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Abstract

State-of-the-art models for knowledge graph
completion aim at learning a fixed embed-
ding representation of entities in a multi-
relational graph which can generalize to in-
fer unseen entity relationships at test time.
This can be sub-optimal as it requires mem-
orizing and generalizing to all possible en-
tity relationships using these fixed represen-
tations. We thus propose a novel attention-
based method to learn query-dependent rep-
resentation of entities which adaptively com-
bines the relevant graph neighborhood of an
entity leading to more accurate KG comple-
tion. The proposed method is evaluated on two
benchmark datasets for knowledge graph com-
pletion, and experimental results show that
the proposed model performs competitively or
better than existing state-of-the-art, including
recent methods for explicit multi-hop reason-
ing. Qualitative probing offers insight into
how the model can reason about facts involv-
ing multiple hops in the knowledge graph,
through the use of neighborhood attention.

1 Introduction

Knowledge graphs, such as Freebase (Bollacker
et al., 2008), contain a wealth of structured knowl-
edge in the form of relationships between enti-
ties and are useful for numerous end applications.
However, knowledge graphs (KG)—whether au-
tomatically constructed or human curated—are in-
complete (Banko et al., 2007) and thus automatic
methods for KG completion have been an impor-
tant area of research (Nickel et al., 2016). The task
of KG completion requires inferring missing en-
tity relationships from the observed graph and is
often formulated as predicting a target entity for a
given query of source entity e and relation r, that
is, to complete the tuple (e, r, ?).

∗Work done as an intern at Google Research

Most state-of-the-art methods for KG comple-
tion learn vector embeddings of entities and rela-
tions (Bordes et al., 2013; Toutanova et al., 2015;
Dettmers et al., 2017; Trouillon et al., 2016) which
are used in conjunction with a (potentially param-
eterized) scoring function that scores every tuple
in the graph. These embeddings are optimized
such that the score for observed graph tuples is
higher than a random tuple. While these mod-
els achieve good performance, they learn a fixed-
dimensional embedding for every entity, which
necessitates that this embedding must memorize
and then be able to generalize to infer all possi-
ble relationships for the entity, which may require
multiple-hops of reasoning in the KG (Neelakan-
tan et al., 2015; Das et al., 2017).

In contrast, it can be beneficial to compose em-
beddings from a query-relevant subset of the graph
neighborhood of the entity. As a motivating exam-
ple, consider answering the query (e, nationality,
?) for some entity e. Observing the KG neighbor
(e, lived in, Maui), can allow us to project e into
the Maui region of the embedding space which
can lead to a high score for predicting the target
USA (through an appropriate scoring function), as
Maui and USA were close in embedding space due
to other relations between them in KG. Note that
here e can have a type that is very different than
the type of Maui, for example e can be Oprah
Winfrey in which case it’s type would be Actor but
using the neighborhood we can still project it to be
close to USA for the query.

Thus, we propose A2N, an effective model
(Section 2) which, conditioned on the query,
uses a bi-linear attention on the graph neigh-
borhood of an entity to generate an embedding
representation of the entity. This query-specific
and neighborhood-informed representation is then
used to score target entities for the query. Intu-
itively, for the example described above, the model
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Figure 1: An actual example of how the A2N model generates the answer for two different queries for the same
entity Oprah Winfrey on the FB15k-237 graph. We show a subset of the top neighbors. Each neighbor is assigned
a probability based on the query and the neighbor representations are pooled based on these probabilities to obtain
the entity embedding for the source entity. Top 3 neighbors are in bold face.

can score neighbors connected via the lived in re-
lations higher so that the resulting embedding of
the entity would be in the US region of the em-
bedding space which when scored in conjunction
with the query relation nationality can yield a high
score for the target entity US. Fig. 1 shows an
actual example how the model scores the graph
neighborhood for two different queries on the
same node, attending to a different relevant sub-
set of the neighborhood for each query.

On two standard benchmark datasets for KG
completion (Dettmers et al., 2017) – FB15k-237
(Toutanova et al., 2015) and WN18RR – we show
(Section 3.2) that the model performs competi-
tively or better than existing state-of-the-art mod-
els. Qualitative analysis (Fig. 1, Section 3.2)
shows that the model indeed assigns higher scores
to relevant neighbors based on the query and pro-
vides insight into how the model answers queries
requiring multiple hops.

2 Methodology

Problem Formulation and Notation: Let [X]
represent the integer set {1, . . . , X}. We are given
a KG, G := {(s, r, t)} where each tuple consists
of a source entity s ∈ [Ve], a relation r ∈ [Vr] and
a target entity t ∈ [Ve], with Vr being the num-
ber of relations and Ve the number of entities in
the graph. The objective is to predict the target
entity for a given query of source entity and rela-
tion, q := (s, r, ?) – such that the predicted tuple
doesn’t already exist in G.

Entities, e, and relations, r, are represented
as k-dimensional embeddings, ẽ and r̃. Most
embedding-based methods for KG completion
work by defining a scoring function f for every
possible tuple in the KG. For example, DistMult

(Yang et al., 2014) uses the following score:

f(s, r, t) = s̃TDiag(r̃)t̃ (1)

where Diag(r̃) is a k × k diagonal matrix with r̃
in its diagonal. There are other functions proposed
in the literature (Bordes et al., 2013; Dettmers
et al., 2017; Trouillon et al., 2016). We used the
DistMult scoring function in our experiments for
its simplicity and good performance when tuned
properly (Kadlec et al., 2017), though the model
can be combined with any other scoring function.

2.1 A2N Model
We now describe our graph-attention model. Con-
sider the neighborhood of an entity s to be Ns =
{(ri, ei)|(s, ri, ei) ∈ G}. We associate each graph
entity e with an initial embedding ẽ0, and each re-
lation r with an embedding r̃. We first encode ev-
ery neighbor into an embedding. The embedding
of a neighbor (ri, ei) ∈ Ns of entity s, is obtained
by concatenating the initial embeddings and pro-
jecting using a linear transform. The model then
attends to each element of Ns, assigning it a prob-
ability for its relevance in answering the query and
generates the query-dependent embedding of the
entity s by aggregating the neighbor embeddings
weighted by their relevance. Concretely, given a
query (s, r, ?), we assign each neighbor ni ∈ Ns

a scalar attention score ai which is then normal-
ized over all neighbors to obtain the probabilities
pi. The neighbor embeddings are then then aggre-
gated with pi as weights to generate new source
embedding ŝ. This is concatenated with the initial
source embedding and projected to K dimension
to obtain the final source embedding s̃:

ñi =Wn[r̃i; ẽ
0
i ]

ai = f(s, r, ni) = (s̃0)TDiag(r̃)ñi (2)
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pi =
exp(ai)∑

j≤|Ns| exp(aj)

ŝ =
∑

i≤|Ns|

piñi

s̃ =Ws[ŝ; s̃
0] (3)

where Wn ∈ RK×2K , Ws ∈ RK×2K are projec-
tion matrices. We use this attention-based embed-
ding for the source entity s̃ along with the query
relation embedding r̃ and the base embedding for
a potential target entity t̃0 in the DistMult scor-
ing function Eq(1) to generate a score for the tu-
ple (s, r, t). This is done for all possible entities
t ∈ [Ve] to obtain a ranked list of potential target
entities for the query.

We use DistMult function for the attention scor-
ing in Eq(2) as it allows the model to learn to
project the neighbors in the same space as the tar-
get entities, so as to give high scores to correct tar-
gets when the resulting embedding is scored again
using the DistMult score Eq(1).

Training: The model is randomly initialized
and all embeddings and projection parameters are
trained by taking a tuple from the graph (s, r, t) ∈
G, hiding the target entity t and randomly sam-
pling negative entities, t− = {e|(s, r, e) /∈ G}.
The scores for the positive and each negative tuple
are passed through a softmax to compute the like-
lihood of predicting the correct target. The same
process is repeated for predicting the source en-
tity given (r, t). We also augment the graph by
adding an inverse relation for every graph relation
which improves training by increasing the possible
neighborhood elements for the model to attend.

3 Experiments

3.1 Experimental Setup
Datasets: Following Dettmers et al. (2017),
we evaluate the model on two standard bench-
mark datasets for KG completion, FB15k-237
(Toutanova et al., 2015) and WN18RR (Dettmers
et al., 2017).
Evaluation Protocol: We followed the evaluation
protocol of Dettmers et al. (2017). Each test tu-
ple (s, r, t) is converted into two queries: target
query (s, r, ?) and source query (?, r, t). For ev-
ery query, the correct entity is ranked among all
KG entities excluding the set of other true entities
for the query observed in either train/dev/test set
for the same query. See Kadlec et al. (2017) for
more details. We then report the Mean Reciprocal

Rank (MRR) of the correct entity, that is the av-
erage of the reciprocal rank of the correct entity,
and the Hits@N, that is the accuracy in the top
N predictions. Experimental details, including all
hyper-parameters, are in Appendix A.

3.2 Results

Results are summarized in Tables 1 and 2. We
compare with many state-of-the-art methods for
KG completion. Note that we did not fine-tune
separate models for target-only and source-and-
target prediction, but instead trained a model for
source-and-target prediction and used it for both
evaluations. In Table 1, we evaluate performance
on target-only prediction. The baseline results on
target-only prediction are taken from Das et al.
(2017), who finetuned all the models for this task.
We find that the proposed A2N model performs
significantly better than all baseline models for
target-only prediction. Interestingly, the model
also performs significantly better than MINERVA,
a model which uses RL to search for explicit paths
for multi-hop reasoning (Das et al., 2017).

In Table 2, we evaluate on both source and tar-
get prediction1. The remaining baseline results are
reproduced from the respective papers. We find
that on WN18RR the model performs better than
all baselines, except on Hits@10 metric where it
is competitive with ConvE. On FB15k-237, the
model performs competitively to ConvE and better
than all the other models. Among existing base-
lines, we found ConvE to be the best competi-
tor to our model. Note that in general all mod-
els perform better on target-only (Table 1) as com-
pared to both source and target prediction. This is
due to more ambiguous and one-to-many queries
when predicting source entity (Das et al., 2017),
for example (?, nationality, US). For such generic
source-prediction queries we expect attention to
be of limited use.

Qualitative Results: Fig. 1 shows how the
model attends to different subsets of neighbors for
the same graph entity for different queries. This
example also demonstrates how the model can rea-
son about multiple-hops of facts. Using neighbors
such as places lived, the entity is first projected
into a relevant subspace of the embedding space
and then when scored with the target entity US
leads to a high DistMult score for the relation na-

1We tuned our own DistMult implementation and ob-
tained better results
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FB15k-237 WN18RR
MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult 0.370 0.568 0.417 0.275 0.43 0.48 0.44 0.41
ComplEx 0.394 0.572 0.434 0.303 0.42 0.48 0.43 0.38

ConvE 0.410 0.600 0.457 0.313 0.44 0.52 0.45 0.40
MINERVA 0.293 0.456 0.329 0.217 0.45 0.51 0.46 0.41

A2N 0.422 0.608 0.464 0.328 0.49 0.55 0.50 0.45

Table 1: Results for target-only prediction of various models. A2N performs significantly better.

FB15k-237 WN18RR
MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult 0.278 0.444 0.304 0.196 0.43 0.49 0.44 0.39
ComplEx 0.247 0.428 0.275 0.158 0.44 0.51 0.46 0.41
R-GCN 0.249 0.417 0.264 0.151 – – – –
ConvE 0.325 0.501 0.356 0.237 0.43 0.52 0.44 0.40
A2N 0.317 0.486 0.348 0.232 0.45 0.51 0.46 0.42

Table 2: Results for both source and target prediction of various models. A2N performs better or competitively to
most state-of-the-art models, specially on top prediction (Hits@1).

tionality. Here the model implicitly reasoned over
a two-hop fact, first about places lived and the sec-
ond about the country of those places. More exam-
ples of attention are provided in Fig. 2, refer to the
Appendix B for more qualitative analysis.

4 Related Work

KG completion is an important research area, with
several embedding-based models proposed, such
as TransE which scores translations of entities
in embedding space (Bordes et al., 2013), Dist-
Mult (Toutanova et al., 2015), ComplEx which is
an extension to complex space (Trouillon et al.,
2016), ConvE which uses 2D convolution layers
(Dettmers et al., 2017) as well as recent tensor de-
composition methods (Lacroix et al., 2018). Refer
to Nickel et al. (2016) for a more comprehensive
review. Recently, Das et al. (2017); Xiong et al.
(2017) proposed reinforcement learning meth-
ods which find paths in KG. We compared with
MINERVA (Das et al., 2017), a recent method,
and found A2N to perform favorably. Graph
Convolution Networks (Kipf and Welling, 2016;
Schlichtkrull et al., 2017) and Graph attention net-
works (Veličković et al., 2017) also learn neigh-
borhood based representations of nodes. How-
ever, they do not learn a query-dependent compo-
sition of the neighborhood which is sub-optimal as
also seen our in experiments and noted previously
(Dettmers et al., 2017). They are also computa-
tionally expensive. Nguyen et al. (2016) proposed

a neighborhood mixture model which is closely
related. However, their proposed model learns a
fixed mixture over neighbors as opposed to learn-
ing an adaptive mixture based on the query, and
requires storing an embedding parameter for ev-
ery entity-relation pair which can be prohibitively
large, potentially O(Ve × Vr) whereas our model
only requires O(Ve + Vr). Moreover, their model
cannot generalize to unseen entity-relation pairs
and new neighbors of an entity even when the en-
tity and relation for the pair was observed with
other relations or entities. Our work is also re-
lated to Memory Network models, often used for
question-answering (Kumar et al., 2016; Miller
et al., 2016; Bansal et al., 2017). To the best of our
knowledge, this is the first work utilizing attention
to learn query-dependent entity embeddings from
the entity neighborhoods.

5 Conclusion

We proposed A2N, an attention-based model
for learning query-dependent entity embeddings
based on graph neighborhood. The model per-
forms favorably when compared with state-of-the-
art models for KG completion. The model has
attractive properties as it is interpretable and its
number of parameters do not depend on the size
of entity neighborhoods. Future research will look
into applying such methods to reason jointly about
text and KG, by attending to textual mentions of
entities in addition to graph (Verga et al., 2016).
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Figure 2: Example of queries, their top prediction and the set of top 5 attention neighbors as well as their attention
probabilities for the A2N model.
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A Experimental Details

We found hyperparameters by selecting the set
which performed best on the validation sets
according to Hits@10. We evaluated k ∈
{128, 256, 512}, number of negative samples
n− ∈ {500, 1000, 2000}, batch-size b ∈
{256, 512, 1024, 2048} and chose k = 512, n− =
2000 and b = 1024. We used Adam (Kingma and
Ba, 2014) with a fixed learning rate of 0.001, β1 =
0.9, β2 = 0.999. Gradients were clipped to a
maximum norm of 10. We capped the maximum
number of neighbors of an entity to 500, randomly
sub-sampling the set of neighbors when required.
We used dropout on all embeddings, and after the
projection matricesWn andWs. We used the same
fixed value of dropout probability d everywhere
which we tuned in {0.4, 0.3, 0.2, 0.1} and chose
d = 0.3 as the value on both datasets.

B Qualitative Results

Fig. 2 shows how the model attends to relevant
neighbor subsets for different queries. Consider,
for example, the query about the profession of Bill
Payne. Here the model attends to his recording

Entity Top 5 Neighbors
Two and a Half Men Murphy Brown, How I Met Your

Mother, The Big Bang Theory,
The Larry Sanders Show, Glee

Flute Saxophone, Fiddle, Violin, Elec-
tric Piano, Percussion Instru-
ment

Space Rock Progressive Metal, Noise Pop,
Progressive Rock, Garage Rock,
Free Jazz

Madagascar Escape 2 Africa Shrek Forever After, The
Sponge Bob Squarepants,
Madagascar (2005), The Prince
of Egypt, The Adventures of
Tintin

University of Oxford University of Cambridge, Uni-
versity of Glasgow, University
College Oxford, University of
Sussex, University of California
Berkley

Edinburgh Aberdeen, Glasgow, Dumfries
and Galloway, Dundee, Fife

Table 3: Top 5 neighbors of entities based on cosine
similarity.

contribution as a synthesizer and that he is an in-
strumentalist for Keyboards to infer that he is a
musician. On the other hand, for queries like na-
tionality, the model attends to neighbors like place
of birth (see query for Burt Young) and places
lived. For a query about time zone, the model at-
tends to the state and metropolitan area contain-
ing the location to infer the time-zone. Note that
all of these queries requires reasoning over mul-
tiple facts and model achieves this by (1) explic-
itly selecting a subset of neighbors of the entity
to project to an appropriate neighborhood in the
embedding space, and then (2) selecting the entity
with the largest score given by DistMult for the
query relation.

We found nearest neighbors of entities based on
the initial embeddings of entities before attention.
These entities should ideally cluster into regions
which participate in similar relations as that would
benefit attention by allowing entities to be pro-
jected into the appropriate region in the embed-
ding space. Table 3 shows the nearest neighbors
for some entities. For sitcom TV shows like Two
and a Half Men, we find other sitcoms like How
I Met Your Mother in neighbors, for University of
Oxford we find other universities like University of
Cambridge as top neighbors, for cities like Edin-
burgh we find other cities in the same country like
Aberdeen and Glasgow as top neighbors. Overall,
we found the nearest neighbors to be functionally
related which would benefit attention.


