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Abstract

Identifying long-span dependencies
between discourse units is crucial to
improve discourse parsing performance.
Most existing approaches design
sophisticated features or exploit various
off-the-shelf tools, but achieve little
success. In this paper, we propose a new
transition-based discourse parser that
makes use of memory networks to take
discourse cohesion into account. The
automatically captured discourse
cohesion benefits discourse parsing,
especially for long span scenarios.
Experiments on the RST discourse
treebank show that our method
outperforms traditional featured based
methods, and the memory based discourse
cohesion can improve the overall parsing
performance significantly 1.

1 Introduction

Discourse parsing aims to identify the structure
and relationship between different element
discourse units (EDUs). As a fundamental topic
in natural language processing, discourse parsing
can assist many down-stream applications such as
summarization (Louis et al., 2010), sentiment
analysis (Polanyi and van den Berg, 2011) and
question-answering (Ferrucci et al., 2010).
However, the performance of discourse parsing is
still far from perfect, especially for EDUs that are
distant to each other in the discourse. In fact, as
found in (Jia et al., 2018), the discourse parsing
performance drops quickly as the dependency
span increases. The reason may be twofold:

1Code for replicating our experiments is available at
https://github.com/PKUYeYuan/ACL2018 CFDP.

Firstly, as discussed in previous works (Joty
et al., 2013), it is important to address discourse
structure characteristics, e.g., through modeling
lexical chains in a discourse, for discourse
parsing, especially in dealing with long span
scenarios. However, most existing approaches
mainly focus on studying the semantic and
syntactic aspects of EDU pairs, in a more local
view. Discourse cohesion reflects the syntactic or
semantic relationship between words or phrases
in a discourse, and, to some extent, can indicate
the topic changing or threads in a discourse.
Discourse cohesion includes five situations,
including reference, substitution, ellipsis,
conjunction and lexical cohesion (Halliday and
Hasan, 1989). Here, lexical cohesion reflects the
semantic relationship of words, and can be
modeled as the recurrence of words, synonym
and contextual words.

However, previous works do not well model
the discourse cohesion within the discourse
parsing task, or do not even take this issue into
account. Morris and Hirst (1991) proposes to
utilize Roget thesauri to form lexical chains
(sequences of semantically related words that can
reflect the topic shifts within a discourse), which
are used to extract features to characterize
discourse structures. (Joty et al., 2013) uses
lexical chain feature to model multi-sentential
relation. Actually, these simplified cohesion
features can already improve parsing
performance, especially in long spans.

Secondly, in modern neural network methods,
modeling discourse cohesion as part of the
networks is not a trivial task. One can still use
off-the-shell tools to obtain lexical chains, but
these tools can not be jointly optimized with the
main neural network parser. We argue that
characterizing discourse cohesion implicitly
within a unified framework would be more
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(9) It is nine o'clock.
(10) Thank God, I am not late for work.

(4) It is eight o'clock when I leave home.
(5) So late! 

(11) But the hamburger is cold,
(12) order some take-away food is better, maybe.

(1) I feel hungry after wake up,
(2) I rush into the kitchen and make my breakfast.
(3) My breakfast is hamburger.

slot2

slot3

slotn

slot1

...

(6) I drive into the highway,
(7) but meet a traffic jam.
(8) Oh, I finally arrive at the company.

Memory network

Figure 1: An illustration for modelling discourse
cohesion with memory network. The example
discourse includes 12 EDUs and talks about 3
different threads (food, time and traffic), which are
colored by blue, gray and white, respectively.

straightforward and effective for our neural
network based parser. As shown in Figure 1, the
12 EDUs in the given discourse talk about
different topics, marked with 3 different colors,
which could be captured by a memory network
that maintains several memory slots. In discourse
parsing, such an architecture may help to cluster
topically similar or related EDUs into the same
memory slot, and each slot could be considered as
a representation that maintains a specific topic or
thread within the current discourse. Intuitively,
we could also treat such a mechanism as a way to
capture the cohesion characteristics of the
discourse, just like the lexical chain features used
in previous works, but without relying on external
tools or resources.

In this paper, we investigate how to exploit
discourse cohesion to improve discourse parsing.
Our contribution includes: 1) we design a
memory network method to capture discourse
cohesion implicitly in order to improve discourse
parsing. 2) We choose bidirectional long-short
term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) with an attention mechanism
to represent EDUs directly from embeddings, and
use simple position features to capture shallow
discourse structures, without relying on
off-the-shelf tools or resources. Experiments on
the RST corpus show that the memory based
discourse cohesion model can help better capture
discourse structure information and lead to
significant improvement over traditional feature
based discourse parsing methods.

2 Model overview

Our parser is an arc-eager style transition system
(Nivre, 2003) with 2 stacks and a queue as shown
in Figure 2, which is similar in spirit with (Dyer
et al., 2015; Ballesteros et al., 2015). We follow
the conventional data structures in
transition-based dependency parsing, i.e., a queue
(B) of EDUs to be processed, a stack (S) to store
the partially constructed discourse trees, and a
stack (A) to represent the history of transitions
(actions combined with discourse relations).

In our parser, the transition actions include
Shift, Reduce, Left-arc and Right-arc. At each
step, the parser chooses to take one of the four
actions and pushes the selected transition into A.
Shift pushes the first EDU in queue B to the top of
the stack S, while Reduce pops the top item of S.
Left-arc connects the first EDU (head) in B to the
top EDU (dependent) in S and then pops the top
item of S, while Right-arc connects the top EDU
(head) of S to the first EDU (dependent) in B and
then pushes B’s first EDU to the top of S. A parse
tree can be finally constructed until B is empty
and S only contains a complete discourse tree.
For more details, please refer to (Nivre, 2003).

As shown in Figure 2, at time t, we
characterize the current parsing process by
preserving the top two elements in B, top three
elements in A and the root EDU in the partially
constructed tree at the top of S. We first
concatenate the embeddings of the preserved
elements in each data structure to obtain the
embeddings of S, B and A. We then append the
three representations with the position2 features
(introduced in Section 2.1), respectively. We pass
them through one ReLU layer and two fully
connected layers with ReLU as their activation
functions to obtain the final state representation pt
at time t, which will be used to determine the best
transition to take at t.

Next, we apply an affine transformation to pt
and feed it to a softmax layer to get the distribution
over all possible decisions (actions combined with
discourse relations). We train our model using the
automatically generated oracle action sequences
as the gold-standard annotations, and utilize cross
entropy as the loss function. We perform greedy
search during decoding.
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Figure 2: Our discourse parsing framework: (1)
Basic EDU representation module; (2) Memory
networks to capture the discourse cohesion so as
to obtain the refined representations of S and B.
RA(Li) means that the chosen action is Right-arc
and its relation is List. SH means Shift. a1 to
an are weights for the attention mechanism of the
bidirectional LSTM.

2.1 Discourse Structures

As mentioned in previous work (Jia et al., 2018),
when the top EDUs in S and B are far from each
other in the discourse, i.e., with a long span, the
parser will be prone to making wrong decisions.
To deal with these long-span cases, one should
take discourse structures into account, e.g.,
extracting features from the structure of a long
discourse or analyzing and characterizing
different topics discussed in the discourse.

We, therefore, choose two kinds of position
features to reflect the structure information, which
can be viewed as a shallow form of discourse
cohesion. The first one describes the position of an
EDU alone, while the second represents the spatial
relationship between the top EDUs of S and B.
(1) Position1: the positions of the EDU in the
sentence, paragraph and discourse, respectively.
(2) Position2: whether the top EDUs of S and
B are in the same sentence/paragraph or not, and
the distance between them.

3 Memory based Discourse Cohesion

Basic EDU representation: In our model, the
EDUs in both S and B follow the same
representation method, and we take an EDU in B
as an example as shown in Figure 2. The basic
representation for an EDU is built by
concatenating three components, i.e., word, POS
and Position1. Regarding word, we feed the

sequence of words in the EDU to a bi-directional
Long Short Term Memory (LSTM) with attention
mechanism and obtain the final word
representation by concatenating the two final
outputs from both directions. Here, we use
pre-trained Glove (Pennington et al., 2014) as the
word embeddings. We get the POS tags from
Stanford CoreNLP toolkit (Manning et al., 2014),
and similarly, send the POS tag sequence of the
EDU to a bi-directional LSTM with attention
mechanism to obtain the final POS representation.
For concise, we omit the bi-directional LSTM
network structure for POS in Figure 2, which is
the same as the one for word. The Position1
feature vectors are randomly initialized and we
expect them to work as a proxy to capture the
shallow discourse structure information.

Memory Refined Representation: Besides the
shallow structure features, we design a memory
network component to cluster EDUs with similar
topics to the same memory slot to alleviate the
long span issues, as illustrated in Figure 1. We
expect these memory slots can work as lexical
chains, which can maintain different threads
within the discourse. Such a memory mechanism
has the advantage that it can perform the
clustering automatically and does not rely on
extra tools or resources to train.

Concretely, we match the representations of S
and B with their corresponding memory
networks, respectively, to get their discourse
cohesion clues, which are used to improve the
original representations. Take B as an example,
we first compute the similarity between the
representation of B (Vb) and each memory slot mi

in B’s memory. We adopt the cosine similarity as
our metric as below:

Sim[x, y] =
x · y
‖x‖ · ‖y‖

(1)

Then, we use this cosine similarity to produce a
normalized weight wi for each memory slot. We
introduce a strength factor λ to improve the focus.

wi =
exp(λSim[Vb,mi])∑
j exp(λSim[Vb,mj ])

(2)

Finally, we get the discourse cohesion clue of B
(denoted by BCoh) from its memory according to
the weighted sum of mi.

BCoh =
∑
i

wimi (3)
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We concatenateBCoh (the discourse cohesion clue
of B) and the original embedding of B to get the
refined representation Brefined for B. Similarly,
we concatenate SCoh and the embedding of S
to get the refined representation Srefined for S,
as shown in Figure 2. In our experiments, each
memory contains 20 slots, which are randomly
initialized and optimized during training.

4 Evaluation and Results

Dataset: We use the RST Discourse Treebank
(Carlson et al., 2001) with the same split as in (Li
et al., 2014), i.e., 312 for training, 30 for
development and 38 for testing. We experiment
with two set of relations, the 111 types of
fine-grained relations and the 19 types of
coarse-grained relations, respectively.

Evaluation Metrics: In the Rhetorical
Structure Theory (RST) (Mann and Thompson,
1988), head is the core of a discourse, and a
dependent gives supporting evidence to its head
with certain relationship. We adopt unlabeled
accuracy UAS (the ratio of EDUs that correctly
identify their heads) and labeled accuracy LAS
(the ratio of EDUs that have both correct heads
and relations) as our evaluation metrics.

Baselines: We compare our method with the
following baselines and models: (1) Perceptron:
We re-implement the perceptron based arc-eager
style dependency discourse parser as mentioned
in (Jia et al., 2018) with coarse-grained relation.
The Perceptron model chooses words, POS tags,
positions and length features, totally 100 feature
templates, with the early update strategy (Collins
and Roark, 2004). (2) Jia18: Jia et al. (2018)
implement a transition-based discourse parser
with stacked LSTM, where they choose a
two-layer LSTM to represent EDUs by encoding
four kinds of features including words, POS tags,
positions and length features. (3) Basic EDU
representation (Basic): Our discourse parser with
the basic EDU representation method mentioned
in Section 3. (4) Memory refined representation
(Refined): Our full parser equipped with the
basic EDU representation method and the
memory networks to capture the discourse
cohesion mentioned in Section 3. (5) MST-full
(Li et al., 2014): a graph-based dependency
discourse parser with carefully selected 6 sets of
features including words, POS tags, positions,

length, syntactic and semantic similarity features,
which achieves the state-of-art performance on
the RST Treebank.

4.1 Results

We list the overall discourse parsing performance
in Table 1. Here, Jia18, a stack LSTM based
method (Jia et al., 2018), outperforms the
traditional Perceptron method, but falls behind
our Basic model with word, POS tags and
Position features. The reason may be that
representing EDUs directly from the sequence of
word/POS embeddings could probably capture
the semantic meaning of EDUs, which is
especially useful for taking into account
synonyms or paraphrases that often confuse
traditional feature-based methods. We can also
see that Basic(word+pos+position) significantly
outperforms Basic(word+pos), as the Position
features may play a crucial role in providing
useful structural clues to our parser. Such position
information can also be considered as a shallow
treatment to capture the discourse cohesion,
especially for long span scenarios. When using
the memory network, our Refined method
achieves better performance than the
Basic(word+pos+position) in both UAS and
LAS. The reason may come from the ability of
the memory networks in simulating the lexical
chains within a discourse, where the memory
networks can model the discourse cohesion so as
to provide topical or structural clues to our parser.
We use SIGF V2 (Padó, 2006) to perform
significance test for the discussed models. We
find that the Basic(word+pos+position) method
significantly outperforms (Jia et al., 2018), and
our Refined model performs significantly better
than Basic(word+pos+position) (with p < 0.1).

However, when compared with MST-full (Li
et al., 2014), our models still fall behind this
state-of-the-art method. The main reason might
be that MST-full follows a global graph-based
dependency parsing framework, where their high
order methods (in cubic time complexity) can
directly analyze the relationship between any
EDUs pairs in the discourse, while, we choose the
transition-based local method with linear time
complexity, which can only investigate the top
EDUs in S and B according to the selected
actions, thus usually has a lower performance
than the global graph-based methods, but with a
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lower (linear) time complexity. On the other
hand, the neural network components help us
maintain much fewer features than MST-full,
which carefully selects 6 different sets of features
that are usually obtained using extra tools and
resources. And, the neural network design is
flexible enough to incorporate various clues into a
uniform framework, just like how we introduce
the memory networks as a proxy to capture
discourse cohesion.

In the RST corpus, when the distance between
two EDUs is larger, there are usually fewer
numbers of such EDU pairs, but the parsing
performance for those long span cases drops more
significantly. For example, the LAS is even lower
than 5% for those dependencies that have a range
of 6 EDUs. We take a detailed look at the parsing
performance for dependencies at different lengths
(from 1 to 6 as an example) using coarse-grained
relations. As shown in Table 2, compared with
the Basic method, both UAS and LAS of the
Refined method are improved significantly in
almost all spans, where we observe more
prominent improvement for the UAS in larger
spans such as span 5 and span 6, with about
8.70% and 6.38%, respectively.

Method UAS LAS
(Fine)

LAS
(Coarse)

Perceptron 0.5422 0.3231 0.3777
Jia18 0.5852 0.3286 0.4037
Basic (word+pos) 0.5588 0.367 0.3985
Basic (word+pos+position) 0.5933 0.3832 0.4305
Refined (20 slots) 0.6197 0.3947 0.4445
MST-full 0.7331 0.4309 0.4851

Table 1: Overall discourse parsing performance in
the RST dataset.

span
(count)

Basic(word+pos+position) Refined (20)
UAS LAS UAS LAS

1(1225) 0.7796 0.618 0.8261 0.6261
2 (405) 0.6198 0.4 0.6025 0.4124
3 (212) 0.434 0.2217 0.4576 0.2642
4 (125) 0.256 0.112 0.296 0.128
5 (69) 0.1739 0.0725 0.2609 0.1015
6 (47) 0.1064 0.0426 0.1702 0.0638

Table 2: Performance in different discourse spans.

Finally, let us take a detailed comparison
between Refined and Basic to investigate the
advantages of capturing discourse cohesion. Note
that, our Refined method wins Basic in almost all
relations. Here, we discuss one typical relation
List, which often indicates a long span

dependency between a pair of EDUs. In the test
set of RST, the average span for List is 7.55, with
the max span of 69. Our Refined can successfully
identify 55 of them, with an average span of 9.02
and the largest one of 63, while, the Basic method
can only identify 41 edges labeled with List,
which are mostly shorter cases, with an average
span of 1.32 and the largest one of 5. More
detailedly, there are 18 edges that are correctly
identified by our Refined but missed by the Basic
method. The average span of those dependencies
is 25.39. It is easy to find that without further
considerations in discourse structures, the Basic
method has limited ability in correctly identifying
longer span dependencies. And those
comparisons prove again that our Refined can
take better advantage of modeling discourse
cohesion, which enables our model to perform
better in long span scenarios.

5 Conclusions

In this paper, we propose to utilize memory
networks to model discourse cohesion
automatically. By doing so we could capture the
topic change or threads within a discourse, which
can further improve the discourse parsing
performance, especially for long span scenarios.
Experimental results on the RST Discourse
Treebank show that our proposed method can
characterize the discourse cohesion efficiently and
archive significant improvement over traditional
feature based discourse parsing methods.
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