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Abstract

We consider the problem of learning to map
from natural language instructions to state
transitions (actions) in a data-efficient man-
ner. Our method takes inspiration from the
idea that it should be easier to ground language
to concepts that have already been formed
through pre-linguistic observation. We aug-
ment a baseline instruction-following learner
with an initial environment-learning phase
that uses observations of language-free state
transitions to induce a suitable latent rep-
resentation of actions before processing the
instruction-following training data. We show
that mapping to pre-learned representations
substantially improves performance over sys-
tems whose representations are learned from
limited instructional data alone.

1 Introduction

In the past several years, neural approaches have
become increasingly central to the instruction fol-
lowing literature (e.g. Misra et al., 2018; Chap-
lot et al., 2018; Mei et al., 2016). However, neu-
ral networks’ powerful abilities to induce complex
representations have come at the cost of data effi-
ciency. Indeed, compared to earlier logical form-
based methods, neural networks can sometimes re-
quire orders of magnitude more data. The data-
hungriness of neural approaches is not surprising
– starting with classic logical forms improves data
efficiency by presenting a system with pre-made
abstractions, where end-to-end neural approaches
must do the hard work of inducing abstractions
on their own. In this paper, we aim to com-
bine the power of neural networks with the data-
efficiency of logical forms by pre-learning abstrac-
tions in a semi-supervised way, satiating part of
the network’s data hunger on cheaper unlabeled
data from the environment.

When neural nets have only limited data that

Figure 1: After seeing this transition, a neural net might
generalize this action as stack red blocks to the right of
blue blocks except for on brown blocks, but a general-
ization like stack red blocks on orange blocks is more
plausible and generally applicable. We aim to guide
our model towards more plausible generalizations by
pre-learning inductive biases from observations of the
environment.

pairs language with actions, they suffer from a
lack of inductive bias, fitting the training data but
generalizing in ways that seem nonsensical to hu-
mans. For example, a neural network given the
transition shown in Figure 1 might map the cor-
responding instruction to an adequate but unlikely
meaning that red blocks should be stacked to the
right of blue blocks except for on brown blocks.
The inspiration for this work comes from the idea
that humans avoid spurious hypotheses like this
example partly because they have already formed
a set of useful concepts about their environment
before learning language (Bloom, 2000; Hespos
and Spelke, 2004). These pre-linguistic abstrac-
tions then constrain language learning and help
generalization.

With this view in mind, we allow our instruction
following agent to observe the environment and
build a representation of it prior to seeing any lin-
guistic instructions. In particular, we adopt a semi-
supervised setup with two phases, as shown in Fig-
ure 2: an environment learning phase where the
system sees samples of language-free state transi-
tions from actions in the environment, and a lan-
guage learning phase where instructions are given
along with their corresponding effects on the en-
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(i) Environment learning (ii) Language learning

Figure 2: Diagram of the network modules during the environment learning and language learning phases. s and
s′ represent states before and after an action, c represents a natural language command, and a represents a latent
action representation. The environment learning phase (i) uses a conditional autoencoder to pre-train the decoder
D toward a good representation space for a, so that fewer linguistic examples are needed during language learning
(ii).

vironment. This setup applies when interactions
with the environment are plentiful but only a few
are labeled with language commands. For exam-
ple, a robotic agent could passively observe a hu-
man performing a task, without requiring the hu-
man to perform any work they would not normally
do, so that later the agent would need less direct
instruction from a human in the form of language.
We present an environment learning method that
uses observations of state transitions to build a rep-
resentation that aligns well with the transitions that
tend to occur. The method takes advantage of the
fact that in complex environments (or even rela-
tively simple ones), not every state transition is
equally likely, but the patterns of actions that do
occur hint at an underlying structure that we can
try to capture.

We demonstrate the effectiveness of our pre-
trained representations by using them to increase
data efficiency on two instruction-following tasks
(Section 4). We show that when given few instruc-
tion examples, a network using our pre-learned
representations performs substantially better than
an otherwise identical network without these rep-
resentations, increasing performance by over ten
absolute percentage points on small datasets and
increasing data-efficiency by more than an or-
der of magnitude. We find that while perfor-
mance with a typical neural representation trained
end-to-end lags considerably behind performance
with human-designed representations, our unsu-
pervised representations are able to help cross a
substantial portion of this gap. In addition, we
perform analysis of the meaning captured by our
representations during the unsupervised environ-

ment learning phase, demonstrating that the se-
mantics captured has noteworthy similarity to a
hand-defined system of logical forms (Section 7).

2 Problem Setup

This work applies to the class of problems where
instructions are mapped to actions conditioned on
an environment state. These tasks can be formal-
ized as learning a mapping M(s, c) 7→ s′, where c
is a command in natural language, s is an environ-
ment state, and s′ is the desired environment state
after following the command. Classically, these
problems are approached by introducing a logical
form l that does not depend on the state s, and
learning a mapping from language to logical forms
P (c) 7→ l (Artzi and Zettlemoyer, 2013; Zettle-
moyer and Collins, 2005). A hand-defined execu-
tion function Q(s, l) 7→ s′ is then used to gener-
alize the action across all possible states. When
P and Q are composed, Q constrains the overall
function to generalize in a semantically coherent
way across different states.

In contrast to the logical form-based method,
our work builds off of an end-to-end neural ap-
proach, which is applicable in settings where a
system of logical forms is not provided. We struc-
ture our network as a language module L and ac-
tion decoder D in an encoder-decoder style archi-
tecture (Figure 2(ii)), similar to previous neural in-
struction following work (e.g. Mei et al., 2016).
L and D are analogous to the P and Q functions
in the logical form approach, however, unlike be-
fore, the interface between the two modules is a
vector a and the function D is learned. This gives
the neural network greater flexibility, but also cre-
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ates the problem that the decoder D is no longer
constrained to generalize across different states in
natural ways.

3 Method

3.1 Learning Action Representations from
the Environment

The goal of this paper is improve data efficiency
by pre-training the decoder D to use a better-
generalizing representation for the vector a. We do
this in an unsupervised way by allowing our sys-
tem to see examples of state transitions (actions)
in the environment before seeing any language.
We suppose the existence of a large number of
language-free state transitions s, s′ and introduce
an environment learning phase to learn representa-
tions of these transitions before language learning
starts. During this environment learning phase, we
train a conditional autoencoder of s′ given s by
introducing an additional encoder E(s, s′) 7→ a to
go along with decoder D(s, a) 7→ s′, as shown in
Figure 2(i). Both E and D are given the initial
state s, and E must create a representation of the
final state s′ so thatD can reproduce it from s. The
parameters of E and D are trained to maximize
log likelihood of s′ under the output distribution
of D.

arg max
θE ,θD

[
logPD(s′|s, E(s, s′)

]
(1)

If given enough capacity, the representation a
might encode all the information necessary to pro-
duce s′, allowing the decoder to ignore s. How-
ever, with a limited representation space, the de-
coder must learn to integrate information from a
and s, leading a to capture an abstract representa-
tion of the transformation between s and s′. To be
effective, the representation a needs to be widely
applicable in the environment and align well with
the types of state transitions that typically occur.
These pressures cause the representation to avoid
meanings like to the right of blue except for on
brown that rarely apply. Note that during pre-
training, we do not add any extra information to
indicate that different transitions might be best
represented with the same abstract action, but the
procedure described here ends up discovering this
structure on its own.

Later, after demonstrating the effectiveness of
this environment learning procedure in Section 4,
we introduce two additional improvements to the

procedure in sections 5 and 6. In Section 7, we
show that our pre-training discovers representa-
tions that align well with logical forms when they
are provided.

3.2 Language Learning

After environment learning pre-training, we move
to the language learning phase. In the language
learning phase, we are given state transitions
paired with commands (s, s′, c) and learn to map
language to the appropriate result state s′ for a
given state s. As discussed above and shown
in Figure 2(ii), we form an encoder-decoder us-
ing a language encoder L and action decoder D.
To improve generalization, we use the decoder
D that was pre-trained during environment learn-
ing. IfD generalizes representations across differ-
ent states in a coherent way as we hope, then the
composed function D(s, L(c)) will also general-
ize well. We can either fix the parameters of D
after environment learning or simply use the pre-
learned parameters as initialization, which will be
discussed more in the experiments section below.
The language module L is trained by differenti-
ating through the decoder D to maximize the log
probability that D outputs the correct state s′.

arg max
θL

[
logPD(s′|s, L(c))

]
(2)

3.3 Comparison with Action Priors

One of the roles of environment learning pre-
training is to learn something like a prior over state
transitions, ensuring that we select a reasonable
action based on the types of transitions that we
have seen. However, the method described here
has advantages over a method that just learns a
transition prior. In addition to representing which
transitions are likely, our pre-training method also
induces structure within the space of transitions.
A single action representation a can be applied
to many different states to create different transi-
tions, effectively creating a group of transitions.
After training, this grouping might come to rep-
resent a semantically coherent category (see anal-
ysis in Section 7). This type of grouping infor-
mation may not be easily extractable from a prior.
For example, a prior can tell you that stacking red
blocks on orange blocks is likely across a range of
initial configurations, but our pre-training method
may also choose to represent all of these transi-
tions with the same vector a. Finding this underly-



1949

ing structure is key to the generalization improve-
ments seen with our procedure.

4 Experiments

We evaluate our method in two different environ-
ments, as described below in sections 4.1 and 4.2.1

4.1 Block Stacking

For our first test environment, we use the block
stacking task introduced by Wang et al. (2016) and
depicted in Figure 1. This environment consists of
a series of levels (tasks), where each level requires
adding or removing blocks to get from a start con-
figuration to a goal configuration. Human anno-
tators were told to give the computer step by step
instructions on how to move blocks from one con-
figuration to the other. After each instruction, the
annotator selected the desired resulting state from
a list.

Following the original work for this dataset
(Wang et al., 2016), we adopt an online learning
setup and metric. The data is broken up into a
number of sessions, one for each human annota-
tor, where each session contains a stream of com-
mands c paired with block configuration states s.
The stream is processed sequentially, and for each
instruction the system predicts the result of ap-
plying command c to state s, based on a model
learned from previous examples in the stream. Af-
ter making a prediction, the system is shown the
correct result s′ and is allowed to make updates to
its model before moving on to the next item in the
stream. The evaluation metric, online accuracy, is
then the percentage of examples for which the net-
work predicted the correct resulting state s′ when
given only previous items in the stream as train-
ing. Under this metric, getting predictions correct
at the beginning of the stream, when given few to
no examples, is just as important as getting predic-
tions correct with the full set of data, making it as
much a measure of data-efficiency as of final ac-
curacy. The longest sessions only contain on the
order of 100 training examples, so the bulk of pre-
dictions are made with only tens of examples.

To train a neural model in this framework, the
model is updated by remembering all previous ex-
amples seen in the stream so far and training the
neural network to convergence on the full set of
prior examples. While training the network to con-

1Code for all experiments can be found at
github.com/dgaddy/environment-learning.

vergence after every example is not very computa-
tionally efficient, the question of making efficient
online updates to neural networks is orthogonal to
the current work, and we wish to avoid any con-
founds introduced by methods that make fewer
network updates.

Since the original dataset does not contain a
large number of language-free state transitions as
we need for environment learning, we generate
synthetic transitions. To generate state transitions
s, s′, we generate new levels using the random
procedure used in the original work and program-
matically determine a sequence of actions that
solve them. The levels of the game are generated
by a procedure which selects random states and
then samples a series of transformations to apply
to generate a goal state. We create a function that
generates a sequence of states from the start to the
goal state based on the transformations used dur-
ing goal generation. Most of the levels require one
or two actions with simple descriptions to reach
the goal. Following the assumption that state tran-
sitions in the environment are plentiful, we gener-
ate new transitions for every batch during environ-
ment learning. We leave an analysis of the effect
of environment learning data size to future work.

4.1.1 State Representation and Network
Architecture

We represent a state as a two dimensional grid,
where each grid cell represents a possible location
(stack index and height) of a block. The state in-
puts to the encoder and decoder networks use a
one-hot encoding of the block color in each cell
or an empty cell indicator if no block is present.
The output of the decoder module is over the same
grid, and a softmax over colors (or empty) is used
to select the block at each position. Note that the
original work in this environment restricted out-
puts to states reachable from the initial state by a
logical form, but here we allow any arbitrary state
to be output and the model must learn to select
from a much larger hypothesis space.

The encoder module E consists of convolutions
over the states s and s′, subtraction of the two rep-
resentations, pooling over locations, and finally a
fully connected network which outputs the repre-
sentation a. The decoder module D consists of
convolution layers where the input is state s and
where a is broadcast across all positions to an in-
termediate layer. The language module L runs an
LSTM over the words, then uses a fully connected
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network to convert the final state to the represen-
tation a. Details of the architecture and hyperpa-
rameters can be found in Appendix A.1.

4.1.2 Results
Our primary comparison is between a neural net-
work with pre-trained action representations and
an otherwise identical neural model with no pre-
trained representations. The neural modules are
identical, but in the full model we have fixed the
parameters of the decoder D after learning good
representations with the environment learning pro-
cedure. We tune the baseline representation size
independently since it may perform best under dif-
ferent conditions, choosing among a large range
of comparable sizes (details in Appendix A.1). To
evaluate the quality of our representations, we also
compare with a system using hand-designed logi-
cal representations (Wang et al., 2016). While not
strictly an upper bound, the human-designed rep-
resentations were designed with intimate knowl-
edge of the data environment and so provide a very
good representation of actions people might take.
This makes them a strong point of comparison for
our unsupervised action representations.

Table 1 shows the results on this task. We find
that training the action representation with envi-
ronment learning provides a very large gain in per-
formance over an identical network with no pre-
linguistic training, from 17.9% to 25.9%. In sec-
tions 5 and 6 below, we’ll add discrete represen-
tations and an additional loss term which together
bring the accuracy to 28.5%, an absolute increase
of more than 10% over the baseline. Compar-
ing against the system with human-designed rep-
resentations shows that the environment learning
pre-training substantially narrows the performance
gap between hand designed representations and
representations learned as part of an end-to-end
neural system.

4.2 String Manipulation

The second task we use to test our method is string
manipulation. In this task a state s is a string of
characters and actions correspond to applying a
transformation that inserts or replaces characters
in the string, as demonstrated in Figure 3. We use
the human annotations gathered by Andreas et al.
(2018), but adapt the setup to better measure data-
efficiency.

The baseline neural model was unable to learn
useful models for this task using data sizes appro-

Learned Representations (this work)
Baseline 17.9
Environment Learning 25.9
+ Discrete a (Section 5) 27.6
+ Encoder matching (Section 6) 28.5

Human-Designed Representations
Wang et al. (2016) 33.8

Table 1: Online accuracy for the block stacking
task.2 Pre-learning action representations with envi-
ronment learning greatly improves performance over
the baseline model, substantially narrowing the gap be-
tween hand designed representations and representa-
tions learned as part of an end-to-end neural system.
Note that these numbers represent accuracy after learn-
ing from only tens of examples.

priate for the online learning setup we used in the
previous task, so we instead adopt a slightly dif-
ferent evaluation where accuracy at different data
sizes is compared. We structure the data for eval-
uation as follows: First, we group the data so that
each group contains only a small number of in-
structions (10). In the original data, each instruc-
tion comes with multiple example strings, so we
create distinct datapoints s, s′, c for each exam-
ple with the instruction string repeated. Our goal
is to see how many examples are needed for a
model to learn to apply a set of 10 instructions.
We train a model on training sets of different sizes
and evaluate accuracy on a held-out set of 200 ex-
amples. We are primarily interested in generaliza-
tion across new environment states, so the held-out
set consists of examples with the same instructions
but new initial states s. Due to high data require-
ments of the baseline neural system, we found it
necessary to augment the set of examples for each
instruction with additional generated examples ac-
cording to the regular expressions included with
the dataset. Our final metric is the average accu-
racy across 5 instruction groups, and we plot this
accuracy for different training set sizes.

State transitions for environment learning are
generated synthetically by selecting words from
a dictionary and applying regular expressions,
where the regular expressions to apply were sam-
pled from a regular-expression generation proce-
dure written by the creators of the original dataset.
The environment learning procedure is exposed to

2Although the variance between runs was small relative
to the gaps in performance, we report an average over three
random initializations to ensure a fair comparison.
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c replace consonants with p x
s fines
s′ pxipxepx

c add a letter k before every b
s rabbles
s′ rakbkbles

c replace vowel consonant pairing with v g
s thatched
s′ thvgchvg

c add b for the third letter
s thanks
s′ thbanks

Figure 3: Examples from the string manipulation task
along with desired outputs.

transitions from thousands of unique regular ex-
pressions that it must make sense of and learn to
represent.

4.2.1 Network Architecture
For this task, the state inputs and outputs are rep-
resented as sequences of characters. The encoder
E runs a LSTM over the character sequences for s
and s′, then combines the final states with a feed-
forward network to get a. The decoder D runs a
LSTM over the characters of s, combines this with
the representation a, then outputs s′ using another
LSTM. The module architecture details and hyper-
parameters can be found in Appendix A.2.

Since our evaluation for this task considers
larger dataset sizes in addition to very small sizes,
we do not fix the parameters of the decoder D
as we did in the previous task, but instead use
the pre-trained decoder as initialization and train
it along with the language module parameters. Al-
lowing the parameters to train gives the decoder
more power to change its representations when it
has enough data to do so, while the initialization
helps it generalize much better, as demonstrated
by our results below.

4.2.2 Results
As with the other dataset (Section 4.1), we com-
pare the full model with a baseline that has no en-
vironment learning, but an otherwise identical ar-
chitecture. To ensure a fair comparison, we tune
the baseline representation size separately, choos-
ing the best from a range of comparable sizes (see
Appendix A.2).

Figure 4 plots the accuracy across different data

Figure 4: Accuracy for the string manipulation task as
the number of examples (s, s′, c) is increased. Environ-
ment learning pre-training increases data efficiency by
an order of magnitude or more. The results in yellow
include additional improvements described in sections
5 and 6 below.

sizes of the baseline neural model and the model
with environment learning pre-training. Note that
models are trained to convergence, so this plot is
intended to indicate data efficiency, not training
speed (though training speed is also likely to in-
crease at similar rates). As seen in the figure, en-
vironment learning substantially increases data ef-
ficiency on this task. At small data sizes, the base-
line model struggles to generalize across different
states s, often choosing to output one of the train-
ing outputs s′ rather than learning a rule and apply-
ing it to s. Environment learning greatly increases
the ability of the model to find the correct general-
ization.

5 Discrete Action Representations

In this section, we describe a variant of our model
where we use a discrete representation a instead
of a continuous one and evaluate this variant on
our two tasks. Semantics is often defined in terms
of discrete logical structures. Even in continuous
environments, it is often natural to describe ob-
jects and relations in discrete ways. Using a dis-
crete space for our learned action representations
can provide useful inductive bias for capturing this
discrete structure. In addition, a discrete represen-
tation has the potential advantages of increased ro-
bustness and increased control of information flow
during environment learning.

When using discrete representations, we divide
our a into n different discrete random variables
where each variable selects its value from one of k
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categories. We train the discrete representation us-
ing the Gumbel-Softmax (Jang et al., 2017; Mad-
dison et al., 2017), which gives us a continuous re-
laxation of the discrete variables that we can back-
propagate through. The Gumbel-Softmax opera-
tion transforms an n × k vector into n discrete
random variables, which we represent as one-hot
vectors and feed through the rest of the network
just as we would a continuous representation. The
Gumbel-Softmax is calculated as

G(xi) =
exp(xi + εi)∑k
j=0 exp(xj + εj)

where ε are i.i.d. samples from the Gumbel(0,1)
distribution and the vector x represents un-
normalized log probabilities for each of the k cat-
egories. This operation is analogous to a softening
of a sample from the distribution. While the orig-
inal work suggested the use of an annealed tem-
perature parameter, we did not find it necessary in
our experiments. We use the straight-through vari-
ant, where the discrete mode of the softmax distri-
bution is used in the forward pass, but the back-
ward pass is run as if we had used the continuous
value G(xi). We found that a representation with
n = 20 variables and k = 30 values works well
for all our experiments.

Using discrete representations instead of con-
tinuous representations further improves environ-
ment learning results on both tasks, increasing
the block stacking task accuracy from 25.9% to
27.6% (Table 1) and improving string manipula-
tion on moderate training sizes (200 examples)
from 24.7% to 36.9%. We also ran the baseline
neural models with discrete representations for
comparison but did not observe any performance
gains, indicating that the discrete representations
are useful primarily when used with environment
learning pre-training.

6 Encoder Representation Matching

One potential difficulty that may occur when mov-
ing from the environment learning to the language
learning phase is that the language moduleL could
choose to use parts of the action representation
space that were not used by the encoder during en-
vironment learning. Because the decoder has not
seen these representations, it may not have use-
ful meanings associated with them, causing it to
generalize in a suboptimal way. In this section, we
introduce a technique to alleviate this problem and

show that it can lead to an additional improvement
in performance.

Our fix uses an additional loss term to encour-
age the language module L to output represen-
tations that are similar to those used by the en-
coder E. For a particular input c, s, s′ in the lan-
guage learning phase, we run the encoder on s, s′

to generate a possible representation aE of this
transition. We then add an objective term for the
log likelihood of aE under L’s output distribution.
The full objective during language learning is then

arg max
θL

[
logPD(s′|s, L(c)) + λ logPL(aE |c)

]
(3)

where the encoder matching weight λ is a tuned
constant. PL is the softmax probability from the
output of the language module when using discrete
representations for a, and aE is the discrete mode
of the encoder output distribution.3

Using this technique on the block stacking task
(with λ = .01), we see a performance gain of .9%
over discrete-representation environment learning
to reach an accuracy of 28.5%. This number rep-
resents our full model performance and demon-
strates more than 10% absolute improvement over
the baseline. The additional loss also provides
gains on string manipulation, especially on very
small data sizes (e.g. from 3.9% to 14.8% with
only 10 examples). The performance curve of our
complete model is shown in Figure 4. With our
full model, it takes less than 50 examples to reach
the same performance as with 1000 examples us-
ing a standard neural approach.

7 Exploring the Learned Representation

A primary goal of the environment learning pro-
cedure is to find a representation of actions that
generalizes in a semantically minimal and coher-
ent way. In this section, we perform analysis to see
what meanings the learned action representations
capture in the block stacking environment. Since
logical forms are engineered to capture semantics
that we as humans consider natural, we compare
our learned representations with a system of log-
ical forms to see if they capture similar meanings
without having been manually constrained to do

3When using continuous representations, a `2 distance
penalty could be used to encourage similarity between the
output of L and E, though this tended to be less effective in
our experiments.
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so. We compare the semantics of the learned and
logical representations by comparing their effect
on different states, based on the method of An-
dreas and Klein (2017).

We test an encoder and decoder using the fol-
lowing procedure: First, we generate a random
transition s1, s

′
1 from the same distribution used

for environment learning and run the encoder to
generate an action representation a1 for this tran-
sition. Then, we generate a new state s2 from the
environment and run the decoder on the new state
with the representation generated for the origi-
nal state: D(a1, s2) 7→ s̄2. We are interested
in whether the output s̄2 of this decoding opera-
tion corresponds to a generalization that would be
made by a simple logical form. Using a set of log-
ical forms that correspond to common actions in
the block stacking environment, we find all sim-
ple logical forms that apply to the original transi-
tion s1, s′1 and all forms that apply to the predicted
transition s2, s̄2. If the intersection of these two
sets of logical forms is non-empty, then the de-
coder’s interpretation of the representation a1 is
consistent with some simple logical form. We re-
peat this procedure on 10,000 state transitions to
form a logical form consistency metric.

Running this test on our best-performance
model, we find that 84% of the generalizations are
consistent with one of the simple logical forms we
defined. This result indicates that while the gener-
alization doesn’t perfectly match our logical form
system, it does have a noteworthy similarity. An
inspection of the cases that did not align with the
logical forms found that the majority of the “er-
rors” could in fact be represented by logical forms,
but ones that were not minimal. In these cases, the
generalization isn’t unreasonable, but has slightly
more complexity than is necessary. For example,
from a transition that could be described either as
stack a blue block on the leftmost block or sepa-
rately as stack blue blocks on red blocks (where
red only appears in the leftmost position), the rep-
resentation a that is generated generalizes across
different states as the conjunction of these two
meanings (stack blue blocks on the leftmost block
AND on red blocks), even though no transitions
observed during environment learning would need
this extra complexity to be accurately described.

8 Related Work

Many other works use autoencoders to form repre-
sentations in an unsupervised or semi-supervised
way. Variants such as denoising autoencoders
(Vincent et al., 2008) and variational autoencoders
(Kingma and Welling, 2013) have been used for
various vision and language tasks. In the area
of semantic grounding, Kočiský et al. (2016) per-
form semi-supervised semantic parsing using an
autoencoder where the latent state takes the form
of language.

Our approach also relates to recent work on
learning artificial languages by simulating agents
interacting in an environment (Mordatch and
Abbeel, 2018; Das et al., 2017; Kottur et al., 2017,
i.a.). Our environment learning procedure could
be viewed as a language learning game where the
encoder is a speaker and the decoder is a listener.
The speaker must create a “language” a that allows
the decoder to complete a task. Many of these pa-
pers have found that it is possible to induce rep-
resentations that align semantically with language
humans use, as explored in detail in Andreas and
Klein (2017). Our analysis in Section 7 is based
on the method from this work.

Model-based reinforcement learning is another
area of work that improves data-efficiency by
learning from observations of an environment
(Wang et al., 2018; Deisenroth et al., 2013; Kaiser
et al., 2019). It differs from the current work in
which aspect of the environment it seeks to cap-
ture: in model-based RL the goal is to model
which states will result from taking a particular
action, but in this work we aim to learn patterns
in what actions tend to be chosen by a knowledge-
able actor.

Another related line of research uses language
to guide learning about an environment (Brana-
van et al., 2012; Srivastava et al., 2017; Andreas
et al., 2018; Hancock et al., 2018). These papers
use language to learn about an environment more
efficiently, which can be seen as a kind of inverse
to our work, where we use environment knowl-
edge to learn language more efficiently.

Finally, recent work by Leonandya et al. (2018)
also explores neural architectures for the block
stacking task we used in section 4.1. The authors
recognize the need for additional inductive bias,
and introduce this bias by creating additional syn-
thetic supervised data with artificial language, cre-
ating a transfer learning-style setup. This is in
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contrast to our unsupervised pre-training method
that does not need language for the additional data.
Even with their stronger data assumptions, their
online accuracy evaluation reaches just 23%, com-
pared to our result of 28.5%, providing indepen-
dent verification of the difficulty of this task for
neural networks.

9 Conclusion

It is well known that neural methods do best when
given extremely large amounts of data. As a re-
sult, much of AI and NLP community has focused
on making larger and larger datasets, but we be-
lieve it is equally important to go the other direc-
tion and explore methods that help performance
with little data. This work introduces one such
method. Inspired by the idea that it is easier to
map language to pre-linguistic concepts, we show
that when grounding language to actions in an en-
vironment, pre-learning representations of actions
can help us learn language from fewer language-
action pairings.
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A Neural Architectures and
Hyperparameters

A.1 Block Stacking
The encoder and decoder module architectures for
the block stacking task are shown in Figure 5. The

encoder module E consists of convolutions over
the states s and s′, subtraction of the two represen-
tations, pooling over locations, and finally a fully
connected network which outputs the representa-
tion a. The fully connected network has a single
hidden layer. The decoder module D consists of
two convolution layers where the input is state s
and where a is broadcast across all positions and
concatenated with the input to the second layer.
All convolutions and feedforward layers forE and
D have dimension 200 and all intermediate lay-
ers are followed by ReLU non-linearities. Dropout
with probability 0.5 was used on the encoder feed-
forward hidden layer and before the last convolu-
tion layer in the decoder.

The language module L uses a LSTM encoder
(Figure 6). It takes a command c as a sequence
of learned word embeddings, runs an LSTM over
them, then projects from the final cell state to get
the output vector a. The word embeddings have
dimension 100 and the LSTM has hidden size 200.

When using a continuous action representation,
a has dimension 600. When using a discrete repre-
sentation, we use n = 20 discrete variables where
each takes one of k = 30 values. Environment
learning is run on 500,000 batches of size 20, after
which we fix the parameters of D. During lan-
guage learning, we optimize L for 50 epochs after
each new example is presented, using a batch size
of 1. All optimization is done using Adam with
learning rate 0.001.

To ensure a fair comparison with the baseline,
we ran the baseline system with both continu-
ous and discrete representations and took the best.
Generally, the baseline performed slightly better

(i) Encoder E

(ii) Decoder D

Figure 5: Architecture for block stacking task modules.
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Figure 6: The language module L used for both the
block stacking and string manipulation tasks uses a
LSTM over the words of the command c.

with continuous representations. We ran with con-
tinuous sizes 20, 50, 100, 300, and 600; selecting
the best result. This range was chosen to be be-
tween the number of discrete variables n and the
total number of inputs to the discretization n× k.

A.2 String Manipulation
Figure 7 shows the encoder and decoder module
architectures for the string manipulation task. The
encoder E runs a LSTM over the character se-
quences for s and s′, using separate LSTMs for the
two sequences, but tying their parameters. The fi-
nal states of the two LSTMs are then concatenated
and fed into a feedforward network with one hid-
den layer that outputs the action representation a.
The decoder D consists of a LSTM over the se-
quence s, a feedforward network of a single linear
layer combining a with the LSTM final state, and
a LSTM that outputs the sequence s′, where the
output LSTM’s initial state comes from the out-
put of the feedforward network. a is also concate-
nated with the previous output embedding that is
fed into the input of the LSTM at each timestep.
The character embeddings input to the LSTM have
dimension 50, and all LSTM and feedforward lay-
ers have dimension 500. When using a continu-
ous representation a, we use a representation di-
mension of 20, though the results were not overly
sensitive to this value. When using a discrete rep-
resentation, we use n = 20 variables where each
takes one of k = 30 values.

The language module for this task is identical
to the module used for the block stacking task, as
shown in Figure 6. The training and optimizer hy-
perparameters are the same as in the block stack-
ing task.

As in the block stacking task, we tune the base-
line representation hyperparameters over continu-
ous sizes 20, 50, 100, 300, and 600, as well as an
identical-sized discrete representation.

(i) Encoder E

(ii) Decoder D

Figure 7: Architecture for string manipulation task
modules.


