
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4356–4365
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4356

AutoML strategy based on grammatical evolution: A case study about
knowledge discovery from text

Suilan Estevez-Velarde1, Yoan Gutiérrez2, Andrés Montoyo3, and Yudivián Almeida-Cruz1

1School of Math and Computer Science, University of Havana, Cuba
{sestevez,yudy}@matcom.uh.cu

2University Institute for Computing Research (IUII), University of Alicante, Spain
3Department of Languages and Computing Systems, University of Alicante, Spain

{ygutierrez,montoyo}@dlsi.ua.es

Abstract

The process of extracting knowledge from
natural language text poses a complex prob-
lem that requires both a combination of ma-
chine learning techniques and proper feature
selection. Recent advances in Automatic Ma-
chine Learning (AutoML) provide effective
tools to explore large sets of algorithms, hyper-
parameters and features to find out the most
suitable combination of them. This paper
proposes a novel AutoML strategy based on
probabilistic grammatical evolution, which is
evaluated on the health domain by facing the
knowledge discovery challenge in Spanish text
documents. Our approach achieves state-of-
the-art results and provides interesting insights
into the best combination of parameters and
algorithms to use when dealing with this chal-
lenge. Source code is provided for the research
community.

1 Introduction

In recent years there has been a large increase in
the amount of technical documents produced by
the scientific community. These documents form
part of a large corpora of knowledge (e.g., re-
search papers and encyclopedias) mostly accessi-
ble through text-based search engines. However,
to better exploit this knowledge (i.e., not just re-
covering text fragments or URLs) in automated
processes, it is necessary to process the text and
extract the pieces of information in a semantic for-
mat useful for machine analysis. The challenge
of automatically extracting useful knowledge from
text sources is studied by research areas such as
knowledge discovery (Gonzalez et al., 2015), on-
tology learning (Cimiano et al., 2009) and learning
by reading (Barker et al., 2007).

One of the most useful representation for dis-
covering knowledge in natural language sentences
is using Subject-Verb-Object triplets (Estevez-

Velarde et al., 2018). This structure is ubiqui-
tous in many human languages (Crystal, 1997),
and as such, it has been used as the base for
knowledge extraction in several systems (Mitchell
et al., 2018). In a similar line, Giunchiglia and
Fumagalli (2017) propose the use of objects, ac-
tions and functions as main components for repre-
senting common knowledge. Additionally, other
relations with a specific meaning are often used
in ontologies to represent taxonomies (i.e., is-a)
or composition (i.e., part-of ). Hence, combining
objects and actions with a small set of specific
semantic relations allows the representation of a
broad range of domains with a simple computa-
tional structure.

Specifically in the health domain, research in
knowledge discovery techniques has steadily in-
creased motivated by the potential impact in the
quality of human life. Even though the amount
of medical knowledge published in natural lan-
guage is considerable, it is still an open chal-
lenge the design of computational systems that can
make effective use of this knowledge, for exam-
ple, to improve diagnosis and aid in medical deci-
sion making (Gonzalez et al., 2015). In this con-
text, the shared campaign TASS 2018 eHealth-
KD (Martı́nez-Cámara et al., 2018) proposes a
new evaluation scenario where health documents
in Spanish language must be processed to extract
Subject-Action-Target triplets along with other se-
mantic relations. This scenario presents a general-
purpose semantic structure, hence, systems de-
signed for the automatic extraction of knowledge
are potentially reusable in multiple domains.

Different solutions presented in the challenge
show the complexity of this task (Piad-Morffis
et al., 2019b). The approaches of this challenge
used a variety of algorithms (e.g., neural networks,
natural language processing, machine learning,
etc.) and different strategies to face the challenge,
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such as combining different subtasks. Besides,
each algorithm implemented involves parameters
that need to be manually tuned to find their op-
timal values, which increases the experimentation
time considerably. This extensive experimentation
could be better handled by means of Automated
Machine Learning (AutoML) strategies.

AutoML is a recent strategy used for the auto-
matic selection of the best combinations of algo-
rithmic pipelines. The AutoML process is based
on the definition of a solution space where all
the possible pipelines are represented, and a op-
timization process to explore this space. The op-
timization process is typically implemented us-
ing two common approaches: Bayesian (Hutter
et al., 2019) and Evolutionary Optimization (Chen
et al., 2018). Some of the most popular examples
of AutoML techniques based on Bayesian Opti-
mization are Auto-Weka (Thornton et al., 2013),
Auto-Sklearn (Feurer et al., 2015) and Hyperopt-
Sklearn (Komer et al., 2014). Among the Evolu-
tionary Optimization approaches, two of the most
relevant are TPOT (Olson and Moore, 2016) and
RECIPE (de Sá et al., 2017). In case of neu-
ral networks, a common approach is Neural Ar-
chitecture Search (Zoph and Le, 2016) (NAS),
were frameworks such as Auto-Keras are used (Jin
et al., 2018). NAS methods can be based both on
Bayesian and Evolutionary Optimization.

Current AutoML approaches are oriented to-
wards dealing with black-box classification or re-
gression problems. In the eHealth-KD challenge
context, the selection of which algorithms and
hyper-parameters to use for each subtask can be
framed as a classic AutoML problem. However,
there are additional high-level decisions, such as
whether to solve subtasks sequentially or com-
bined, that cannot be easily represented in tradi-
tional AutoML frameworks. This research pro-
poses a novel AutoML strategy based on prob-
abilistic grammatical evolution (Kim and Ahn,
2015) designed for knowledge discovery from
text. Our approach performs an intelligent search
among several possible pipelines, incrementally
learning the characteristics that produce the best
performance. As a case study, we apply our pro-
posal to the eHealth-KD challenge, and achieve
state-of-the-art results in one of the evaluation sce-
narios proposed. However, this approach can be
extended to other machine learning scenarios. Fur-
thermore, the source code of our proposal, with the

example application to the eHealth-KD challenge
and additional examples in several different prob-
lems is provided for the research community1.

This paper is organized as follows. Section 2
presents a brief description of the eHealth-KD
challenge. Section 3 describes the main ap-
proaches submitted for the eHealth-KD challenge
in the TASS 2018 workshop. Section 4 introduces
the main contribution of the research, which is
an automatic optimization procedure for dealing
with the eHealth Knowledge Discovery challenge.
Section 5 presents the main experimental results
obtained in comparison with relevant alternatives.
Finally, Section 6 presents an in-depth analysis of
the optimization process and interesting insights,
and Section 7 presents the main conclusions and
future lines of research.

2 Challenge description

The eHealth-KD challenge represents a knowl-
edge discovery task in the domain of health-
related documents written in Spanish language,
as part of the TASS 2018 workshop (Martı́nez-
Cámara et al., 2018). The overall purpose of the
task is the identification of two types of textual en-
tities (concepts and actions) and six semantic rela-
tions among them (subject, target, is-a, same-as,
property-of and part-of ). Figure 1 shows a visual
representation of these elements and its semantic
annotation model in a set of example sentences.
The task is subdivided into three subtasks, namely,
the identification of relevant key phrases, the clas-
sification of these into concepts or actions, and the
identification of the corresponding relations.

Figure 1: Example of the TASS 2018 Task 3 challenge,
taken from Martı́nez-Cámara et al. (2018) and modified
to fit. This represents an example written in Spanish
language

1https://github.com/
knowledge-learning/hp-optimization

https://github.com/knowledge-learning/hp-optimization
https://github.com/knowledge-learning/hp-optimization
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According to this subdivision in subtasks, a
standard F1 metric is used to evaluate the overall
performance of an extraction system. This met-
ric is defined as a micro-average between correct,
incorrect, missing and spurious key phrases, their
classes, and the relations between them. Further-
more, the challenge defines three evaluation sce-
narios in which different subtasks are considered.
However, for the purpose of this research, we fo-
cus on Scenario 1, which considers all three sub-
tasks and is thus the most complete and challeng-
ing.

3 Related works

A total of 6 researchers submitted their approaches
in the eHealth-KD challenge, of which 5 evaluate
in Scenario 1. However, one of these participants
did not submit a description paper, hence, it will
not be considered in this research. This section
briefly describes the main characteristics of the
systems designed by the remaining 5 researchers.

In terms of representation, most of the ap-
proaches presented rely on natural language pro-
cessing features. Medina and Turmo (2018) and
Palatresi and Hontoria (2018) employ Freeling
to extract syntactic and morphological features.
Zavala et al. (2018) trains a BI-LSTM model to
encode the morphological and syntactic features
for later use with a shallow classifier. These ap-
proaches also rely on word embeddings (either
Glove or Word2Vec) as additional semantic fea-
tures. López-Ubeda et al. (2018), on the other
hand, uses a custom entity detector also based on
syntactic and morphological features.

With respect to machine learning, two ap-
proaches use deep learning techniques, specifi-
cally convolutional neural networks (Medina and
Turmo, 2018; Suarez-Paniagua et al., 2018). In
contrast, other approaches apply a CRF classifier
for solving subtasks A and B (Palatresi and Honto-
ria, 2018; Zavala et al., 2018), and shallow classi-
fiers (logistic regression) for solving subtask C. Fi-
nally, López-Ubeda et al. (2018) uses hand-crafted
rules with syntactic and knowledge-based charac-
teristics for subtask B.

Even though the challenge is originally de-
fined as a sequence of three subtasks, several ap-
proaches opted for combining subtasks, recogniz-
ing important correlations between them. For ex-
ample, Zavala et al. (2018) and Palatresi and Hon-
toria (2018) frame subtask A and B as an entity

tagging problem, and apply standard sequence-
based models. In contrast, Medina and Turmo
(2018) solves simultaneously subtasks B and C,
noting that there is a high correlation between en-
tity classes and the possible relations.

Given this variety of approaches, it is interesting
to explore automatically a wide range of algorithm
combinations for the eHealth-KD challenge in or-
der to find out the combination of strategies that
obtains the best results.

4 AutoML strategy for knowledge
discovery from text

Our proposal is based on AutoML, using the
metaheuristic grammatical evolution (O’Neill and
Ryan, 2001) for defining and exploring the space
of solution for dealing with the Scenario 1 of the
eHealth-KD challenge. However, the optimiza-
tion process is different to the traditional gram-
matical evolution formulation because our gram-
mar involves both discrete and continuous param-
eters. Instead, we propose a modified version
of probabilistic grammatical evolution (Kim and
Ahn, 2015). The proposal is described by dividing
the process into two stages: (I) the definition of
a grammar specific for the eHealth-KD challenge
(see section 4.1) and (II) the design of an optimiza-
tion process, based on this grammar, for obtaining
the best (i.e., optimal) pipeline (see section 4.2).
Figure 2 shows a visual representation of the com-
plete AutoML process designed in this research.

4.1 Definition of the space of solutions

In this stage we define a grammar that takes into
considerations the solutions of the eHealth-KD
challenge for the edition TASS-2018. This gram-
mar includes a source code representation that cor-
responds to different pipelines designed for this
task and therefore defines the solutions space for
the optimization process. Figure 3 shows an ex-
tract of the grammar, as defined in the source code
for the experimentation. The complete grammar
and associated source code can be browsed on-
line2.

The grammar defines Pipeline, which con-
sists of a representation phase (Repr) where text
is preprocessed, cleaned and vectorized; and three
classification phases, one for each subtask. The

2https://github.com/
knowledge-learning/hp-optimization/blob/
master/hpopt/examples/ehealthkd.py

https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples/ehealthkd.py
https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples/ehealthkd.py
https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples/ehealthkd.py
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Figure 2: Visual representation of the AutoML process defined. A probabilistic grammar is sampled to obtain po-
tential pipelines, which are evaluated in the eHealth-KD corpus. An optimization process selects the best pipelines
and updates the probabilistic model. This iterative process converges towards the best performing pipelines.

classification phases can be performed sequen-
tially (i.e., first subtask A, then B and then C),
or some of the subtasks can be performed jointly.
Hence, the complete pipeline can be performed in
four different ways, according to how subtasks are
handled. The representation phase consists of six
steps: (1) a preprocessing step (Prep) where ac-
cents and punctuation symbols are optionally re-
moved; (2) a tokenization step (Token); (3) a
step (MulWords) where single tokens are com-
bined into multi-word tokens using several strate-
gies; (4) a semantic step (SemFeat) where pos-
tag and dependency features are optionally added;
(5) another preprocessing step (PosPrep) where
stopwords are optionally removed and stemming
is optionally applied; and (6) a final step (Embed)
where text is represented as bag-of-words or us-
ing an embedding, i.e., word2vec (Mikolov et al.,
2013).

Each classification subtask in turn can be solved
using one of several classifiers. Five differ-
ent classifiers are considered: logistic regression
(LR), SVM, multinomial Naive Bayes (NB), de-
cision trees (DT) and a restricted subset of neu-
ral networks (NN). For shallow classifiers, hyper-
parameters are also considered, such as regular-
ization strength in logistic regression or kernel
type in SVM. Additionally, for subtask A a hid-
den Markov model is added as a sixth classifier
with corresponding hyperparameters. In the case
of neural networks, three different architectures
are allowed: either a convolutional layer (CVL),

a recurrent layer (RL), or fully connected dense
layers (DL), followed by a final dense layer (FL).
In all cases, hyperparameters such as dropout rate
(Drop), number of layers, and layer sizes are al-
lowed to vary. In the case of convolutional layers,
also filter sizes are considered.

The complete grammar involves 78 produc-
tions, and defines a total of 349, 479, 936 ≈ 228

different possible pipelines without considering
continuous hyperparameter values.

4.2 Optimization process
The optimization process is based on probabilis-
tic grammatical evolution (Kim and Ahn, 2015),
where each decision (production in the grammar)
is represented as a probability distribution. Ini-
tially all decisions (i.e., classifications algorithms,
pre-processing steps, etc.) have an uniform prob-
ability to be chosen. However, during the op-
timization process these probability distributions
are updated towards selecting the top performing
pipelines. The update is performed according to
the following rule:

θt+1 = (1− α) · θt + α · θ∗t (1)

Where θt is the probability model in generation t;
θ∗t is the marginal probability model induced by
the best k performing solutions in generation t;
and α is a small learning rate. In time, this process
converges to a subset of the solution space with
a better performance on average on the evaluated
task. The best pipeline found during the whole op-
timization process is reported as the final solution.
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Pipeline := Repr A B C | Repr AB C |
Repr A BC | Repr ABC

A := Class | Seq
B := Class
C := Class

# Representation
Repr := Prep Token MulWords

SemFeat PosPrep Embed

# Classic classifiers
Class := LR | SVM | NB | DT | NN
LR := Reg Penalty
Reg := f(0.01,100)
Penalty := l1 | l2
SVM := Kernel
Kernel := linear | rbf | poly

# Neural networks
NN := Drop CVL DL FL |

Drop RL DL FL |
Drop DL FL

....

Figure 3: Extract of the 78 productions of the grammar
defined for the TASS 2018 eHealth-KD challenge. For
simplicity, only the top productions and some example
productions of classifiers and their hyperparameters are
shown.

The probability model θt defines a joint prob-
ability for all the productions of the grammar at
iteration t. Productions that correspond to dis-
crete choices (e.g. Penalty := l1 | l2)
are modelled with a discrete uniform dis-
tribution. Productions that correspond to
integer or real hyperparameter values (e.g.,
Reg := f(0.01,100)) are modelled as a uni-
form distribution parameterized by a mean and a
standard deviation, which are initialized according
to the grammar definition.

After each iteration of the optimization process,
the probability model is updated by interpolat-
ing between the current model θt and a marginal
model θ∗t using the parameter α. The update
rule (eq. 1) is applied at each production of the
grammar. Discrete uniform distributions are up-
dated by interpolating the probability vectors and
renormalizing. Integer and real hyperparameters
are updated by interpolating the mean and stan-
dard deviation. The marginal probability model
θ∗t is computed from a selection of the top n
pipelines, in terms of F1 score. Each production
in θ∗t is assigned a probability distribution inferred
from the sample of the actual productions used in
the top n pipelines.

This process allows a more intelligent search in
the space of all possible pipelines, guided by the

structure of the defined grammar. Even though
the space of all possible pipelines is exponentially
large (with respect to the size of the grammar),
grammatical evolution can sample from this solu-
tion space to obtain a broad view and iteratively
focus on the most promising regions, i.e., the sub-
sets of pipelines with the best performance. Fig-
ure 4 shows a simplified representation of this op-
timization process, illustrating that some specific
pipelines have a different performance. Notice
that whole details (i.e., representation complexity
and hyperparameter selection) are not displayed in
this illustration due to space limitation.

5 Experimental results

The algorithm described in Section 4 was imple-
mented and executed for a total of 60 genera-
tions. Each generation consisted of 50 pipelines,
with a selection of the best 10, and a learning fac-
tor α = 0.05. In total, 3000 different pipelines
were evaluated in 257 hours of computation time,
which resulted in an average evaluation time of
5.17 minutes per pipeline. A timeout of 10 min-
utes was used to stop the evaluation of very long
pipelines. These incomplete pipelines are given
a fitness of 0, which makes the optimization al-
gorithm eventually steer away from them. The
total number of generations was adjusted accord-
ing to computational constraints. The optimiza-
tion process was monitored regularly and stopped
after a sufficient computation time in which little
to no improvement was observed, which indicated
a convergence of the probability model.

The evaluation was performed in the eHealth-
KD corpus (Piad-Morffis et al., 2019a), using the
training and development collections for training
and the test collection for evaluation. Thus, the
training data is comprised of 844 sentences re-
sulting in a total of 9540 annotations among key
phrases and relations. The test data is comprised
of 100 sentences (for Scenario 1) with 1100 total
annotations. After 60 generations, the best per-
forming pipeline (actually found in generation 18)
achieved a F1 score of 0.754 in Scenario 1 of the
eHealth-KD challenge. This represents a 1% ab-
solute improvement from the top result presented
in the eHealth-KD challenge, and a 4.2% abso-
lute improvement over the average result of the
top 3 alternatives (F1 = 0.711). Table 1 shows
this result in a comparison with the rest of the ap-
proaches presented in Section 3.
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Figure 4: Simplified representation of the optimization process. For clarity, details such as hyperparameter selec-
tion for each algorithm are not displayed. Performance percentages are illustrative only, not actual values.

Approach F1 (Scenario 1)

Zavala et al. (2018) 0.744
López-Ubeda et al. (2018) 0.710
Palatresi and Hontoria (2018) 0.681
Suarez-Paniagua et al. (2018) 0.310
Our proposal 0.754

Table 1: Comparison of approaches in the eHealth-KD
challenge. Only researchers that participated in Sce-
nario 1 are considered.

Finally, the best pipeline found was composed
by the following strategies: the three subtasks
were performed sequentially, using shallow clas-
sifiers in each. For subtask A, the classifier se-
lected was SVM with an RBF kernel, while for
subtask B, a Logistic Regression with L2 penal-
ization was used, and for subtask C a Decision
Tree (ID3) was selected. In terms of representa-
tion, the optimizer selected one-hot encoding with
bi-grams using stemming and with pos-tagging as
an additional syntactic feature. Figure 5 summa-
rizes the structure of the final pipeline selected.

Unfortunately it is not possible to compare our
results with other AutoML techniques directly,
since existing AutoML approaches are designed
to deal with black-box machine learning problems
where the input is a feature matrix (see Section 1).
In the eHealth-KD scenario, there are several high-
level decisions, such as selecting whether sub-
tasks are performed sequentially or in combined,
or which preprocessing steps to apply, that are
necessary before obtaining a suitable feature ma-
trix. Hence, these decisions cannot be modeled
with existing AutoML techniques. For this reason,
even though part of the eHealth-KD problem can

Pipeline:
Representation:
Preprocessing:

Remove Punctuation: no
Strip Accents: no

Multi-Words:
- Strategy: postag
- N-grams: 2

Semantic Features:
PosTag: yes
Dependencies: no

Postprocessing:
Stopwords: no
Stemming: yes

Embedding: none
Subtask A:
SVM:

Kernel: RBF
Subtask B:

Logistic Regression:
Regularization: 40.93
Penalty: L2

Subtask C: Decision Tree

Figure 5: Summarized representation of the best
pipeline discovered.

be solved using alternative AutoML approaches,
another part of the challenge would require ex-
ternal tools or a custom implementation. In fu-
ture work, we will explore other machine learning
problems where a comparison with alternative Au-
toML techniques is possible.

6 Discussion

The best pipeline obtained by our approach
achieves a small advantage over the top result pre-
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sented in the eHealth-KD challenge. However,
this pipeline is simpler than most of the presented
approaches, since it involves only shallow classi-
fiers and basic NLP techniques. Furthermore, this
pipeline was obtained automatically, without any
human input after the initial definition of the gram-
mar. This makes our strategy easier to extend to
other knowledge discovery tasks, and potentially
other machine learning scenarios, simply by defin-
ing a suitable grammar and providing the corre-
sponding implementation. To support this state-
ment, even though this research focuses on the
eHealth-KD dataset, we provide open source im-
plementations in several different machine learn-
ing problems3.

6.1 Analysis of the optimization process
The optimization process shows a significant im-
provement in the solutions’ average fitness. Fig-
ure 6 shows the evolution of the average fitness
(in terms of F1 as defined by the eHealth-KD
challenge, Scenario 1) and the fitness of the best
pipeline in each generation. This behavior illus-
trates that the optimization process improves over
time. The relatively low average fitness on the
first generations is due to invalid pipelines, which
are given a fitness score of 0. Invalid pipelines
were generated by some combinations of incom-
patible decisions, mainly for implementation re-
strictions, or when the timeout was reached. For
example, some classification algorithms require
dense matrices, which are incompatible with the
use of sparse bag-of-word representations (one-
hot encoding). These restrictions are very broad
and complex to be fully represented in the gram-
mar, since many of them are context-sensitive and
depend on which selections were made in differ-
ent parts of the grammar. In these cases, the
computational implementation results in a runtime
exception during the evaluation of the pipeline.
Since this exception cannot be predicted before-
hand, when it occurs the optimization code catches
the exception and instead returns the lowest possi-
ble fitness (F1 = 0).

However, even though invalid pipelines pose
an issue in the first generations, as the optimiza-
tion process continues, the influence of invalid
pipelines decreases gradually. This effect can be
observed in the population average fitness, which

3https://github.com/
knowledge-learning/hp-optimization/blob/
master/hpopt/examples
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Figure 6: Evolution of the best and average fitness of
pipelines in each generation.
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Figure 7: Proportion of invalid vs valid pipelines found
in each generation.

increases steadily. Furthermore, the standard de-
viation of the fitness (gray area in Figure 6) shows
a steady behaviour across all generations. This in-
dicates that both the best and worst pipelines (with
respect to fitness) are improving. Hence, the opti-
mization procedure actually learns to avoid invalid
pipelines. To further support this observation, Fig-
ure 7 shows the number of invalid pipelines (with a
score of 0) in each generation. The steady reduc-
tion of invalid pipelines in each generation is an
evidence that the optimization process eventually
converges towards solutions that represent mostly
valid pipelines.

6.2 Analysis of feature relevance
In this section we provide an analysis of all
pipelines, including their parameters and algo-
rithms, in order to identify their most relevant fea-
tures. As features, we consider all the decisions
involved in a pipeline, from subtasks order, to the
algorithms to use and the specific values for all its
hyperparameters. These features are obtained di-
rectly from each pipeline’s representation, by con-

https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples
https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples
https://github.com/knowledge-learning/hp-optimization/blob/master/hpopt/examples


4363

sidering all the productions of the grammar (i.e.,
algorithms and hyperparameter values) that are
used in one specific pipeline. As an example, if
one specific pipeline applies stopword removal,
then a feature PosPrep.StopW=yes is gener-
ated. Our grammar involves a total of 242 such
features, which account all possible decisions for
each pipeline.

The relevance of each feature can be esti-
mated by fitting a linear regression to predict
the F1 score of the evaluated pipelines, only the
1667 valid pipelines. In this case, the estima-
tion involves a coefficient of determination R2 =
0.763, meaning that these 242 features are in-
deed a good indicator of a pipeline F1 score. The
weights computed by the linear regression indi-
cate the absolute improvement that each feature
provides. For example, considering stopwords
removal (i.e., PosPrep.StopW=yes) with a
computed weight of 0.001, pipelines where stop-
words removal are active obtain a 0.1% higher F1

score on average than the rest of pipelines where
this feature is non-active. This specific case indi-
cates that stopword removal is slightly beneficial,
but not crucial in obtaining a high F1 score.

Table 2 shows the weight assigned to each clas-
sifier in each task. These weights are correlated
with the average performance of all the pipelines
that use a given classifier. For space restrictions it
is not possible to report the weights associated to
each hyperparameter of each classifier. Since ev-
ery classifier includes multiple hyperparameters,
the performance of two specific pipelines using
the same classifier can vary widely. For exam-
ple, on average, pipelines using the classifier SVM
achieve a lower score than pipelines using neural
networks. Nevertheless, the best pipeline found
uses SVM in subtask A (see Figure 5) outperform-
ing the rest due to the specific hyperparameters in-
volved in that pipeline. Hence, even though neural
networks are assigned a relative high weight they
are not selected for the best pipeline.

Similarly, table 3 show a subset of the fea-
tures corresponding to the representation phase
and their corresponding weights. Interestingly, it
is also the case that some features present in the
best pipeline do not show the largest weights.

As explained before, it is important to highlight
that not necessarily the top performing pipeline
found by the optimization algorithm will be com-
posed by top weighted features. The performance

Weights by subtask
Algorithm A B C

LR 0.0014 0.0074 -0.0127
NN 0.0361 0.0320 -0.0009
SVM -0.0157 -0.0221 0.0018
DT 0.0165 0.0223 0.0024
NB 0.0222 0.0128 -
HMM -0.0081 - -

Table 2: Relevance of the classification algorithms in
each subtask. The top weight in each subtask is high-
lighted. Missing values correspond to combinations
that were not evaluated in any valid pipeline.

of a pipeline will depend, in general, of complex
interactions between its components that are not
completely captured in a simple linear regression
model. However, there is a large correlation be-
tween feature weights and pipeline performance,
as demonstrated by the coefficient of determina-
tion (R2 = 0.763) of the regression. Since the per-
formance of a specific pipeline depends heavily on
the values of the hyperparameters, a deeper anal-
ysis is necessary to estimate the impact of each
algorithm in each step of the pipelines, taking into
account the actual values of hyperparameters used.
In future work, we will explore using this type of
analysis to warm-start the probabilistic model.

7 Conclusions and future work

This paper presents an Automatic Machine Learn-
ing strategy based on probabilistic grammatical
evolution to extract knowledge from health doc-
uments in Spanish language. Our proposal in-
volves an optimization process which explores a
large space of possible pipelines and chooses the
best performing ones automatically. The evalu-
ation was performed on a complex scenario of
the TASS 2018 eHealth-KD challenge, where the
best pipeline discovered improves over the state-
of-the-art by combining features, decisions and
strategies from different authors. In addition, the
data gathered during the optimization provided
insights about the optimal settings to deal with
the challenge faced. These results show that an
AutoML strategy based on grammatical evolu-
tion is effective for optimizing machine learning
pipelines to solve knowledge discovery challenges
from natural language text.

As future work, we plan to study the introduc-
tion of high-level knowledge to deal with the is-
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Feature Value Weight

Embed none 0.015
Embed onehot -0.030
Embed wordVec 0.006
MulWords colloc -0.032
MulWords none 0.014
MulWords postag 0.009
PosPrep.Stem no -0.003
PosPrep.Stem yes -0.005
PosPrep.StopW no -0.010
PosPrep.StopW yes 0.001
Prep.DelPunt no -0.001
Prep.DelPunt yes -0.008
Prep.StripAcc no 0.001
Prep.StripAcc yes -0.010
SemFeat.Dep no -0.013
SemFeat.Dep yes 0.003
SemFeat.PosTag no -0.025
SemFeat.PosTag yes 0.016

Table 3: Relevance of the representation features. The
top weight for each feature is highlighted.

sue of invalid pipelines and improve the perfor-
mance of the optimization process. This knowl-
edge can be in the form of explicit rules that guar-
antee the validity of the pipelines sampled from
the grammar; and in the form of statistical in-
formation extracted from similar challenges that
helps pre-defining a probabilistic model. Another
issue to research will be the use of regression mod-
els to estimate the expected fitness of a pipeline
given its features, as illustrated in Section 6. This
addition would support meta-learning algorithms,
allowing to reduce the optimization time and in-
crease its performance by learning from past exe-
cutions. Finally, by modifying the grammar, this
strategy can be extensible to other machine learn-
ing challenges. Therefore, we plan to explore this
line of research in the future, to compare our pro-
posal with other AutoML frameworks in standard
benchmarks.
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Muñoz. 2019a. A corpus to support ehealth knowl-
edge discovery technologies. Journal of biomedical
informatics, 94:103172.

Alejandro Piad-Morffis, Yoan Gutiérrez, Suilan
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