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Abstract

We evaluate feature hashing for language
identification (LID), a method not previ-
ously used for this task. Using a standard
dataset, we first show that while feature
performance is high, LID data is highly
dimensional and mostly sparse (>99.5%)
as it includes large vocabularies for many
languages; memory requirements grow as
languages are added. Next we apply hash-
ing using various hash sizes, demonstrat-
ing that there is no performance loss with
dimensionality reductions of up to 86%.
We also show that using an ensemble of
low-dimension hash-based classifiers fur-
ther boosts performance. Feature hashing
is highly useful for LID and holds great
promise for future work in this area.

1 Introduction

Language Identification (LID) is the task of deter-
mining the language of a text, at the document,
sub-document or even sentence level. LID is a
fundamental preprocessing task in NLP and is also
used in lexicography, machine translation and in-
formation retrieval. It is widely used for filtering
to select documents in a specific language; e.g.
LID can filter webpages or tweets by language.

Although LID has been widely studied, several
open issues remain (Hughes et al., 2006). Current
goals include developing models that can iden-
tify thousands of languages; extending the task to
more fine-grained dialect identification; and mak-
ing LID functionality more readily available to
users/developers. A common challenge among
these goals is dealing with high dimensional fea-
ture spaces. LID differs from traditional text cate-
gorization tasks in some important aspects. Stan-
dard tasks, such as topic classification, are usually

performed within a single language, and the max-
imum feature space size is a function of the single
language’s vocabulary. However, LID must deal
with vocabulary from many languages and the fea-
ture space grows prodigiously.

This raises immediate concerns about memory
requirements for such systems and portends im-
plementation issues for applying the systems to
dozens, hundreds or even thousands of languages.
Recent LID work has reported results on datasets
including over 1,300 languages (Brown, 2014), al-
beit using small samples. Such models are going
to include an extraordinarily large feature space,
and individual vectors for each sample are going
to be extremely sparse. LID is usually done using
n-grams and as the number of languages and/or
n gets larger, the feature space will become pro-
hibitively large or impractical for real-world use.

For high dimensional input, traditional dimen-
sionality reduction methods (e.g. PCA, LDA) can
be computationally expensive. Feature selection
methods, e.g. those using entropy, are simpler but
still expensive. Recently, feature hashing has been
shown to be a very effective dimensionality re-
duction method (Weinberger et al., 2009). It has
proven to be useful in numerous machine learning
applications, particularly for handling extremely
high dimensional data. It also provides numerous
other benefits, which we describe in §2.1.

Although hashing could be tremendously use-
ful for LID, to our knowledge no such experiments
have been reported to date. It is unclear how colli-
sions of features from different languages would
affect its application for LID. Accordingly, the
aims of the present work are to: (1) evaluate the
effectiveness of hashing for LID; (2) compare its
performance to the standard n-gram approach; (3)
assess the role of hash size (and collision rate) on
accuracy for different feature types; and (4) deter-
mine if ensemble methods can boost performance.
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2 Related Work
2.1 Language and Dialect Identification

Work in language identification (LID) dates back
to the seminal work of Beesley (1988), Dunning
(1994) and Cavnar and Trenkle (1994). Automatic
LID methods have since been widely used in NLP
research and applications. Recently, attention has
turned to discriminating between close languages,
such as Malay-Indonesian and Croatian-Serbian
(Ljubešić et al., 2007), or even dialects/varieties of
one language, e.g. Arabic dialects (Malmasi et al.,
2015). This has been the focus of the “Discrim-
inating Similar Language” (DSL) shared task se-
ries in recent years. In this work we use data from
the 2016 task (Malmasi et al., 2016).

The 2016 task used data from 12 different lan-
guages/dialects. A training and development set
consisting of 20,000 sentences from each lan-
guage and an unlabelled test set of 1,000 sentences
per language was used for evaluation. Most par-
ticipants relied on multi-class discriminative clas-
sifiers trained with word unigrams and character
n-grams (Malmasi et al., 2016).

2.2 Feature Hashing

Feature hashing is a method for mapping a high-
dimensional input to a low-dimensional space us-
ing hashing (Weinberger et al., 2009). Hashing has
proven to be simple, efficient and effective. It has
been applied to various tasks including protein se-
quence classification (Caragea et al., 2012), senti-
ment analysis (Da Silva et al., 2014), and malware
detection (Jang et al., 2011).

This method uses a hash function h(x) to arbi-
trarily map input to a hash key of a specified size.
The hash size, e.g. 218, determines the size of the
mapped feature space. Hash functions are many-
to-one mappings. Collision occur when distinct
inputs yield the same output, i.e. h(a) = h(b). The
collision rate is affected by the hash size. From
a learning perspective, collisions cause random
clustering of features and introduce noise; unre-
lated features map to the same vector index and
may degrade the learner’s accuracy. However, it
has been shown that “the interference between in-
dependently hashed subspaces is negligible with
high probability” (Weinberger et al., 2009).

A positive by-product of hashing is that it elim-
inates the need for a feature dictionary. In NLP,
bag-of-words models require a full pass over the
data to identify the vocabulary for each feature
type (e.g. n-grams) and build a feature index.

Eliminating this has many benefits: it simpli-
fies implementation of feature extraction meth-
ods, reduces memory overhead, and facilitates dis-
tributed computing. Global statistics, e.g. totals
and per-class feature counts, are usually required
for feature selection and dimensionality reduction
methods. Feature hashing may eliminate the need
for full processing of the data to calculate these.

3 Data and Experimental Setup
Our methodology is based on the results of 2016
DSL Shared Task (Malmasi et al., 2016) and we
use their dataset. The DSL task is performed at
the sentence level, making it more challenging.

3.1 Data
A key shortcoming in LID research has been
the absence of a common dataset for evaluation
(Hughes et al., 2006), a need that has been met
by the corpora released as part of the DSL shared
task series. We use the DSLCC 3.0 corpus from
the 2016 DSL task.1 This allows us to compare
our findings to that of the 17 participants. Using a
standard, publicly available dataset also facilitates
replicability of our results. The 2016 task used
data from 12 different languages and varieties,2

including training/development sets composed of
20,000 sentences per language. An unlabelled test
set of 1,000 sentences per language was used for
evaluation. The total sentences for training and
testing are 240k and 12k, respectively. We report
our results on the standard test set.

3.2 Classifier and Evaluation
Participants applied various methods, but the task
organizers note that linear classifiers, particularly
SVMs, were the most successful (Malmasi et al.,
2016). This is unsurprising as SVMs have been
very successful for text classification and we adopt
this method. The data is balanced across classes,
so accuracy is used as the evaluation metric.

3.3 Features
Most DSL entries use surface features, with words
and high-order character n-grams being particu-
larly successful. We apply character n-grams of
order 1–6 (CH1-6) and word unigrams (WD1).
1http://ttg.uni-saarland.de/resources/DSLCC/
2Bosnian (BS), Argentine Spanish (ES AR), Peninsular
Spanish (ES ES), Mexican Spanish (ES MX), Canadian
French (FR CA), Hexagonal French (FR FR), Croatian
(HR), Indonesian (ID), Malay (MY), Brazilian Portuguese
(PT BR), European Portuguese (PT PT) and Serbian (SR).
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4 Feature Performance & Dimensionality
In our first experiment we examine the feature
space in our dataset and establish the memory re-
quirements and accuracy of the feature types we
use (character 1–6 n-grams and word unigrams).

For each feature type we extract the training
vectors and use it to train a linear SVM model
which is used to classify the standard test set. We
report the feature’s accuracy on the test set along
with some statistics about the data: the number of
features in the training data, the number of out-of-
vocabulary (OOV) features3 in the test data, and
the sparsity4 of the training data matrix. These re-
sults are shown in Figure 1.

CH1 CH2 CH3 CH4 CH5 CH6 WD1
Feat Count 272 6.1k 61.5k 358.3k 1.4m 3.7m 443.9k

Test OOV 7 57 0.7k 5.5k 26.0k 84.6k 10.7k

Sparsity (%) 88.17 98.04 99.7 99.94 99.98 99.99 99.99

Test Acc. (%) 64.49 77.49 85.77 88.21 89.09 89.2 87.93
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Figure 1: Details of our feature spaces. Train-
ing set feature counts and test set OOV counts are
shown as bars (left axis, logarithmic scale). Train-
ing data sparsity and test set accuracy are shown
as lines (in %, right axis).

These results reveal a number of interesting
patterns. Character n-grams perform better than
word unigrams. The winner of the 2016 DSL task
combined various character n-grams into an SVM
model to obtain 89.4% accuracy on the test set.
We obtain the best result of 89.2% using charac-
ter 6-grams alone. The character n-gram feature
grow rapidly, from 61k trigrams to 3.7m 6-grams.
While accuracy plateaus at 6-grams, there is only
a 1% improvement from 4- to 6-grams, but a huge
feature space increase. The number of OOV test
features also increases, but is relatively small.

The sparsity analysis is also revealing, showing
that for many features only around 0.1% of the
training matrix contains non-zero values. We can
expect that this sparsity will rapidly grow with the
addition of more classes to the dataset. This poses
a huge problem for practical applications of LID
for discriminating large number of languages.

In this regard, we can also assess how the di-
mensionality cumulatively increases as languages
3i.e. features present in the test set but not the training set.
4Matrix sparsity is the proportion of zero-valued elements.

are added, shown in Figure 2. Features increase
even as similar languages are added; we expect
this trend to continue if more classes are added.

0
0.5
1
1.5
2
2.5
3
3.5
4

0

100000

200000

300000

400000

500000

BS

ES
_A

R

ES
_E
S

ES
_M

X

FR
_C

A

FR
_F
R HR ID M
Y

PT
_B

R

PT
_P
T SR

Ch
ar
 n
‐g
r a
m
s (
in
 m

ill
io
ns
)

W
or
d 
U
ni
gr
am

 C
ou

nt

WORD1 CHAR4 CHAR5 CHAR6

Figure 2: Feature growth rate as classes are added.
Words (bars, left axis) and character n-grams
(lines, right axis) grow as languages are added.

5 Feature Hashing Performance
Having established baseline performance for our
features using the standard approach, we now
experiment with applying feature hashing to the
same data in order to evaluate its effectiveness for
this task and compare it to the standard approach.

We also assess the effect of hash size on the fea-
ture collision rate, and in turn, on classification
accuracy. To do this we test each feature5 using
hash sizes in the range 210 (1024) to 222 (2.1m)
features, which covers most of our feature types.
Our hash function is implemented using the signed
32-bit version of MurmurHash3.6

We report each feature’s accuracy at every hash
size, with the smallest hash that yields maximal
accuracy considered to be the best result. Each
feature is compared against its performance using
the full feature space (baseline). These results,
along with the reduction in the feature space for
the best results, are listed in Table 1.

Our first observation is that every feature
matches baseline performance at a hash size
smaller than its full feature space. This demon-
strates that feature hashing is useful for LID.

We can also assess the effect of feature colli-
sions using the results, which we plot in Figure 3.
We note that at the same hash size, features with a
larger space perform worse. That is, with a 212

hash size, CHAR4 outperforms 5- and 6-grams.
This is evidence of performance degradation due
to hash collision. However, we see that when us-
ing an appropriately sized hash, feature collisions
between languages do not degrade performance.
5Except character unigrams which only have 272 features.
6https://github.com/aappleby/smhasher
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Hash Size

Feature Baseline 210 211 212 213 214 215 216 217 218 219 220 221 222 ∆ feats

CHAR2 0.77 0.74 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 -33%

CHAR3 0.86 0.74 0.79 0.82 0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 -47%

CHAR4 0.88 0.70 0.76 0.80 0.83 0.86 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.88 -82%

CHAR5 0.89 0.65 0.72 0.77 0.81 0.84 0.86 0.87 0.88 0.89 0.89 0.89 0.89 0.89 -81%

CHAR6 0.89 0.58 0.67 0.73 0.78 0.82 0.84 0.87 0.87 0.88 0.89 0.89 0.89 0.89 -86%

WORD1 0.88 0.70 0.74 0.78 0.81 0.83 0.85 0.86 0.87 0.88 0.88 0.88 0.88 0.88 -41%

Table 1: Test set accuracy for hashed features at each hash size. Baseline is accuracy without hashing.
Best result (w/ smallest hash) per row in bold. Last column is the best result’s reduction in dimensionality.
We observe that every feature matches its baseline at a hash size smaller than its full feature space.
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Figure 3: Performance (left axis) of 3 features at
different hash sizes. Higher order n-grams per-
form worse at lower hash sizes due to collisions.

We also analyze the memory reduction achieved
via hashing by calculating the relative difference
in dimensionality between the best result and the
full feature set, listed in the last column of Table 1.
We see very significant reductions of up to 86%
in dimensionality without any performance loss.
Character 4-grams yield very competitive results
(0.88) with a large feature space reduction of 82%
using a hash size of 216.

6 Hashing-based Ensemble Classifier

Ensemble classifiers combine multiple learners
with the aim of improving accuracy through en-
hanced decision making. They have been ap-
plied to many tasks and shown to achieve bet-
ter results compared to single-classifier methods
(Oza and Tumer, 2008). By aggregating the out-
puts of multiple classifiers their outputs are gen-
erally considered to be more robust. Ensembles
have been successfully used for LID, e.g. winning

the 2015 task (Malmasi and Dras, 2015a). They
also achieve state-of-the-art performance for Na-
tive Language Identification (Malmasi and Dras,
2017). Could an ensemble composed of low-
dimension hash-based classifiers achieve compet-
itive performance?

In order to assess this we created an ensemble
of our features with a hash size of 216. Eval-
uating against the test set, a hard voting ensem-
ble achieved 88.7% accuracy while a probability-
based combination obtained 89.2%. Comparing to
the winning shared task accuracy of 89.4%, this is
an excellent result given that only 65,536 features
were used by our system. Ensemble combination
boosted our best single-model 216 hash size result
by 1.1%. This highlights the utility of ensemble
methods for hashing-based feature spaces. It also
shows that model combination can compensate for
small performance losses caused by hashing.

7 Discussion and Conclusion

We presented the first application of feature hash-
ing for language identification. Results show that
hashing is highly effective for LID and can amelio-
rate the dimensionality issues that can impose pro-
hibitive memory requirements for some LID tasks.
We further showed that reduced feature spaces
with as few as 65k features can be combined in en-
semble classifiers to boost performance. We also
demonstrated the effect of hash collision on accu-
racy, and outlined the type of analysis needed to
choose the correct hash size for a given feature.

Hashing provided dimensionality reductions of
up to 86% without performance degradation. This
is impressive considering that no feature selection
or analysis was performed, making it highly effi-
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cient. This reduction facilitates model loading and
training as we also showed that LID data is ex-
tremely sparse, with over 99% of our training ma-
trix cells containing zeros. This is particularly use-
ful for limited memory scenarios (e.g. handheld or
embedded devices). It may also enable the use
of methods requiring dense data representations,
something often infeasible for large datasets.

Another key advantage of hashing is that it
eliminates the need for maintaining a feature dic-
tionary, making it easy to develop feature extrac-
tion modules. This greatly simplifies paralleliza-
tion, lending itself to online learning and dis-
tributed systems, which are important issues for
LID systems in our experience.

Hashing also holds promise for facilitating the
use of deep learning methods for LID. In the 2016
DSL task, such systems performed “poorly com-
pared to traditional classifiers”; participants cited
“memory requirements and long training times”
spanning several days (Malmasi et al., 2016). Fea-
ture hashing has recently been used to compress
neural networks (Chen et al., 2015) and its appli-
cation for deep learning-based text classification
may provide insightful results.

There are also downsides to hashing, including
the inability to interpret feature weights and model
parameters, and some minor performance loss.

Future work in this area includes evaluation on
larger datasets, as well as cross-corpus experi-
ments, which may also be insightful. The ap-
plication of these methods to other text classifi-
cation tasks, particularly those dealing with lan-
guage varieties such as Native Language Identifi-
cation (Malmasi and Dras, 2015b), could also pro-
vide a deeper understanding about how they work.
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