail. UC first parses the English input into an internal
representation. For instance, the query of example one is
parsed into a question frame with the single slot, cd,
which is filled by a p lanfor
frame. The question asks what is the plan for

(represented as a planfor with an unknown method)
achieving the result of changing the write protection
(mesg state) of a terminal (terminall which is actually a
frame that is not shown).

(question
(cd (planfor (result (state-change (actor terminall)

(state-name mesg)
(from unspecified)
(to unspecified)))

(method *unknown*))))

Once the input is parsed, UC which is a data driven pro-
gram looks in its data base to find out what to do with
the representation of the input. An assert ion frame
would normally result in additions to the database and
an Imperat ive might result in actions (depending on the
goal analysis}. In this case, when UC sees a question with
a planfor where the method is unknown, it looks in its
database for an ou t -p lanfor with a query slot that
matches the result slot of the planfor in the question.
This knowledge is encoded associatively in a memory-
association frame where the recall-key is the associative
component and the cluster slot contains a set of struc-
tures which are associated with the structure in the
recall-key slot.

(memory-association
(recall-key {question

(cd (planfor (result ?cone)
(method *unknown*)))))

{cluster ((out-planfor (query ?cone)
(plan ?*any*)))))

The purpose of the memory-association frame is to simu-
late the process of reminding and to provide very flexible
control flow for UC's data driven processor. After the
question activates the memory-association, a new out-
pianfor is created and added to working memory. This
out-planfor in turn matches and activates the following
knowledge structure in UC's database:

(out-planfor (query (state-change (actor terminal)
(state-name mesg}
(from ?from-state)
(to ?to-state)))

(plan (output (cd (planfor67 planfor68)))))

160

The meaning of this out-planfor is that if a query about a
state-change involving the mesg state of a terminal is
ever encountered, then the proper response is the o u t p u t
frame in the plan slot. All output frames in UC are
passed to the generator• The above output frame contains
the planfors numbered 67 and 68:

planfor67:

(plan for
(result (state-change (actor terminal)

(state-name mesg)
(from off)
(to on)))

(method
(mtrans (actor *user*)

(object (command
(name mesg)
(ar~ (y))
(input *stdin*}
(output *stdout*)
(dia~ostic *stdout*)})

(from *user*)
(to *Unix*))))

This planfor states that a plan for changing the mesg
state of a terminal from on to off is for the user co send
the command rnes~I to UNIX with the argument "y".
Planfor 68 is similar, only with the opposite result and
with argument "n". In general, UC contains many of
these planfors which define the purpose (result slot) of a
plan (method slot). The plan is usually a simple com-
mand although there are more complex meta plans for
constructing sequences of simple commands such as might
be found in a UNIX pipe or in conditionals.

In UC, o u t - p l a n f o r s represent "compiled" answers in an
expert consultant where the consultant has encountered a
particular query so often that the consultant already has
a rote answer prepared• Usually the question that is in
the query slot of the out-planfor is similar to the result of
the planfor that is in the output frame in the plan slot of
the out-planfor. However this is not necessarily the case,
since the out-planfor may have anything in its plan slot.
For example some queries invoke UC's interface with
UNIX (due to Margaret Butler} to obtain specific infor-
mation for the user.

The use of memory-associations and out-planfors in UC
provides a direct association between common user

queries and their solutions. This direct link enables UC
to process commonplace queries quickly. When UC
encounters a query that cannot be handled by the out-
planfors, the planning component of UC (PANDORA, c.f.
Faletti, 1982) is activated• The planner component uses
the information in the UC databases to create individual-
ized plans for specific user queries. The description of
that proems is beyond the scope of this paper.

The representation of definitions requires a different
approach than the above representations for actions and
plans. Here one can take advantage of the practicality of

terminology in a specialized domain such as UNIX.
Specifically, objects in the UNIX domain usually have
definite functions which serve well in the definition of the
object. In example two, the type declaration of a
search-path includes a use slot for the search-path which
contains information about the main function of search
paths. The following declaration defines a s e a r c : . - ~ n as
a kind of functional-object with a path slot that contains
a set of directories and a ~zse slot which says that search
paths are used in searching for programs by UNL~.

(create expand'ed functional-object search-path
(path setof directory)
(use ($search (actor *Unix*)

(object program}
{location ?search-path)))

• . .)

Additional information useful in generating a definition
can be found the slots of a concept's declaration. These
slots describe the parts of a concept and are ordered in
terms of importance. Thus in the example, the fact tha~
a search-path is composed of a set of directories was used
in the definition given in the examples.

Other useful information for building definitions i~
encoded in the hierarchical structure of concepts in UC.
This is not used in the above example since a search-path
is only an expanded version of the theoretical concept,
functional-object. However with other objects such a.~
directory, the fact that directory is an expanded version
of a file {a directory is a file which is ,sed to store other
files) is actually used in the definition.

The third type of query involves failed preconditions of
plans or missing steps in a plan. In UC the preconditions
of a plan are listed in a p r e e o n d s frame. For instance,
in example 3 above, the relevant preconds frame is:

(preconds
(plan (mtrans (actor *user*)

(object (command
(name rmdir)
(args (?director/name))
(input stdin)
(output stdout}
(diagnostic s~dout)))

(from *user*)
(to ,Unix*)))

(are ((state (actor
(all (var ?file)

(desc (file))
(pred (inside-of

(object
?directoryname))))})

(state-name physical-state)
(value non-existing})

. .)))

This states that one of the preconditions for removing a
directory is that it must be empty. In analyzing the
example, UC first finds the goal of the user, namely to

161

delete the directory Trap. Then from this goal, UC looks
for a plan for that goal among planfors which have that
goal in their result slots. This plan is shown above.
Once the plan has been found, the preconds for that plan
are checked which in this case leads to the fact that a
directory must be empty before it can be deleted. Here
UC actually checks with UNIX, looking in the user's area
for the directory Trap and discovers that this precondi-
tion is indeed violated. If UC had not been able to find
the directory, UC would suggest that the user personally
check for the preconditions. Of course if the first precon-
dition was found to be satisfied, the next would be
checked and so on. In a multi-step plan, UC would also

verify that the steps of the plan had been carried out in
the proper sequence by querying the user or checking
with UNIX.

5. Storage for Efficient Access

The knowledge structures in UC are stored in PEARL
databases which provide efficient access by hash indexing.
Frames are indexed by combinations of the frame type
and/or the contents of selected slots. For instance, the
planfor of example one is indexed using a hashing key
based on the state-change in the planfor's result slot.
This planfor is stored by the fact that it is a planfor for
the state-change of a terminal's mesg state. This degree
of detail in the indexing scheme allows this planfor to be
immediately recovered whenever a reference is made to a
state-change in a terminars mesg state.

Similarly, a memory-association is indexed by the filler of
the recall-key slot, an out-planfor is indexed using the
contents of the query slot of the out-planfor, and a
preconds is indexed by the plan in the plan slot of the
preconds. Indeed all knowledge structures in UC have
associated with them one or more indexing schemes
which specify how to generate hashing keys for storage of
the knowledge structure in the UC databases. These
indexing methods are specified at the time that the
knowledge structures are defined. Thus although care
must be taken to choose good indexing schemes when
defining the structure of a frame, the indexing scheme is
used automatically whenever another instance of the
frame is ~dded to the UC databases. Also, even though
the indexing schemes for large structures like planfors
involve many levels of embedded slots and frames,
simpler knowledge structures usually have simpler index-
ing schemes. For example, the representation for users in
UC are stored in two ways: by the fact that they are
users and have a specific account name, and by the fact
that they are users and have some given real name.

The basic idea behind using these complex indexing
schemes is to simulate a real associative memory by using
the hashing mechanisms provided in Pearl databases.

This associative memory mechanism fits well with the
data-driven control mechanism of UC and is usel'ul for a
great variety of tasks. For example, goal analysis of
speech acts can be done through this associative mechan-
ism:

(memory-association
(recall-key (assertion (cd (goal (planner ?person}

(objective ?obj))))
(cluster ((out-pianfor (cd ?obi)))))

In the above example {provided by Jim Mayfield), UC
• analyzes the user's statement of wanting to do something
as a request for UC to explain how to achieve that goal.

6. Conclus ions

The knowledge structures developed for UC have so far
shown good efficiency in both access time and space usage
within the limited domain of processing queries to a Unix
Consultant. The knowledge structures fit well in the
framework of data-driven programming used in UC.
Ease of use is somewhat subjective, but beginners have
been able to add to the UC knowledge base after an
introductory graduate course in AI. Efforts underway to
extend UC in such areas as dialogue will further test the
merit of this representation scheme.

7. Technical D a t a

UC is a working system which is still under development.
In size, UC is currently two and a half megabytes of
which half a megabyte is FRANZ lisp. Since the
knowledge base is still growing, it is uncertain how much
of an impact even more knowledge will have on the sys-
tem especially when the program becomes too large to fit
in main memory. In terms of efficiency, queries to UC
take between two and seven seconds of CPU time on a
V.~X 11/780. Currently, all the knowledge in UC is hand
coded, however efforts are under way to aatomate the
process.

8. Acknowledgments

Some of the knowledge structures used in UC are
refinements of formats developed by Joe Faletti and
Peter Norvig. Yigal A.rens is responsible for the underly-
ing memory structure used in UC and of course, this pro-
ject would not be possible without the guidance and
advice of Robert Wilensky.

162

O. References
Arens, Y. 1982. The Context Model: Language
Understanding in Context. In the Proceedings of
the Fourth Annual Conference of the Cognitive Sci-
ence Society. Ann Arbor, MI. August 1982.

Deering, M., J. Faletti, and R. Wilensky. 1981.
PEARL: An Eflacient Language for Artificial Intel-
ligence Programming. In the Proceedings of the
Seventh International Joint Conference on Artificial
Intelligence. Vancouver, British Columbia. August,
1981.
Deering, M., J. Faletti, and R. Wilensky. 1982.
The PEARL Users Manual. Berkeley Electronic
Research Laboratory Memorandum No.
UCB/ERL/M82/19. March, 1982.

Douglass, R., and S. Heguer. 1982. An Expert Con-
sultant for the Unix System: Bridging the Gap
Between the User and Command Language Seman-
tics. In the Proceedings of the Fourth National
Conference of Canadian Society for Computational
Studies of Intelligence. University of Saskatchewan,
Saskatoon, Canada.

Faletti, J. 1982. PANDORA - A Program for
Doing Commonsense Planning in Complex Situa-
tions. In the Proceedings of the National Confer-
ence on Artificial Intelligence. Pittsburgh, PA.
August, 1082.

Rau, L. 1983. Computational Resolution of
Ellipses. Submitted to IJCAI-83, Karlsruhe, Ger-
many.
Jacobs, P. 1983. Generation in a Natural Language
Interface. Submitted to IJCAI-83, Karlsruhe, Ger-
many.
Schmolze, J. and R. Brachman. 1981. Proceedings
of the 1981 KL-ONE Workshop. Fairchild Techni-
cal Report No. 618, FLAIR Technical Report No.
4. May, 1982.

Wilensky, R. 1982. Talking to UNIX in English: An
Overview of UC. In the Proceedings of the National
Conference on Artificial Intelligence. Pittsburgh,
PA. August, 1982.
Wilensky, R. 1981(b). A Knowledge-based
Approach to Natural Language Processing: A Pro-
gress Report. In the Proceedings of the Seventh
International Joint Conference on Artificial Intelli-
gence. Vancouver, British Columbia. August, 1981.

Wilensky, R., and Arens, Y. 1980(a). PHRA.N - a
Knowledge-Based Natural Language Understandcr.
In the Proceedings of the 181h Annual Meetin~ of the
Association for Computational Linquistics. Phi-
ladelphia, PA.
Wilensky, R., and Arens, Y. 1980(b). PHRAN - a
Knowledge Based Approach to Natural Language
Analysis. University of California at Berkeley, Elec-
tronic Research Laboratory Memorandum No.
UCB/ERL M80/34.

163

