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Abstract

Neural parsers obtain state-of-the-art results
on benchmark treebanks for constituency
parsing—but to what degree do they general-
ize to other domains? We present three re-
sults about the generalization of neural parsers
in a zero-shot setting: training on trees from
one corpus and evaluating on out-of-domain
corpora. First, neural and non-neural parsers
generalize comparably to new domains. Sec-
ond, incorporating pre-trained encoder repre-
sentations into neural parsers substantially im-
proves their performance across all domains,
but does not give a larger relative improvement
for out-of-domain treebanks. Finally, despite
the rich input representations they learn, neu-
ral parsers still benefit from structured output
prediction of output trees, yielding higher ex-
act match accuracy and stronger generalization
both to larger text spans and to out-of-domain
corpora. We analyze generalization on English
and Chinese corpora, and in the process obtain
state-of-the-art parsing results for the Brown,
Genia, and English Web treebanks.

1 Introduction

Neural constituency parsers have obtained increas-
ingly high performance when measured by F1
scores on in-domain benchmarks, such as the Wall
Street Journal (WSJ) (Marcus et al., 1993) and
Penn Chinese Treebank (CTB) (Xue et al., 2005).
However, in order to construct systems useful for
cross-domain NLP, we seek parsers that general-
ize well to domains other than the ones they were
trained on. While classical, non-neural parsers
are known to perform better in their training do-
mains than on out-of-domain corpora, their out-of-
domain performance degrades in well-understood
ways (Gildea, 2001; Petrov and Klein, 2007),
and improvements in performance on in-domain

∗Equal contribution.

treebanks still transfer to out-of-domain improve-
ments (McClosky et al., 2006).

Is the success of neural constituency parsers
(Henderson 2004; Vinyals et al. 2015; Dyer et al.
2016; Cross and Huang 2016; Choe and Charniak
2016; Stern et al. 2017; Liu and Zhang 2017; Ki-
taev and Klein 2018, inter alia) similarly transfer-
able to out-of-domain treebanks? In this work, we
focus on zero-shot generalization: training parsers
on a single treebank (e.g. WSJ) and evaluating
on a range of broad-coverage, out-of-domain tree-
banks (e.g. Brown (Francis and Kučera, 1979),
Genia (Tateisi et al., 2005), the English Web Tree-
bank (Petrov and McDonald, 2012)). We ask three
questions about zero-shot generalization proper-
ties of state-of-the-art neural constituency parsers:

First, do non-neural parsers have better out-of-
domain generalization than neural parsers? We
might expect neural systems to generalize poorly
because they are highly-parameterized, and may
overfit to their training domain. We find that
neural and non-neural parsers generalize sim-
ilarly, and, encouragingly, improvements on in-
domain treebanks still transfer to out-of-domain.

Second, does pre-training particularly improve
out-of-domain performance, or does it just gener-
ally improve test accuracies? Neural parsers in-
corporate rich representations of language that can
easily be pre-trained on large unlabeled corpora
(Ling et al., 2015; Peters et al., 2018; Devlin et al.,
2019) and improve accuracies in new domains
(Joshi et al., 2018). Past work has shown that lex-
ical supervision on an out-of-domain treebank can
substantially improve parser performance (Rimell
and Clark, 2009). Similarly, we might expect
pre-trained language representations to give the
largest improvements on out-of-domain treebanks,
by providing representations of language disparate
from the training domains. Surprisingly, how-
ever, we find that pre-trained representations
give similar error reductions across domains.
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Berkeley BLLIP In-Order Chart
F1 ∆ Err. F1 ∆ Err. F1 ∆ Err. F1 ∆ Err.

WSJ Test 90.06 +0.0% 91.48 +0.0% 91.47 +0.0% 93.27 +0.0%

Brown All 84.64 +54.5% 85.89 +65.6% 85.60 +68.9% 88.04 +77.7%
Genia All 79.11 +110.2% 79.63 +139.1% 80.31 +130.9% 82.68 +157.4%
EWT All 77.38 +127.6% 79.91 +135.8% 79.07 +145.4% 82.22 +164.2%

Table 1: Performance and relative increase in error (both given by F1) on English corpora as parsers are evaluated
out-of-domain, relative to performance on the in-domain WSJ Test set. Improved performance on WSJ Test trans-
lates to improved performance out-of-domain. The two parsers with similar absolute performance on WSJ (BLLIP
and In-Order) have comparable generalization out-of-domain, despite one being neural and one non-neural.

Finally, how much does structured prediction
help neural parsers? While neural models with
rich modeling of syntactic structure have obtained
strong performance on parsing (Dyer et al., 2016;
Liu and Zhang, 2017) and a range of related tasks
(Kuncoro et al., 2018; Hale et al., 2018), recent
neural parsers obtain state-of-the-art F1 on bench-
mark datasets using rich input encoders without
any explicit modeling of correlations in output
structure (Shen et al., 2018; Kitaev and Klein,
2018). Does structural modeling still improve
parsing performance even with these strong en-
coder representations? We find that, yes, while
structured and unstructured neural models (using
the same encoder representations) obtain similar
F1 on in-domain datasets, the structured model
typically generalizes better to longer spans and
out-of-domain treebanks, and has higher exact
match accuracies in all domains.

2 Experimental setup

We compare the generalization of strong non-
neural parsers against recent state-of-the-art neu-
ral parsers on English and Chinese corpora.

Non-neural models We use publicly released
code and models for the Berkeley Parser (Petrov
and Klein, 2007) and BLLIP Parser (Charniak,
2000; Charniak and Johnson, 2005) for English;
and ZPar (Zhang and Clark, 2011) for Chinese.

Neural models We use two state-of-the-art neu-
ral models: the Chart model of Kitaev and Klein
(2018), and In-Order shift-reduce model of Liu
and Zhang (2017). These parsers differ in their
modeling both of input sentences and output struc-
tures. The Chart model uses a self-attentive en-
coder over the input sentence, and does not ex-
plicitly model output structure correlations, pre-
dicting tree span labels independently conditioned

on the encoded input.1 The In-Order shift-reduce
model of Liu and Zhang (2017) uses a simpler
LSTM-based encoding of the input sentence but
a decoder that explicitly conditions on previously
constructed structure of the output tree, obtaining
the best performance among similarly structured
models (Dyer et al., 2016; Kuncoro et al., 2017).

The In-Order model conditions on predicted
part-of-speech tags; we use tags predicted by the
Stanford tagger (following the setup of Cross and
Huang (2016)). At test time, we use Viterbi de-
coding for the Chart model and beam search with
beam size 10 for the In-Order model.

To control for randomness in the training pro-
cedure of the neural parsers, all scores reported in
the remainder of the paper for the Chart and In-
Order parsers are averaged across five copies of
each model trained from separate random initial-
izations.

Corpora The English parsers are trained on the
WSJ training section of the Penn Treebank. We
perform in-domain evaluation of these parsers on
the WSJ test section, and out-of-domain evalua-
tion using the Brown, Genia, and English Web
Treebank (EWT) corpora. For analysis and com-
parisons within parsers, we evaluate on the en-
tirety of each out-of-domain treebank; for final re-
sults and comparison to past work we use the same
testing splits as the past work.

The Chinese parsers are trained on the train-
ing section of the Penn Chinese Treebank (CTB)
v5.1 (Xue et al., 2005), consisting primarily of
newswire. For out-of-domain evaluation on Chi-
nese, we use treebank domains introduced in CTB
versions 7 and 8: broadcast conversations (B.
Conv), broadcast news (B. News), web discussion
forums (Forums) and weblogs (Blogs).

1The only joint constraint on span predictions is to ensure
they constitute a valid tree.
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ZPar In-Order
F1 ∆ Err. F1 ∆ Err.

CTB Test 83.01 +0.0% 83.67 +0.0%

B. News 77.22 +34.1% 77.83 +35.8%
Forums 74.31 +51.2% 75.71 +48.7%

Blogs 73.90 +53.6% 74.74 +54.7%
B. Conv. 66.70 +96.0% 67.69 +97.9%

Table 2: Performance on Chinese corpora and increase
in error (relative to the CTB test set) as parsers are eval-
uated out-of-domain. The non-neural (ZPar) and neural
(In-Order) parser generalize similarly.

3 How well do neural parsers generalize?

Table 1 compares the generalization performance
of the English parsers, both non-neural (Berkeley,
BLLIP) and neural (Chart, In-Order). None of
these parsers use additional data beyond the WSJ
training section of the PTB: we use the version
of the BLLIP parser without self-training on un-
labeled data, and use the In-Order parser without
external pre-trained word embeddings. Across all
parsers, higher performance on the WSJ Test set
corresponds to higher performance on each out-
of-domain corpus, showing that the findings of
McClosky et al. (2006) extend to recent neural
parsers. In particular, the Chart parser has high-
est performance in all four domains.

The ∆ Err. column shows the generalization
gap for each parser on each corpus: the parser’s
relative increase in error (with error defined by
100−F1) from the WSJ Test set (lower values are
better). Improved performance on the WSJ Test
set corresponds to increased generalization gaps,
indicating that to some extent parser improve-
ments on WSJ have come at the expense of out-of-
domain generalization. However, the two parsers
with similar absolute performance on WSJ—the
BLLIP parser and In-Order parser—have compa-
rable generalization gaps, despite one being neural
and one non-neural.

Table 2 shows results for ZPar and the In-Order
parser on the Chinese treebanks, with ∆ Err. com-
puted relative to the in-domain CTB Test set. As
with the English parsers and treebanks, increased
performance on the in-domain test set corresponds
to improvements on the out-of-domain treebanks
(although these differences are small enough that
this result is less conclusive than for English).
In addition, as with English, we observe similar
generalization performance of the non-neural and
neural parsers across the out-of-domain treebanks.

In-Order +Embeddings +BERT
F1 F1 ∆ Err. F1 ∆ Err.

WSJ Test 91.47 92.13 -7.7% 95.71 -49.7%
Brown All 85.60 86.78 -8.2% 93.53 -55.0%
Genia All 80.31 81.64 -6.8% 87.75 -37.8%
EWT All 79.07 80.50 -6.8% 89.27 -48.7%

CTB Test 83.67 85.69 -12.4% 91.81 -49.9%
B. News 77.83 81.64 -17.2% 88.41 -47.7%
Forums 75.71 79.44 -15.4% 87.04 -46.6%

Blogs 74.74 78.21 -13.7% 84.29 -37.8%
B. Conv. 67.69 70.34 -8.2% 75.88 -25.3%

Table 3: Performance of the In-Order parser, compar-
ing using no pre-trained representations (first column),
word embeddings, and BERT, on English (top) and
Chinese (bottom) corpora. ∆ Err. shows change in F1
error relative to the base parser (without pretraining).
For both pre-training methods, error reduction is not
typically greater out-of-domain than in-domain.

4 How much do pretrained
representations help out-of-domain?

Pre-trained word representations have been shown
to increase in-domain parsing accuracies. Ad-
ditionally, Joshi et al. (2018) showed that these
representations (in their case, from ELMo, Peters
et al. 2018) allow a parser to transfer well across
domains. We analyze whether pre-trained rep-
resentations provide a greater benefit in-domain
or out-of-domain, by comparing relative perfor-
mance improvements on in-domain and out-of-
domain treebanks when augmenting the neural
parsers with pre-trained language representations.
We evaluate non-contextual word embeddings
produced by structured skip-gram (Ling et al.,
2015), as well as the current state-of-the-art con-
textual representations from BERT (Devlin et al.,
2019).

4.1 Word embeddings

We use the same pre-trained word embeddings
as the original In-Order English and Chinese
parsers,2 trained on English and Chinese Giga-
word (Parker et al., 2011) respectively. Table 3
compares models without (In-Order column) to
models with embeddings (+Embeddings), show-
ing that embeddings give comparable error reduc-
tions both in-domain (the WSJ Test and CTB Test
rows) and out-of-domain (the other rows).

4.2 BERT

For the Chart parser, we compare the base neural
model (Sec. 2 and 3) to a model that uses a pre-

2 https://github.com/LeonCrashCode/InOrderParser

https://github.com/LeonCrashCode/InOrderParser
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Chart +BERT
F1 F1 ∆ Err.

WSJ Test 93.27 95.64 -35.2%
Brown All 88.04 93.10 -42.3%
Genia All 82.68 87.54 -28.1%
EWT All 82.22 88.72 -36.6%

Table 4: Performance of the Chart parser on English,
comparing using no pretrained representations to using
BERT. ∆ Err. shows change in F1 error relative to the
base parser. BERT does not generally provide a larger
error reduction out-of-domain than in-domain.

trained BERT encoder (Kitaev et al., 2019), using
the publicly-released code3 to train and evaluate
both models.

For the In-Order parser, we introduce a novel
integration of a BERT encoder with the parser’s
structured tree decoder. These architectures
represent the best-performing types of encoder
and decoder, respectively, from past work on
constituency parsing, but have not been previ-
ously combined. We replace the word embed-
dings and predicted part-of-speech tags in the In-
Order parser’s stack and buffer representations
with BERT’s contextual embeddings. See Ap-
pendix A.1 for details on the architecture. Code
and trained models for this system are publicly
available.4

Both the Chart and In-Order parsers are trained
in the same way: the parameters of the BERT en-
coder (BERTLARGE, Uncased English or BERTBASE
Chinese) are fine-tuned during training on the
treebank data, along with the parameters of the
parser’s decoder. See Appendix A.2 for details.

Results for the In-Order parser are shown in
the +BERT section of Table 3, and results for the
chart parser are shown in Table 4. BERT is effec-
tive across domains, providing between 25% and
55% error reduction over the base neural parsers.
However, as for word embeddings, the pre-trained
BERT representations do not generally provide a
larger error reduction in out-of-domain settings
than in in-domain (although a possible confound
is that the BERT model is fine-tuned on the rel-
atively small amount of in-domain treebank data,
along with the other parser parameters).

For English, error reduction from BERT is com-
parable between WSJ and EWT, largest on Brown,
and smallest on Genia, which may indicate a de-
pendence on the similarity between the out-of-

3 https://github.com/nikitakit/self-attentive-parser
4 https://github.com/dpfried/rnng-bert

F1 Exact Match
Chart In-Order Chart In-Order

+BERT +BERT +BERT +BERT

WSJ Test 95.64 95.71 55.11 57.05
Brown All 93.10 93.54 49.23 51.98

EWT All 88.72 89.27 41.83 43.98
Genia All 87.54 87.75 17.46 18.03

CTB Test 92.14 91.81 44.42 44.94
B. News 88.21 88.41 15.91 17.29
Forums 86.72 87.04 20.00 21.95

Blogs 84.28 84.29 17.14 18.85
B. Conv. 76.35 75.88 17.24 18.99

Table 5: F1 and exact match accuracies comparing the
Chart (unstructured) and In-Order (structured) parsers
with BERT pretraining on English (top) and Chinese
(bottom) corpora.

domain treebank and the pre-training corpus.5 For
Chinese, the relative error reduction from BERT is
largest on the in-domain CTB Test corpus.

5 Can structure improve performance?

When using BERT encoder representations, the
Chart parser (with its unstructured decoder) and
In-Order parser (with its conditioning on a repre-
sentation of previously-constructed structure) ob-
tain roughly comparable F1 (shown in the first two
columns of Table 5), with In-Order better on seven
out of nine corpora but often by slight margins.
However, these aggregate F1 scores decompose
along the structure of the tree, and are dominated
by the short spans which make up the bulk of any
treebank. Structured-conditional prediction may
plausibly be most useful for predicting larger por-
tions of the tree, measurable in exact match accu-
racies and in F1 on longer-length spans (contain-
ing more substructure).

First, we compare the tree-level exact match
accuracies of the two parsers. In the last two
columns of Table 5, we see that the In-Order parser
consistently achieves higher exact match than the
Chart parser across domains (including the in-
domain WSJ and CTB Test sets), with improve-
ments ranging from 0.5 to 2.8 percentage absolute.
In fact, for several corpora (Blogs and B. Conv)
the In-Order parser outperforms the Chart parser
on exact match despite having the same or lower
F1. This suggests that conditioning on structure
in the model induces a correlation between span-
level decisions that becomes most apparent when
using a metric defined on the entire structure.

5BERT is pre-trained on books and Wikipedia; Genia con-
sists of biomedical text.

https://github.com/nikitakit/self-attentive-parser
https://github.com/dpfried/rnng-bert
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Figure 1: Labelled bracketing F1 versus minimum span length for the English corpora. F1 scores for the In-Order
parser with BERT (orange) and the Chart parser with BERT (cyan) start to diverge for longer spans.

Chart In-Order
prior work +BERT +BERT

Brown Test 87.7 (C+’15) 93.16 93.66
Genia Test 79.4 (C+’15) 86.11 86.45
EWT Test 83.5 (L+’12) 89.13 89.62

Table 6: Comparison of F1 scores for neural models
with BERT pretraining to past state-of-the art results on
transfer to the out-of-domain treebanks: (C+’15: Choe
et al. 2015, L+’12: Le Roux et al. 2012).6 EWT scores
are averaged across the 3 SANCL’12 test sets, as re-
ported by Petrov and McDonald (2012).

Second, we compare the performance of the
two parsers on longer spans of text. Figure 1
plots F1 by minimum span length for the In-Order
and Chart parsers with BERT encoders on the En-
glish treebanks. Across datasets, the improve-
ment of the In-Order parser is slight when com-
puting F1 across all spans in the dataset (x = 0),
but becomes pronounced when considering longer
spans. This effect is not observed in the WSJ test
set, which may be attributable to its lack of suffi-
ciently many long spans for us to observe a sim-
ilar effect there. The curves start to diverge at
span lengths of around 30–40 words, longer than
the median length of a sentence in the WSJ (23
words).

6 Discussion

Neural parsers generalize surprisingly well, and
are able to draw benefits both from pre-trained
language representations and structured output
prediction. These properties allow single-model
parsers to surpass previous state-of-the-art sys-
tems on out-of-domain generalization (Table 6).

6Although the F1 scores obtained here are higher than
the zero-shot transfer results of Joshi et al. (2018) on the
Brown and Genia corpora due to the use of improved encoder
(BERT) and decoder (self-attentive Chart and In-Order) mod-
els, we note the results are not directly comparable due to the
use of different sections of the corpora for evaluation.

We note that these systems from prior work (Choe
et al., 2015; Petrov and McDonald, 2012; Le Roux
et al., 2012) use additional ensembling or self-
training techniques, which have also been shown
to be compatible with neural constituency parsers
(Dyer et al., 2016; Choe and Charniak, 2016; Fried
et al., 2017; Kitaev et al., 2019) and may provide
benefits orthogonal to the pre-trained representa-
tions and structured models we analyze here. En-
couragingly, parser improvements on the WSJ and
CTB treebanks still transfer out-of-domain, indi-
cating that improving results on these benchmarks
may still continue to yield benefits in broader do-
mains.
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A Appendix

A.1 Integrating BERT into the In-Order
Parser

In this section we describe our integration of the
BERT encoder into the In-Order parser decoder.
We refer to the original In-Order (Liu and Zhang,
2017) and BERT (Devlin et al., 2019) papers for
full details about the model architectures, only de-
scribing the modifications we make at the interface
between the two. Code and pre-trained models for
this integrated parser are publicly available.7

BERT divides each word in an input sentence
into one or more subword units and produces a
contextual representation for each subword unit
using a self-attentive architecture (Devlin et al.,
2019). Following the implementation of Kitaev
et al. (2019) for the Chart parser, we take the con-
textual representation vector for the last subword
unit in each word wi as the word’s representation,
ewi , replacing the (non-contextual) word and POS
tag vectors used in the original In-Order parser.
We use a learned linear projection to scale ewi to a
vector xi of size 128 (compare with section 4.1 of
Liu and Zhang (2017)).

These contextual word representations xi en-
ter into the In-Order parser’s decoder in two po-
sitions: the stack (representing the parse tree as
constructed so far) and the buffer (representing the
remainder of the sentence to be parsed). We re-
tain the stack representation, but omit the LSTM
which the original In-Order work uses to summa-
rize the words remaining on the buffer. We instead
use the representation xi as the buffer summary
for the word i when i is word at the front of the
buffer (the next word in the sentence to be pro-
cessed). In early experiments we found that re-
moving the LSTM summary of the buffer in this
manner had no consistent effect on performance,
indicating that the BERT contextual vectors al-
ready sufficiently aggregate information about the
input sentence so that an additional LSTM pro-
vides no further benefit.

We pass values and gradients between the
DyNet (Neubig et al., 2017) implementation of the
In-Order parser and the Tensorflow (Abadi et al.,
2016) implementation of BERT using the Tensor-
flow C++ API.

7https://github.com/dpfried/rnng-bert

A.2 BERT Optimization Settings
We train the In-Order parser with BERT following
the optimization procedure used in Kitaev et al.
(2019)’s publicly-released implementation of the
BERT Chart parser: training with mini-batches
of size 32 using the Adam optimizer (Kingma
and Ba, 2015); halving the base learning rates for
Adam whenever 2 epochs of training pass without
improved F1 on the development set, and using a
warmup period for the BERT learning rate. For
the In-Order parser, we use initial Adam learning
rates of 2× 10−5 for the BERT encoder parame-
ters and 1× 10−3 for the In-Order decoder param-
eters, β1 = 0.9, β2 = 0.999, and a BERT learning
rate warmup period of 160 updates.

https://github.com/dpfried/rnng-bert

