
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1880–1890
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1172

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1880–1890
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1172

Learning to Skim Text

Adams Wei Yu∗

Carnegie Mellon University
weiyu@cs.cmu.edu

Hongrae Lee
Google

hrlee@google.com

Quoc V. Le
Google

qvl@google.com

Abstract

Recurrent Neural Networks are showing
much promise in many sub-areas of nat-
ural language processing, ranging from
document classification to machine trans-
lation to automatic question answering.
Despite their promise, many recurrent
models have to read the whole text word
by word, making it slow to handle long
documents. For example, it is difficult to
use a recurrent network to read a book
and answer questions about it. In this
paper, we present an approach of read-
ing text while skipping irrelevant informa-
tion if needed. The underlying model is
a recurrent network that learns how far to
jump after reading a few words of the input
text. We employ a standard policy gradient
method to train the model to make discrete
jumping decisions. In our benchmarks
on four different tasks, including number
prediction, sentiment analysis, news arti-
cle classification and automatic Q&A, our
proposed model, a modified LSTM with
jumping, is up to 6 times faster than the
standard sequential LSTM, while main-
taining the same or even better accuracy.

1 Introduction

The last few years have seen much success of ap-
plying neural networks to many important appli-
cations in natural language processing, e.g., part-
of-speech tagging, chunking, named entity recog-
nition (Collobert et al., 2011), sentiment analy-
sis (Socher et al., 2011, 2013), document classifi-
cation (Kim, 2014; Le and Mikolov, 2014; Zhang
et al., 2015; Dai and Le, 2015), machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever

∗Most of work was done when AWY was with Google.

et al., 2014; Bahdanau et al., 2014; Sennrich et al.,
2015; Wu et al., 2016), conversational/dialogue
modeling (Sordoni et al., 2015; Vinyals and Le,
2015; Shang et al., 2015), document summariza-
tion (Rush et al., 2015; Nallapati et al., 2016),
parsing (Andor et al., 2016) and automatic ques-
tion answering (Q&A) (Weston et al., 2015; Her-
mann et al., 2015; Wang and Jiang, 2016; Wang
et al., 2016; Trischler et al., 2016; Lee et al., 2016;
Seo et al., 2016; Xiong et al., 2016). An important
characteristic of all these models is that they read
all the text available to them. While it is essential
for certain applications, such as machine transla-
tion, this characteristic also makes it slow to ap-
ply these models to scenarios that have long input
text, such as document classification or automatic
Q&A. However, the fact that texts are usually writ-
ten with redundancy inspires us to think about the
possibility of reading selectively.

In this paper, we consider the problem of under-
standing documents with partial reading, and pro-
pose a modification to the basic neural architec-
tures that allows them to read input text with skip-
ping. The main benefit of this approach is faster
inference because it skips irrelevant information.
An unexpected benefit of this approach is that it
also helps the models generalize better.

In our approach, the model is a recurrent net-
work, which learns to predict the number of jump-
ing steps after it reads one or several input tokens.
Such a discrete model is therefore not fully differ-
entiable, but it can be trained by a standard policy
gradient algorithm, where the reward can be the
accuracy or its proxy during training.

In our experiments, we use the basic LSTM
recurrent networks (Hochreiter and Schmidhuber,
1997) as the base model and benchmark the pro-
posed algorithm on a range of document clas-
sification or reading comprehension tasks, using
various datasets such as Rotten Tomatoes (Pang

1880

https://doi.org/10.18653/v1/P17-1172
https://doi.org/10.18653/v1/P17-1172

Figure 1: A synthetic example of the proposed model to process a text document. In this example, the
maximum size of jump K is 5, the number of tokens read before a jump R is 2 and the number of jumps
allowed N is 10. The green softmax are for jumping predictions. The processing stops if a) the jumping
softmax predicts a 0 or b) the jump times exceeds N or c) the network processed the last token. We only
show the case a) in this figure.

and Lee, 2005), IMDB (Maas et al., 2011), AG
News (Zhang et al., 2015) and Children’s Book
Test (Hill et al., 2015). We find that the proposed
approach of selective reading speeds up the base
model by two to six times. Surprisingly, we also
observe our model beats the standard LSTM in
terms of accuracy.

In summary, the main contribution of our work
is to design an architecture that learns to skim text
and show that it is both faster and more accurate
in practical applications of text processing. Our
model is simple and flexible enough that we antic-
ipate it would be able to incorporate to recurrent
nets with more sophisticated structures to achieve
even better performance in the future.

2 Methodology

In this section, we introduce the proposed model
named LSTM-Jump. We first describe its main
structure, followed by the difficulty of estimat-
ing part of the model parameters because of non-
differentiability. To address this issue, we appeal
to a reinforcement learning formulation and adopt
a policy gradient method.

2.1 Model Overview

The main architecture of the proposed model is
shown in Figure 1, which is based on an LSTM re-
current neural network. Before training, the num-
ber of jumps allowed N , the number of tokens
read between every two jumps R and the max-
imum size of jumping K are chosen ahead of
time. While K is a fixed parameter of the model,
N and R are hyperparameters that can vary be-
tween training and testing. Also, throughout the
paper, we would use d1:p to denote a sequence
d1, d2, ..., dp.

In the following, we describe in detail how the
model operates when processing text. Given a
training example x1:T , the recurrent network will
read the embedding of the first R tokens x1:R and
output the hidden state. Then this state is used
to compute the jumping softmax that determines a
distribution over the jumping steps between 1 and
K. The model then samples from this distribution
a jumping step, which is used to decide the next
token to be read into the model. Let κ be the sam-
pled value, then the next starting token is xR+κ.
Such process continues until either

a) the jump softmax samples a 0; or
b) the number of jumps exceeds N ; or
c) the model reaches the last token xT .

After stopping, as the output, the latest hidden
state is further used for predicting desired targets.
How to leverage the hidden state depends on the
specifics of the task at hand. For example, for clas-
sification problems in Section 3.1, 3.2 and 3.3, it
is directly applied to produce a softmax for classi-
fication, while in automatic Q&A problem of Sec-
tion 3.4, it is used to compute the correlation with
the candidate answers in order to select the best
one. Figure 1 gives an example with K = 5,
R = 2 and N = 10 terminating on condition a).

2.2 Training with REINFORCE

Our goal for training is to estimate the parameters
of LSTM and possibly word embedding, which
are denoted as θm, together with the jumping ac-
tion parameters θa. Once obtained, they can be
used for inference.

The estimation of θm is straightforward in the
tasks that can be reduced as classification prob-
lems (which is essentially what our experiments
cover), as the cross entropy objective J1(θm) is

1881

differentiable over θm that we can directly apply
backpropagation to minimize.

However, the nature of discrete jumping deci-
sions made at every step makes it difficult to es-
timate θa, as cross entropy is no longer differen-
tiable over θa. Therefore, we formulate it as a
reinforcement learning problem and apply policy
gradient method to train the model. Specifically,
we need to maximize a reward function over θa
which can be constructed as follows.

Let j1:N be the jumping action sequence dur-
ing the training with an example x1:T . Suppose
hi is a hidden state of the LSTM right before the
i-th jump ji,1 then it is a function of j1:i−1 and
thus can be denoted as hi(j1:i−1). Now the jump
is attained by sampling from the multinomial dis-
tribution p(ji|hi(j1:i−1); θa), which is determined
by the jump softmax. We can receive a reward
R after processing x1:T under the current jumping
strategy.2 The reward should be positive if the out-
put is favorable or non-positive otherwise. In our
experiments, we choose

R =

{
1 if prediction correct;
−1 otherwise.

Then the objective function of θa we want to max-
imize is the expected reward under the distribution
defined by the current jumping policy, i.e.,

J2(θa) = Ep(j1:N ;θa)[R]. (1)

where p(j1:N ; θa) =
∏
i p(j1:i|hi(j1:i−1); θa).

Optimizing this objective numerically requires
computing its gradient, whose exact value is in-
tractable to obtain as the expectation is over high
dimensional interaction sequences. By running
S examples, an approximated gradient can be
computed by the following REINFORCE algo-
rithm (Williams, 1992):

∇θaJ2(θa) =
N∑

i=1

Ep(j1:N ;θa)[∇θa log p(j1:i|hi; θa)R]

≈ 1

S

S∑

s=1

N∑

i=1

[∇θa log p(js1:i|hsi ; θa)Rs]

where the superscript s denotes a quantity be-
longing to the s-th example. Now the term

1The i-th jumping step is usually not xi.
2In the general case, one may receive (discounted) inter-

mediate rewards after each jump. But in our case, we only
consider final reward. It is equivalent to a special case that all
intermediate rewards are identical and without discount.

∇θa log p(j1:i|hi; θa) can be computed by stan-
dard backpropagation.

Although the above estimation of ∇θaJ2(θa) is
unbiased, it may have very high variance. One
widely used remedy to reduce the variance is to
subtract a baseline value bsi from the reward Rs,
such that the approximated gradient becomes

∇θaJ2(θa) ≈
1

S

S∑

s=1

N∑

i=1

[∇θa log p(js1:i|hsi ; θ)(Rs−bsi)]

It is shown (Williams, 1992; Zaremba and
Sutskever, 2015) that any number bsi will yield an
unbiased estimation. Here, we adopt the strategy
of Mnih et al. (2014) that bsi = wbh

s
i + cb and the

parameter θb = {wb, cb} is learned by minimizing
(Rs− bsi)2. Now the final objective to minimize is

J(θm, θa, θb) = J1(θm)−J2(θa)+
S∑

s=1

N∑

i=1

(Rs−bsi)2,

which is fully differentiable and can be solved by
standard backpropagation.

2.3 Inference

During inference, we can either use sampling or
greedy evaluation by selecting the most probable
jumping step suggested by the jump softmax and
follow that path. In the our experiments, we will
adopt the sampling scheme.

3 Experimental Results

In this section, we present our empirical studies to
understand the efficiency of the proposed model in
reading text. The tasks under experimentation are:
synthetic number prediction, sentiment analysis,
news topic classification and automatic question
answering. Those, except the first one, are repre-
sentative tasks in text reading involving different
sizes of datasets and various levels of text process-
ing, from character to word and to sentence. Ta-
ble 1 summarizes the statistics of the dataset in our
experiments.

To exclude the potential impact of advanced
models, we restrict our comparison between
the vanilla LSTM (Hochreiter and Schmidhuber,
1997) and our model, which is referred to as
LSTM-Jump. In a nutshell, we show that, while
achieving the same or even better testing accuracy,
our model is up to 6 times and 66 times faster than
the baseline LSTM model in real and synthetic

1882

Task Dataset Level Vocab AvgLen #train #valid #test #class
Number Prediction synthetic word 100 100 words 1M 10K 10K 100
Sentiment Analysis Rotten Tomatoes word 18,764 22 words 8,835 1,079 1,030 2
Sentiment Analysis IMDB word 112,540 241 words 21,143 3,857 25,000 2
News Classification AG character 70 200 characters 101,851 18,149 7,600 4

Q/A Children Book Test-NE sentence 53,063 20 sentences 108,719 2,000 2,500 10
Q/A Children Book Test-CN sentence 53,185 20 sentences 120,769 2,000 2,500 10

Table 1: Task and dataset statistics.

datasets, respectively, as we are able to selectively
skip a large fraction of text.

In fact, the proposed model can be readily ex-
tended to other recurrent neural networks with so-
phisticated mechanisms such as attention and/or
hierarchical structure to achieve higher accuracy
than those presented below. However, this is or-
thogonal to the main focus of this work and would
be left as an interesting future work.

General Experiment Settings We use the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 in all experiments. We also
apply gradient clipping to all the trainable vari-
ables with the threshold of 1.0. The dropout rate
between the LSTM layers is 0.2 and the embed-
ding dropout rate is 0.1. We repeat the notations
N,K,R defined previously in Table 2, so readers
can easily refer to when looking at Tables 4,5,6
and 7. While K is fixed during both training and
testing, we would fix R and N at training but vary
their values during test to see the impact of pa-
rameter changes. Note that N is essentially a con-
straint which can be relaxed. Yet we prefer to en-
force this constraint here to let the model learn to
read fewer tokens. Finally, the reported test time
is measured by running one pass of the whole test
set instance by instance, and the speedup is over
the base LSTM model. The code is written with
TensorFlow.3

Notation Meaning
N number of jumps allowed
K maximum size of jumping
R number of tokens read before a jump

Table 2: Notations referred to in experiments.

3.1 Number Prediction with a Synthetic
Dataset

We first test whether LSTM-Jump is indeed able
to learn how to jump if a very clear jumping sig-

3https://www.tensorflow.org/

nal is given in the text. The input of the task is
a sequence of L positive integers x0:T−1 and the
output is simply xx0 . That is, the output is chosen
from the input sequence, with index determined by
x0 . Here are two examples to illustrate the idea:

input1 : 4, 5, 1, 7, 6, 2. output1 : 6

input2 : 2, 4, 9, 4, 5, 6. output2 : 9

One can see that x0 is essentially the oracle jump-
ing signal, i.e. the indicator of how many steps the
reading should jump to get the exact output and
obviously, the remaining number of the sequence
are useless. After reading the first token, a “smart”
network should be able to learn from the training
examples to jump to the output position, skipping
the rest.

We generate 1 million training and 10,000 val-
idation examples with the rule above, each with
sequence length T = 100. We also impose
1 ≤ x0 < T to ensure the index is valid. We
find that directly training the LSTM-Jump with
full sequence is unlikely to converge, therefore,
we adopt a curriculum training scheme. More
specifically, we generate sequences with lengths
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and train
the model starting from the shortest. Whenever
the training accuracy reaches a threshold, we shift
to longer sequences. We also train an LSTM with
the same curriculum training scheme. The train-
ing stops when the validation accuracy is larger
than 98%. We choose such stopping criterion sim-
ply because it is the highest that both models can
achieve.4 All the networks are single layered, with
hidden size 512, embedding size 32 and batch size
100. During testing, we generate sequences of
lengths 10, 100 and 1000 with the same rule, each
having 10,000 examples. As the training size is
large enough, we do not have to worry about over-
fitting so dropout is not applied. In fact, we find
that the training, validation and testing accuracies
are almost the same.

4In fact, our model can get higher but we stick to 98% for
ease of comparison.

1883

Seq length LSTM-Jump LSTM Speedup
Test accuracy

10 98% 96% n/a
100 98% 96% n/a

1000 90% 80% n/a
Test time (Avg tokens read)

10 13.5s (2.1) 18.9s (10) 1.40x
100 13.9s (2.2) 120.4s (100) 8.66x

1000 18.9s (3.0) 1250s (1000) 66.14x

Table 3: Testing accuracy and time of synthetic
number prediction problem. The jumping level is
number.

The results of LSTM and our method, LSTM-
Jump, are shown in Table 3. The first observa-
tion is that LSTM-Jump is faster than LSTM; the
longer the sequence is, the more significant speed-
up LSTM-Jump can gain. This is because the
well-trained LSTM-Jump is aware of the jump-
ing signal at the first token and hence can directly
jump to the output position to make prediction,
while LSTM is agnostic to the signal and has to
read the whole sequence. As a result, the read-
ing speed of LSTM-Jump is hardly affected by the
length of sequence, but that of LSTM is linear with
respect to length. Besides, LSTM-Jump also out-
performs LSTM in terms of test accuracy under all
cases. This is not surprising either, as LSTM has to
read a large amount of tokens that are potentially
not helpful and could interfere with the prediction.
In summary, the results indicate LSTM-Jump is
able to learn to jump if the signal is clear.

3.2 Word Level Sentiment Analysis with
Rotten Tomatoes and IMDB datasets

As LSTM-Jump has shown great speedups in the
synthetic dataset, we would like to understand
whether it could carry this benefit to real-world
data, where “jumping” signal is not explicit. So
in this section, we conduct sentiment analysis on
two movie review datasets, both containing equal
numbers of positive and negative reviews.

The first dataset is Rotten Tomatoes, which con-
tains 10,662 documents. Since there is not a stan-
dard split, we randomly select around 80% for
training, 10% for validation, and 10% for test-
ing. The average and maximum lengths of the re-
views are 22 and 56 words respectively, and we
pad each of them to 60. We choose the pre-trained
word2vec embeddings5 (Mikolov et al., 2013) as

5https://code.google.com/archive/p/
word2vec/

our fixed word embedding that we do not update
this matrix during training. Both LSTM-Jump and
LSTM contain 2 layers, 256 hidden units and the
batch size is 100. As the amount of training data is
small, we slightly augment the data by sampling a
continuous 50-word sequence in each padded re-
views as one training sample. During training,
we enforce LSTM-Jump to read 8 tokens before
a jump (R = 8), and the maximum skipping to-
kens per jump is 10 (K = 10), while the number
of jumps allowed is 3 (N = 3).

The testing result is reported in Table 4. In a
nutshell, LSTM-Jump is always faster than LSTM
under different combinations of R and N . At the
same time, the accuracy is on par with that of
LSTM. In particular, the combination of (R,N) =
(7, 4) even achieves slightly better accuracy than
LSTM while having a 1.5x speedup.

Model (R,N) Accuracy Time Speedup

LSTM-Jump
(9, 2) 0.783 6.3s 1.98x
(8, 3) 0.789 7.3s 1.71x
(7, 4) 0.793 8.1s 1.54x

LSTM n/a 0.791 12.5s 1x

Table 4: Testing time and accuracy on the Rotten
Tomatoes review classification dataset. The max-
imum size of jumping K is set to 10 for all the
settings. The jumping level is word.

The second dataset is IMDB (Maas et al.,
2011),6 which contains 25,000 training and 25,000
testing movie reviews, where the average length of
text is 240 words, much longer than that of Rotten
Tomatoes. We randomly set aside about 15% of
training data as validation set. Both LSTM-Jump
and LSTM has one layer and 128 hidden units,
and the batch size is 50. Again, we use pretrained
word2vec embeddings as initialization but they are
updated during training. We either pad a short se-
quence to 400 words or randomly select a 400-
word segment from a long sequence as a training
example. During training, we setR = 20,K = 40
and N = 5.

As Table 5 shows, the result exhibits a similar
trend as found in Rotten Tomatoes that LSTM-
Jump is uniformly faster than LSTM under many
settings. The various (R,N) combinations again
demonstrate the trade-off between efficiency and
accuracy. If one cares more about accuracy, then
allowing LSTM-Jump to read and jump more

6http://ai.Stanford.edu/amaas/data/
sentiment/index.html

1884

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(80, 8) 0.894 769s 1.62x
(80, 3) 0.892 764s 1.63x
(70, 3) 0.889 673s 1.85x
(50, 2) 0.887 585s 2.12x
(100, 1) 0.880 489s 2.54x

LSTM n/a 0.891 1243s 1x

Table 5: Testing time and accuracy on the IMDB
sentiment analysis dataset. The maximum size of
jumping K is set to 40 for all the settings. The
jumping level is word.

times is a good choice. Otherwise, shrinking ei-
ther one would bring a significant speedup though
at the price of losing some accuracy. Neverthe-
less, the configuration with the highest accuracy
still enjoys a 1.6x speedup compared to LSTM.
With a slight loss of accuracy, LSTM-Jump can be
2.5x faster .

3.3 Character Level News Article
Classification with AG dataset

We now present results on testing the character
level jumping with a news article classification
problem. The dataset contains four classes of top-
ics (World, Sports, Business, Sci/Tech) from the
AG’s news corpus,7 a collection of more than 1
million news articles. The data we use is the subset
constructed by Zhang et al. (2015) for classifica-
tion with character-level convolutional networks.
There are 30,000 training and 1,900 testing ex-
amples for each class respectively, where 15% of
training data is set aside as validation. The non-
space alphabet under use are:

abcdefghijklmnopqrstuvwxyz0123456
789-,;.!?:/\|_@#$%&*˜‘+-=<>()[]{}

Since the vocabulary size is small, we choose 16 as
the embedding size. The initialized entries of the
embedding matrix are drawn from a uniform dis-
tribution in [−0.25, 0.25], which are progressively
updated during training. Both LSTM-Jump and
LSTM have 1 layer and 64 hidden units and the
batch sizes are 20 and 100 respectively. The train-
ing sequence is again of length 400 that it is either
padded from a short sequence or sampled from a
long one. During training, we setR = 30,K = 40
and N = 5.

The result is summarized in Table 6. It is inter-
esting to see that even with skipping, LSTM-Jump

7http://www.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

is not always faster than LSTM. This is mainly
due to the fact that the embedding size and hidden
layer are both much smaller than those used previ-
ously, and accordingly the processing of a token is
much faster. In that case, other computation over-
head such as calculating and sampling from the
jump softmax might become a dominating factor
of efficiency. By this cross-task comparison, we
can see that the larger the hidden unit size of re-
current neural network and the embedding are, the
more speedup LSTM-Jump can gain, which is also
confirmed by the task below.

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(50, 5) 0.854 102s 0.80x
(40, 6) 0.874 98.1s 0.83x
(40, 5) 0.889 83.0s 0.98x
(30, 5) 0.885 63.6s 1.28x
(30, 6) 0.893 74.2s 1.10x

LSTM n/a 0.881 81.7s 1x

Table 6: Testing time and accuracy on the AG
news classification dataset. The maximum size of
jumping K is set to 40 for all the settings. The
jumping level is character.

3.4 Sentence Level Automatic Question
Answering with Children’s Book Test
dataset

The last task is automatic question answering, in
which we aim to test the sentence level skimming
of LSTM-Jump. We benchmark on the data set
Children’s Book Test (CBT) (Hill et al., 2015).8

In each document, there are 20 contiguous sen-
tences (context) extracted from a children’s book
followed by a query sentence. A word of the
query is deleted and the task is to select the best
fit for this position from 10 candidates. Originally,
there are four types of tasks according to the part
of speech of the missing word, from which, we
choose the most difficult two, i.e., the name en-
tity (NE) and common noun (CN) as our focus,
since simple language models can already achieve
human-level performance for the other two types .

The models, LSTM or LSTM-Jump, firstly read
the whole query, then the context sentences and
finally output the predicted word. While LSTM
reads everything, our jumping model would de-
cide how many context sentences should skip after
reading one sentence. Whenever a model finishes
reading, the context and query are encoded in its

8http://www.thespermwhale.com/
jaseweston/babi/CBTest.tgz

1885

hidden state ho, and the best answer from the can-
didate words has the same index that maximizes
the following:

softmax(CWho) ∈ R10,

where C ∈ R10×d is the word embedding matrix
of the 10 candidates and W ∈ Rd×hidden size is
a trainable weight variable. Using such bilinear
form to select answer basically follows the idea
of Chen et al. (2016), as it is shown to have good
performance. The task is now distilled to a classi-
fication problem of 10 classes.

We either truncate or pad each context sentence,
such that they all have length 20. The same pre-
processing is applied to the query sentences ex-
cept that the length is set as 30. For both models,
the number of layers is 2, the number of hidden
units is 256 and the batch size is 32. Pretrained
word2vec embeddings are again used and they are
not adjusted during training. The maximum num-
ber of context sentences LSTM-Jump can skip per
time is K = 5 while the number of total jumping
is limited to N = 5. We let the model jump after
reading every sentence, so R = 1 (20 words).

The result is reported in Table 7. The perfor-
mance of LSTM-Jump is superior to LSTM in
terms of both accuracy and efficiency under all set-
tings in our experiments. In particular, the fastest
LSTM-Jump configuration achieves a remarkable
6x speedup over LSTM, while also having respec-
tively 1.4% and 4.4% higher accuracy in Chil-
dren’s Book Test - Named Entity and Children’s
Book Test - Common Noun.

Model (R,N) Accuracy Time Speedup
Children’s Book Test - Named Entity

LSTM-Jump
(1, 5) 0.468 40.9s 3.04x
(1, 3) 0.464 30.3s 4.11x
(1, 1) 0.452 19.9s 6.26x

LSTM n/a 0.438 124.5s 1x
Children’s Book Test - Common Noun

LSTM-Jump
(1, 5) 0.493 39.3s 3.09x
(1, 3) 0.487 29.7s 4.09x
(1, 1) 0.497 19.8s 6.14x

LSTM n/a 0.453 121.5s 1x

Table 7: Testing time and accuracy on the Chil-
dren’s Book Test dataset. The maximum size of
jumping K is set to 5 for all the settings. The
jumping level is sentence.

The dominant performance of LSTM-Jump
over LSTM might be interpreted as follows. After
reading the query, both LSTM and LSTM-Jump

know what the question is. However, LSTM still
has to process the remaining 20 sentences and thus
at the very end of the last sentence, the long de-
pendency between the question and output might
become weak that the prediction is hampered. On
the contrary, the question can guide LSTM-Jump
on how to read selectively and stop early when the
answer is clear. Therefore, when it comes to the
output stage, the “memory” is both fresh and un-
cluttered that a more accurate answer is likely to
be picked.

In the following, we show two examples of how
the model reads the context given a query (bold
face sentences are those read by our model in the
increasing order). XXXXX is the missing word
we want to fill. Note that due to truncation, a few
sentences might look uncompleted.

Example 1 In the first example, the exact an-
swer appears in the context multiple times, which
makes the task relatively easy, as long as the reader
has captured their occurrences.
(a) Query: ‘XXXXX!
(b) Context:
1. said Big Klaus, and he ran off at once to

Little Klaus.
2. ‘Where did you get so much money from?’
3. ‘Oh, that was from my horse-skin.
4. I sold it yesterday evening.’
5. ‘That ’s certainly a good price!’
6. said Big Klaus; and running home in great

haste, he took an axe, knocked all his four
7. ‘Skins!
8. skins!
9. Who will buy skins?’

10. he cried through the streets.
11. All the shoemakers and tanners came running

to ask him what he wanted for them.’
12. A bushel of money for each,’ said Big

Klaus.
13. ‘Are you mad?’
14. they all exclaimed.
15. ‘Do you think we have money by the bushel?’
16. ‘Skins!
17. skins!
18. Who will buy skins?’
19. he cried again, and to all who asked him what

they cost, he answered,’ A bushel
20. ‘He is making game of us,’ they said; and the

shoemakers seized their yard measures and
(c) Candidates: Klaus | Skins | game | haste |

head | home | horses | money | price| streets

1886

(d) Answer: Skins
The reading behavior might be interpreted as

follows. The model tries to search for clues, and
after reading sentence 8, it realizes that the most
plausible answer is “Klaus” or “Skins”, as they
both appear twice. “Skins” is more likely to be
the answer as it is followed by a “!”. The model
searches further to see if ”Klaus!” is mentioned
somewhere, but it only finds “Klaus” without “!”
for the third time. After the last attempt at sen-
tence 14, it is confident about the answer and stops
to output with “Skins”.

Example 2 In this example, the answer is illus-
trated by a word “nuisance” that does not show up
in the context at all. Hence, to answer the query,
the model has to understand the meaning of both
the query and context and locate the synonym of
“nuisance”, which is not merely verbatim and thus
much harder than the previous example. Neverthe-
less, our model is still able to make a right choice
while reading much fewer sentences.
(a) Query: Yes, I call XXXXX a nuisance.
(b) Context:
1. But to you and me it would have looked

just as it did to Cousin Myra – a very dis-
contented

2. “I’m awfully glad to see you, Cousin Myra,
”explained Frank carefully, “and your

3. But Christmas is just a bore – a regular
bore.”

4. That was what Uncle Edgar called things
that didn’t interest him, so that Frank felt
pretty sure of

5. Nevertheless, he wondered uncomfortably
what made Cousin Myra smile so queerly.

6. “Why, how dreadful!”
7. she said brightly.
8. “I thought all boys and girls looked upon

Christmas as the very best time in the year.”
9. “We don’t, ”said Frank gloomily.

10. “It’s just the same old thing year in and
year out.

11. We know just exactly what is going to hap-
pen.

12. We even know pretty well what presents we
are going to get.

13. And Christmas Day itself is always the same.
14. We’ll get up in the morning , and our stock-

ings will be full of things, and half of
15. Then there ’s dinner.
16. It ’s always so poky.

17. And all the uncles and aunts come to dinner
– just the same old crowd, every year, and

18. Aunt Desda always says, ‘Why, Frankie, how
you have grown!’

19. She knows I hate to be called Frankie.
20. And after dinner they’ll sit round and talk the

rest of the day, and that’s all.
(c) Candidates: Christmas | boys | day | dinner |

half | interest | rest | stockings | things | un-
cles

(d) Answer: Christmas
The reading behavior can be interpreted as fol-

lows. After reading the query, our model realizes
that the answer should be something like a nui-
sance. Then it starts to process the text. Once it
hits sentence 3, it may begin to consider “Christ-
mas” as the answer, since “bore” is a synonym
of “nuisance”. Yet the model is not 100% sure,
so it continues to read, very conservatively – it
does not jump for the next three sentences. Af-
ter that, the model gains more confidence on the
answer “Christmas” and it makes a large jump to
see if there is something that can turn over the cur-
rent hypothesis. It turns out that the last-read sen-
tence is still talking about Christmas with a neg-
ative voice. Therefore, the model stops to take
“Christmas” as the output.

4 Related Work

Closely related to our work is the idea of learn-
ing visual attention with neural networks (Mnih
et al., 2014; Ba et al., 2014; Sermanet et al., 2014),
where a recurrent model is used to combine vi-
sual evidence at multiple fixations processed by a
convolutional neural network. Similar to our ap-
proach, the model is trained end-to-end using the
REINFORCE algorithm (Williams, 1992). How-
ever, a major difference between those work and
ours is that we have to sample from discrete jump-
ing distribution, while they can sample from con-
tinuous distribution such as Gaussian. The differ-
ence is mainly due to the inborn characteristics of
text and image. In fact, as pointed out by Mnih
et al. (2014), it was difficult to learn policies over
more than 25 possible discrete locations.

This idea has recently been explored in the con-
text of natural language processing applications,
where the main goal is to filter irrelevant content
using a small network (Choi et al., 2016). Perhaps
the most closely related to our work is the concur-
rent work on learning to reason with reinforcement

1887

learning (Shen et al., 2016). The key difference
between our work and Shen et al. (2016) is that
they focus on early stopping after multiple pass of
data to ensure accuracy whereas our method fo-
cuses on selective reading with single pass to en-
able fast processing.

The concept of “hard” attention has also been
used successfully in the context of making neu-
ral network predictions more interpretable (Lei
et al., 2016). The key difference between our work
and Lei et al. (2016)’s method is that our method
optimizes for faster inference, and is more dy-
namic in its jumping. Likewise is the difference
between our approach and the “soft” attention ap-
proach by (Bahdanau et al., 2014).

Our method belongs to adaptive computation of
neural networks, whose idea is recently explored
by (Graves, 2016; Jernite et al., 2016), where dif-
ferent amount of computations are allocated dy-
namically per time step. The main difference
between our method and Graves; Jernite et al.’s
methods is that our method can set the amount
of computation to be exactly zero for many steps,
thereby achieving faster scanning over texts. Even
though our method requires policy gradient meth-
ods to train, which is a disadvantage compared
to (Graves, 2016; Jernite et al., 2016), we do not
find training with policy gradient methods prob-
lematic in our experiments.

At the high-level, our model can be viewed as
a simplified trainable Turing machine, where the
controller can move on the input tape. It is there-
fore related to the prior work on Neural Turing
Machines (Graves et al., 2014) and especially its
RL version (Zaremba and Sutskever, 2015). Com-
pared to (Zaremba and Sutskever, 2015), the out-
put tape in our method is more simple and reward
signals in our problems are less sparse, which ex-
plains why our model is easy to train. It is worth
noting that Zaremba and Sutskever report diffi-
culty in using policy gradients to train their model.

Our method, by skipping irrelevant content,
shortens the length of recurrent networks, thereby
addressing the vanishing or exploding gradients
in them (Hochreiter et al., 2001). The baseline
method itself, Long Short Term Memory (Hochre-
iter and Schmidhuber, 1997), belongs to the same
category of methods. In this category, there are
several recent methods that try to achieve the same
goal, such as having recurrent networks that oper-
ate in different frequency (Koutnik et al., 2014) or

is organized in a hierarchical fashion (Chan et al.,
2015; Chung et al., 2016).

Lastly, we should point out that we are among
the recent efforts that deploy reinforcement learn-
ing to the field of natural language processing,
some of which have achieved encouraging re-
sults in the realm of such as neural symbolic
machine (Liang et al., 2017), machine reason-
ing (Shen et al., 2016) and sequence genera-
tion (Ranzato et al., 2015).

5 Conclusions

In this paper, we focus on learning how to skim
text for fast reading. In particular, we pro-
pose a “jumping” model that after reading every
few tokens, it decides how many tokens should
be skipped by sampling from a softmax. Such
jumping behavior is modeled as a discrete de-
cision making process, which can be trained by
reinforcement learning algorithm such as REIN-
FORCE. In four different tasks with six datasets
(one synthetic and five real), we test the efficiency
of the proposed method on various levels of text
jumping, from character to word and then to sen-
tence. The results indicate our model is several
times faster than, while the accuracy is on par with
the baseline LSTM model.

Acknowledgments

The authors would like to thank the Google Brain
Team, especially Zhifeng Chen and Yuan Yu for
helpful discussion about the implementation of
this model on Tensorflow. The first author also
wants to thank Chen Liang, Hanxiao Liu, Yingtao
Tian, Fish Tung, Chiyuan Zhang and Yu Zhang for
their help during the project. Finally, the authors
appreciate the invaluable feedback from anony-
mous reviewers.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042 .

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2014. Multiple object recognition with visual atten-
tion. arXiv preprint arXiv:1412.7755 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly

1888

learning to align and translate. arXiv preprint
arXiv:1409.0473 .

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol
Vinyals. 2015. Listen, attend and spell. arXiv
preprint arXiv:1508.01211 .

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

Eunsol Choi, Daniel Hewlett, Alexandre Lacoste, Illia
Polosukhin, Jakob Uszkoreit, and Jonathan Berant.
2016. Hierarchical question answering for long doc-
uments. arXiv preprint arXiv:1611.01839 .

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In Advances in Neu-
ral Information Processing Systems. pages 3079–
3087.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983 .

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv:1511.02301 .

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient flow in recur-
rent nets: the difficulty of learning long-term depen-
dencies. In S. C. Kremer and J. F. Kolen, editors,
A Field Guide to Dynamical Recurrent Neural Net-
works, IEEE press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yacine Jernite, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Variable computation
in recurrent neural networks. arXiv preprint
arXiv:1611.06188 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juer-
gen Schmidhuber. 2014. A clockwork rnn. In Inter-
national Conference on Machine Learning.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning (ICML).

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155 .

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017: Long Papers.

Andrew L Maas, Raymond E Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 142–150.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in neural information processing systems.
pages 2204–2212.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence RNNs and be-
yond. In Conference on Computational Natural
Language Learning (CoNLL).

1889

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR
abs/1511.06732. http://arxiv.org/abs/1511.06732.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Empirical Methods in Nat-
ural Language Processing (EMNLP).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. In Annual Meeting of the Association
for Computational Linguistics (ACL).

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Pierre Sermanet, Andrea Frome, and Esteban Real.
2014. Attention for fine-grained categorization.
arXiv preprint arXiv:1412.7054 .

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint
arXiv:1609.05284 .

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
Christopher Potts, et al. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Phillip Bachman, and Kaheer Suleman. 2016.
A parallel-hierarchical model for machine com-
prehension on sparse data. arXiv preprint
arXiv:1603.08884 .

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698 .

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning 8:229–256.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement learning neural turing machines-revised.
arXiv preprint arXiv:1505.00521 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

1890

	Learning to Skim Text

