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Abstract

Because obtaining training data is often
the most difficult part of an NLP or ML
project, we develop methods for predict-
ing how much data is required to achieve a
desired test accuracy by extrapolating re-
sults from systems trained on a small pilot
training dataset. We model how accuracy
varies as a function of training size on sub-
sets of the pilot data, and use that model
to predict how much training data would
be required to achieve the desired accu-
racy. We introduce a new performance ex-
trapolation task to evaluate how well dif-
ferent extrapolations predict system accu-
racy on larger training sets. We show
that details of hyperparameter optimisa-
tion and the extrapolation models can have
dramatic effects in a document classifica-
tion task. We believe this is an important
first step in developing methods for esti-
mating the resources required to meet spe-
cific engineering performance targets.

1 Introduction

An engineering discipline should be able to predict
the cost of a project before the project is started.
Because training data is often the most expen-
sive part of an NLP or ML project, it is impor-
tant to estimate how much training data required
for a system to achieve a target accuracy. Un-
fortunately our field only offers fairly impracti-
cal advice, e.g., that more data increases accu-
racy (Banko and Brill, 2001); we currently have no
practical methods for estimating how much data or
what quality of data is required to achieve a target
accuracy goal. Imagine if bridge construction was
planned the way we build our systems!

Our long-term goal is to develop practical meth-
ods for designing systems that achieve target per-
formance specifications, including identifying the
amount of training data that the system will re-
quire. This paper starts to address this goal by in-
troducing an extrapolation methodology that pre-
dicts a system’s accuracy on a larger dataset from
its performance on subsets of much smaller pilot
data. These extrapolations allow us to estimate
how much training data a system will require to
achieve a target accuracy. We focus on a specific
task (document classification) using a specific sys-
tem (the fastText classifier of Joulin et al. (2016)),
and leave to future work to determine if our ap-
proach and results generalise to other tasks and
systems.

We introduce an accuracy extrapolation task
that can be used to evaluate different extrapolation
models. We describe three well-known extrapo-
lation models and evaluate them on a document
classification dataset. On our development data
the biased power-law method with binomial item
weighting performs best, so we propose it should
be a baseline for future research. We demon-
strate the importance of hyperparameter optimi-
sation on each different-sized data subset (rather
than just optimising on the largest data subset) and
item weighting, and show that these can have a
dramatic impact on extrapolation, especially from
small pilot data sets. The data and code for all
experiments in this paper, including the R code
for the graphics, is available from http://web.
science.mq.edu.au/˜mjohnson.

2 Related work

Power analysis (Cohen, 1992) is widely-used sta-
tistical technique (e.g., in biomedical trials) for
predicting the number of measurements required
in an experimental design; we aim to develop sim-

http://web.science.mq.edu.au/~mjohnson
http://web.science.mq.edu.au/~mjohnson
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ilar techniques for NLP and ML systems. There
is a large body of research on the relationship be-
tween training data size and system performance.
Geman et al. (1992) decompose the squared error
of a model into a bias term (due to model errors)
and a variance term (due to statistical noise). Bias
does not vary with training data size n, but the er-
ror due to variance should decrease as O(1/

√
n) if

the training observations are independent (Domin-
gos, 2000a,b). The power-law models used in this
paper have been investigated many times in prior
literature (Haussler et al., 1996; Mukherjee et al.,
2003; Figueroa et al., 2012; Beleites et al., 2013;
Hajian-Tilaki, 2014; Cho et al., 2015). Sun et al.
(2017), Barone et al. (2017) and the concurrent un-
published work by Hestness et al. (2017) point out
that these power-law models describe modern ML
and NLP systems quite well, including complex
deep-learning systems, so we expect our results to
generalise to these systems.

This paper differs from prior work in that we
explicitly focus on the task of extrapolating sys-
tem performance from small pilot data. We in-
troduce a new evaluation task to compare the ef-
fectiveness of different models for this extrapola-
tion, and demonstrate the importance of per-subset
hyperparameter optimisation and item weighting,
which prior work did not investigate.

3 Models for extrapolating pilot data

We are given a system whose accuracy on a large
dataset we wish to predict, but only a smaller pi-
lot dataset is available. We train the system on
different-sized subsets of the pilot dataset, and use
the results of those training runs to estimate how
the system’s accuracy varies as a function of train-
ing data size.

We focus on predicting the minimum error rate
e(n) that the system can achieve on a dataset of
size n after hyperparameter optimisation (where
the error rate is 1−accuracy for a classifier) given
a pilot dataset of size m � n (in the task below,
m = n/2 or m = n/10). We investigate three dif-
ferent extrapolation models of e(n) in this paper:

• Power law: ê(n) = bnc

• Inverse square-root: ê(n) = a+ bn−1/2

• Biased power law: ê(n) = a+ bnc

Here ê(n) is the estimate of e(n), and a, b and c
are adjustable parameters that are estimated based
on the system’s performance on the pilot dataset.
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Figure 1: An extrapolation run from pilot data
consisting of either 0.1 or 0.5 of the ag news
corpus. The x-axis is the size of the subset of
pilot data, while the y-axis is the classification
error rate. The shapes/colors show the maxi-
mum fraction of the corpus used in the pilot data,
and whether hyperparameters were optimised only
once on all of the pilot data (e.g., = 0.1 and = 0.5)
or at each smaller subset of the pilot data (e.g.,
≤ 0.1 and ≤ 0.5). The lines are least-squares fits
of biased power-law models (ê(n) = a + bnc) to
the corresponding pilot data. The red star shows
minimum error rate when all the training data is
used to train the classifier (this is the value we are
trying to predict).

The inverse square-root curve is what one would
expect if the error is distributed according to a
Bias-Variance decomposition (Geman et al., 1992)
with a constant bias term a and a variance term
that asymptotically follows the Central Limit The-
orem. We fit these models using weighted least
squares regression. Each data point or item in the
regression is the result of a run of the system on a
subset of the pilot dataset.

Assuming that the underlying system has ad-
justable hyperparameters, the question arises: how
should the hyperparameters be set? The com-
putationally least demanding approach is to opti-
mise the system’s hyperparameters on the full pilot
dataset, and use these hyperparameters for all the
runs on subsets of the pilot dataset. An alternative,
computationally more demanding approach is to
optimise the system’s hyperparameters separately
on each of the subsets of the pilot dataset. Figure 1
shows an example where optimising the hyperpa-
rameters just on the full pilot dataset is clearly in-
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ferior to optimising the hyperparameters on each
subset of the pilot dataset. We show below that the
more demanding approach of optimising on each
subset is superior, especially when extrapolating
from small pilot datasets.

We also investigate how details of the regression
fit affect the regression accuracy ê(n). We exper-
imented with several link functions (we used the
default Gaussian link here), but found that these
had less impact than adjusting the item weights in
the regression. Runs with smaller training sets pre-
sumably have higher variance, and since our goal
is to extrapolate to larger datasets, it is reasonable
to place more weight on items corresponding to
larger datasets. We investigated three item weight-
ing functions in regression:

• constant weights (1),
• linear weights (n), and
• binomial weights (n/e(1− e))

Linear weights are motivated by the assumption
that the item variance follows the Central Limit
Theorem, while the binomial weights are moti-
vated by the assumption that item variance follows
a binomial distribution (see the Supplemental Ma-
terials for further discussion). As Figure 2 makes
clear, linear weights and binomial weights gen-
erally produce more accurate extrapolations than
constant weights, so we use binomial weights in
our evaluation in Table 2.

4 A performance extrapolation task

We used the fastText document classifier and the
document classification corpora distributed with
it; see Joulin et al. (2016) for full details. Fast-
Text’s speed and evaluation scripts make it easy
to do the experiments described below. We fit-
ted our extrapolation models to the fastText docu-
ment classifier results on the 8 corpora distributed
with the fastText classifier. These corpora contain
labelled documents for a document classification
task, and come randomised and divided into train-
ing and test sections. All our results are on these
test sections.

The corpora were divided into development
and evaluation corpora (each with train and
test splits) as shown in table 1. We use
the amazon review polarity, sogou news, yahoo answers

and yelp review full corpora as our test set (so
these are only used in the final evaluation),
while the ag news, dbpedia, amazon review full and

yelp review polarity were used as development cor-
pora. The development and evaluation sets contain
document collections of roughly similar sizes and
complexities, but no attempt was made to accu-
rately “balance” the development and evaluation
corpora.

We trained the fastText classifier on 13
differently-sized prefixes of each training set that
are approximately logarithmically spaced over
two orders of magnitude (i.e., varying from 1⁄100 to
all of the training corpus). To explore the effect of
hyperparameter tuning on extrapolation, for each
prefix of each training set we trained a classifier on
each of 1,079 different hyperparameter settings,
varying the n-gram length, learning rate, dimen-
sionality of the hidden units and the loss function
(the fastText classifier crashed on 17 hyperparam-
eter combinations; we did not investigate why).
We re-ran the entire process 8 times on randomly-
shuffled versions of each training corpus.

As expected, the minimum error configuration
invariably requires the full training data. When
extrapolating from subsets of a smaller pilot set
(we explored pilot sets consisting of 0.1 and 0.5 of
the full training data) there are two plausible ways
of performing hyperparameter optimisation. Ide-
ally, one would optimise the hyperparameters for
each subset of the pilot data considered (we se-
lected the best-performing hyperparameters using
grid search). However, if one is not working with
computationally efficient algorithms like fastText,
one might be tempted to only optimise the hy-
perparameters once on all the pilot data, and use
the hyperparameters optimised on all the pilot data
when calculating the error rate on subsets of that
pilot data. As figure 2 and table 2 make clear, se-
lecting the optimal hyperparameters for each sub-
set of the pilot data generally produces better ex-
trapolation results. Figure 1 shows how different
ways of choosing hyperparameters can affect ex-
trapolation. As that figure shows, hyperparame-
ters optimised on 50% of the training data perform
very badly on 1% of the training data. As figure 2
shows, this can lead simpler extrapolation models
such as the power-law to dramatically underesti-
mate the error on the full dataset. Interestingly,
more complex extrapolation models, such as the
extended power-law model, often do much better.

Based on the development corpora results pre-
sented in Figures 1 and 2, we choose the biased
power law model (ê(n) = a+ bnc) with binomial
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Figure 2: Residuals on 8 runs when extrapolating from pilot data consisting of 0.1 or 0.5 of each devel-
opment training corpus. The y-axis shows the residual error (the difference between the predicted error
and the minimum error when the classifier is trained on all the training data), and the x-axis indicates the
weight function used in extrapolation. Colours indicate the model fitted, (i.e., power-law (ê(n) = bnc),
inverse square-root (ê(n) = a+ bn−1/2), or biased power-law (ê(n) = a+ bnc) models). Facets indicate
the development corpus used, and whether hyperparameters were optimised only once on all of the pilot
data (e.g., = 0.5 and = 0.1) or on each subset of the pilot data (e.g., ≤ 0.5 and ≤ 0.1).

Corpus Labels Train (K) Test (K)

ag news 4 120 7.6
dbpedia 14 560 70
amazon review full 5 3,000 650
yelp review polarity 2 560 38

amazon review polarity 2 3,600 400
sogou news 5 450 60
yahoo answers 10 1,400 60
yelp review full 5 650 50

Table 1: Summary statistics of the development
corpora (above line) and evaluation corpora (be-
low line).

item weights (n/e(1− e)) as the model to evaluate
on the evaluation corpora.

We evaluate an extrapolation by calculating the
root-mean-square (RMS) of the relative residuals
ê/e − 1, where e is the minimum error achieved
by the classifier with any hyperparameter setting
when trained on the full training set, and ê is the
predicted error made by the extrapolation model

Pilot
data

amazon
review
polarity

sogou
news

yahoo
answers

yelp
review

full
Overall

= 0.1 0.1016 0.2752 0.0519 0.0496 0.1510
≤ 0.1 0.0209 0.1900 0.0264 0.0406 0.0986

= 0.5 0.0338 0.0438 0.0254 0.0160 0.0315
≤ 0.5 0.0049 0.0390 0.0053 0.0046 0.0200

Table 2: RMS relative residuals (ê/e − 1) on the
four evaluation corpora over all runs for the biased
power law model (ê(n) = a+ bnc) with binomial
item weights (n/e(1− e)). Lower scores are better.

from the pilot dataset.1

Unsurprisingly, Table 2 shows that extrapola-
tion is more accurate from larger pilot datasets;
increasing the size of the pilot dataset 5 times re-

1We use relative residuals because the residuals them-
selves vary greatly from corpus to corpus, and we use RMS
to penalise large extrapolation errors. We admit that RMS
relative residuals is probably not a close approximation to the
extrapolation loss in real applications, and we hope future
work will develop more realistic loss functions.
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duces the RMS relative residuals by a factor of
10. It also clearly shows that it valuable to per-
form hyperparameter optimisation on all subsets
of the pilot dataset, not just on the whole pilot
data. Interestingly, Table 2 shows that the RMS
difference between the two approaches to hyper-
parameter setting is greater when the pilot data is
larger. This makes sense; the hyperparameters that
are optimal on a large pilot dataset may be far from
optimal on a very small subset (this is clearly visi-
ble in Figure 1, where the items deviating most are
those for the = 0.5 pilot data and hyperparameter
choice).

5 Conclusions and Future Work

This paper introduced an extrapolation methodol-
ogy for predicting accuracy on large dataset from
a small pilot dataset, applied it to a document clas-
sification system, and identified the biased power-
law model with binomial weights as a good base-
line extrapolation model. This only scratches the
surface of performance extrapolation tasks. We
hope that teams with greater computational re-
sources will study the extrapolation task for com-
putationally more-demanding systems, including
popular deep learning models. The power-law
models should be considered baselines for more
sophisticated extrapolation models, which might
exploit more information than just accuracy on
subsets of the pilot data.

We hope this work will spur the development of
better methods for estimating the resources needed
to build an NLP or ML system to meet a specifica-
tion, as we believe this is essential for any mature
engineering field.
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sat. 1992. Neural networks and the bias/variance
dilemma. Neural Computation 4:1–58.

Karimollah Hajian-Tilaki. 2014. Sample size estima-
tion in diagnostic test studies of biomedical infor-
matics. Journal of biomedical informatics 48:193–
204.

David Haussler, Michael Kearns, H. Sebastian Seung,
and Naftali Tishby. 1996. Rigorous learning curve
bounds from statistical mechanics. Machine Learn-
ing 25(2).

Joel Hestness, Sharan Narang, Newsha Ardalani, Gre-
gory Diamos, Heewoo Jun, Hassan Kianinejad, Md.
Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou.
2017. Deep learning scaling is predictable, empiri-
cally. arXiv:1712.00409 .

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv:1607.01759 .

Sayan Mukherjee, Pablo Tamayo, Simon Rogers, Ryan
Rifkin, Anna Engle, Colin Campbell, Todd R Golub,
and Jill P Mesirov. 2003. Estimating dataset size
requirements for classifying DNA microarray data.
Journal of computational biology 10(2):119–142.



455

Chen Sun, Abhinav Shrivastava, Saurabh Singh,
and Abhinav Gupta. 2017. Revisiting unreason-
able effectiveness of data in deep learning era.
arXiv:1707.02968 .


