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Abstract
In this paper, we present our Crossword
Puzzle Resolution System (SACRY),
which exploits syntactic structures for
clue reranking and answer extraction.
SACRY uses a database (DB) contain-
ing previously solved CPs in order to
generate the list of candidate answers.
Additionally, it uses innovative features,
such as the answer position in the rank
and aggregated information such as the
min, max and average clue reranking
scores. Our system is based on WebCrow,
one of the most advanced systems for
automatic crossword puzzle resolution.
Our extensive experiments over our two
million clue dataset show that our ap-
proach highly improves the quality of the
answer list, enabling the achievement of
unprecedented results on the complete CP
resolution tasks, i.e., accuracy of 99.17%.

1 Introduction
Crossword Puzzles (CPs) are the most famous lan-
guage games played around the world. The auto-
matic resolution of CPs is an open challenge for
the artificial intelligence (AI) community, which
mainly employs AI techniques for filling the puz-
zle grid with candidate answers. Basic approaches
try to optimize the overall probability of correctly
filling the grid by exploiting the likelihood of each
candidate answer, while satisfying the grid con-
straints.

Previous work (Ernandes et al., 2005) clearly
suggests that providing the solver with an accurate
list of answer candidates is an important step for
the CP resolution task. These can be retrieved us-
ing (i) the Web, (ii) Wikipedia, (iii) dictionaries or
lexical databases like WordNet or, (iv) most im-
portantly, recuperated from the DBs of previously
solved CP. Indeed, CPs are often created reusing

the same clues of past CPs, and thus querying the
DB with the target clue allows for recuperating the
same (or similar) clues of the target one. It is in-
teresting to note that, for this purpose, all previous
automatic CP solvers use standard DB techniques,
e.g., SQL Full-Text query. Existing systems for
automatic CP resolution, such as Proverb (Littman
et al., 2002) and Dr. Fill (Ginsberg, 2011), use sev-
eral different modules for generating candidate an-
swer lists. These are merged and used for defining
a Constraint Satisfaction Problem, resolved by the
CP solver.

Our CP system, SACRY, is based on innovative
QA methods for answering CP clues. We employ
(i) state-of-the-art IR techniques to retrieve the
correct answer by querying the DB of previously
solved CPs, (ii) learning to rank methods based
on syntactic structure of clues and structural ker-
nels to improve the ranking of clues that can po-
tentially contain the answers and (iii) an aggrega-
tion algorithm for generating the final list contain-
ing unique candidate answers. We implemented
a specific module based on these approaches and
we plugged it into an automatic CP solver, namely
WebCrow (Ernandes et al., 2005). The latter is
one of the best systems for CP resolution and it
has been kindly made available by the authors.

We tested our models on a dataset containing
more than two million clues and their associated
answers. This dataset is an interesting resource
that we will make available to the research com-
munity. It can be used for tasks such as: (i) simi-
lar clue retrieval/reranking, which focuses on im-
proving the rank of clues ci retrieved by a search
engine, and (ii) answer reranking, which targets
the list of aci , i.e., their aggregated clues. We
tested SACRY on an end-to-end task by solving
ten crossword puzzles provided by two of the most
famous CP editors from The New York Times and
the Washington Post. SACRY obtained an impres-
sive CP resolution accuracy of 99.17%.
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Figure 1: The architecture of WebCrow

In the reminder of this paper, Sec. 2 introduces
WebCrow and its architecture. Our models for
similar clues retrieval and answers reranking are
described in Sec. 3 while Sec. 4 illustrates our ex-
periments. Finally, the conclusions and directions
for future work are presented in Sec. 5.

2 The WebCrow Architecture
Our approaches can be used to generate accurate
candidate lists that CP solvers can exploit to im-
prove their overall accuracy. Therefore, the qual-
ity of our methods can be also implicitly evalu-
ated on the final resolution task. For this purpose,
we use an existing CP solver, namely WebCrow,
which is rather modular and accurate and it has
been kindly made available by the authors. Its
architecture is illustrated in Figure 1. In the fol-
lowing, we briefly introduce the database module
of WebCrow, which is the one that we substituted
with ours.

WebCrow’s solving process can be divided in
two phases. In the first phase, the input list of
clues activate a set of answer search modules,
which produce several lists of possible solutions
for each clue. These lists are then merged by a
specific Merger component, which uses the con-
fidence values of the lists and the probability that
a candidate in a list is correct. Eventually, a sin-
gle list of answers with their associated probabil-
ities is built for each input clue. In the second
phase WebCrow fills the crossword grid by solving
a constraint-satisfaction problem. WebCrow se-
lects a single answer from each merged list of can-
didates, trying to satisfy the imposed constraints.
The goal of this phase is to find an admissible so-
lution that maximizes the number of correctly in-

serted words. It is done using an adapted version
of the WA* algorithm (Pohl, 1970) for CP resolu-
tion.

2.1 CrossWord Database module (CWDB)
Gathering clues contained in previously published
CPs is essential for solving new puzzles. A large
portion of clues in new CPs has usually already ap-
peared in the past. Clues may share similar word-
ing or may be restated in a very different way.
Therefore, it is important to identify the clues that
have the same answer. WebCrow uses three differ-
ent modules to retrieve clues identical or similar
to a given clue from the database: the CWDB-
EXACT module, which retrieves DB clues that
match exactly with a target clue, and weights them
by the frequency they have in the clue collec-
tion. The CWDB-PARTIAL module, which uses
the MySQL’s partial matching function, query ex-
pansion and positional term distances to compute
clue-similarity scores, along with the Full-Text
search functions. The CWDB-DICTIO module,
which simply returns the full list of words of cor-
rect length, ranked by their number of occurrences
in the initial list.

We outperform the previous approach by apply-
ing learning-to-rank algorithms based on SVMs
and tree kernels on clue lists generated by state-
of-the-art passage retrieval systems.

3 Crossword Puzzle Database (CPDB)
Module

WebCrow creates answer lists by retrieving clues
from the DB of previously solved crosswords.
It simply uses the classical SQL operators and
full-text search. We instead index the DB clues
and their answers with the open source search
engine Lucene (McCandless et al., 2010), using
the state-of-the-art BM25 retrieval model. This
alone significantly improves the quality of the re-
trieved clue list, which is further refined by apply-
ing reranking. The latter consists in promoting the
clues that potentially have the same answer of the
query clue.

We designed a relatively complex pipeline
shown in Fig. 2. We build a training set using
some training clues for querying our search en-
gine, which retrieves correct and incorrect can-
didates from the indexed clues. At classification
time, the new clues are used as a search query and
the retrieved similar candidate are reranked by our
models. The next sections show our approach for
building rerankers that can exploit structures for
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solving the ineffectiveness of the simple word rep-
resentation.

3.1 Reranking framework based on Kernels
The basic architecture of our reranking framework
is relatively simple: it uses a standard preference
kernel reranking approach and is similar to the one
proposed in (Severyn and Moschitti, 2012) for QA
tasks. However, we modeled different kernels suit-
able for clue retrieval.

The framework takes a query clue and retrieves
a list of related candidate clues using a search en-
gine (applied to the CPDB), according to some
similarity criteria. Then, the query and the can-
didates are processed by an NLP pipeline. Our
pipeline is built on top of the UIMA framework
(Ferrucci and Lally, 2004) and contains many text
analysis components. The components used for
our specific tasks are: the tokenizer1, sentence
detector1, lemmatizer1, part-of-speech (POS) tag-
ger1 and chunker2.

The annotations produced by these standard
processors are input to our components that extract
structures as well as traditional features for rep-
resenting clues. This representation is employed
to train kernel-based rerankers for reordering the
candidate lists provided by a search engine. Since
the syntactic parsing accuracy can impact the qual-
ity of our structures and consequently the accuracy
of our learning to rank algorithms, we preferred to
use shallow syntactic trees over full syntactic rep-
resentations.

In the reranker we used the Partial Tree Kernel
(PTK) (Moschitti, 2006). Given an input tree, it
generates all possible connected tree fragments,
e.g., sibling nodes can also be separated and be
part of different tree fragments. In other words, a
fragment (which is a feature) is any possible tree
path, from whose nodes other tree paths can de-
part. Thus, it can generate a very rich feature space
resulting in higher generalization ability.

We combined the structural features with other
traditional ones. We used the following groups:

iKernels features (iK), which include similarity
features and kernels applied intra-pairs, i.e., be-
tween the query and the retrieved clues:
– Syntactic similarities, i.e., cosine similarity mea-
sures computed on n-grams (with n = 1, 2, 3, 4) of

1http://nlp.stanford.edu/software/
corenlp.shtml

2http://cogcomp.cs.illinois.edu/page/
software_view/13

word lemmas and part-of-speech tags.
– Kernel similarities, i.e., string kernels and tree
kernels applied to structural representations.

DKPro Similarity (DKP), which defines features
used in the Semantic Textual Similarity (STS)
challenge. These are encoded by the UKP Lab
(Bär et al., 2013):
– Longest common substring measure and Longest
common subsequence measure. They determine
the length of the longest substring shared by two
text segments.
– Running-Karp-Rabin Greedy String Tiling. It
provides a similarity between two sentences by
counting the number of shuffles in their subparts.
– Resnik similarity. The WordNet hierarchy is
used to compute a measure of semantic related-
ness between concepts expressed in the text.
The aggregation algorithm in (Mihalcea et al.,
2006) is applied to extend the measure from words
to sentences.
– Explicit Semantic Analysis (ESA) similarity
(Gabrilovich and Markovitch, 2007), which rep-
resents documents as weighted vectors of con-
cepts learned from Wikipedia, WordNet and Wik-
tionary.
– Lexical Substitution (Biemann, 2013). A super-
vised word sense disambiguation system is used to
substitute a wide selection of high-frequency En-
glish nouns with generalizations. Resnik and ESA
features are computed on the transformed text.

WebCrow features (WC), which are the similar-
ity measures computed on the clue pairs by We-
bCrow (using the Levenshtein distance) and the
Search Engine score.

Kernels for reranking, given a query clue qc and
two retrieved clues c1, c2, we can rank them by
using a reranking model, namely (RR). It uses
two pairs P = 〈p1

q , p
2
q〉 and P ′ = 〈p1

q′ , p2
q′〉,

the member of each pair are clues from the
same list generated by q and q′, respectively.
In this case, we use the kernel, KRR(P, P ′) =
PTK(〈q, c1〉, 〈q′, c′1〉)+PTK(〈q, c2〉, 〈q′, c′2〉)−
PTK(〈q, c1〉, 〈q′, c′2〉) − PTK(〈q, c2〉, 〈q′, c′1〉),
which corresponds to the scalar product between
the vectors,

(
φ(p1

q) − φ(p2
q)
) · (φ(p1

q′) − φ(p2
q′)
)
,

in the fragment vector space generated by PTK.

3.2 Learning to rank aggregated answers
Groups of similar clues retrieved from the search
engine can be associated with the same answers.
Since each clue receives a score from the reranker,
a strategy to combine the scores is needed. We
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Figure 2: The architecture of our system

aim at aggregating clues associated with the same
answer and building meaningful features for such
groups. For this purpose, we train an SVMrank

with each candidate answer aci represented with
features derived from all the clues ci associated
with such answer, i.e., we aggregate them using
standard operators such as average, min. and max.

We model an answer a using its set of clues
Ca = {ci : aci = a} in SVMrank. The feature
vector associated with a must contains informa-
tion from all c ∈ Ca. Thus, we designed novel
aggregated features that we call AVG: (i) we av-
erage the feature values used for each clue by the
first reranker, i.e., those described in Sec. 3.1 as
well as the scores produced by the clue reranker.
More specifically, we compute their sum, average,
maximum and minimum values. (ii) We also add
the term frequency of the answer word in CPDB.

Additionally, we model the occurrences of the
answer instance in the list by means of positional
features: we use n features, where n is the size
of our candidate list (e.g., 10). Each feature cor-
responds to the positions of each candidate and it
is set to the reranker score if ci ∈ Ca (i.e., for
the target answer candidate) and 0 otherwise. We
call such features (POS). For example, if an an-
swer candidate is associated with clues appearing
at positions 1 and 3 of the list, Feature 1 and Fea-
ture 3 will be set to the score calculated from the
reranker. We take into account the similarity be-
tween the answer candidate and the input clues
using a set of features, derived from word embed-
dings (Mikolov et al., 2013). These features con-
sider (i) the similarities between the clues in a pair,
(ii) the target clue and the candidate answer and
(iii) the candidate clue and the candidate answer.
They are computed summing the embedding vec-
tors of words and computing the cosine similarity.
This way we produce some evidence of semantic
relatedness. We call such features (W2V).

3.3 Generating probabilities for the solver
After the aggregation and reranking steps we have
a set of unique candidate answers ordered by their

reranking scores. Using the latter in WebCrow
generally produces a decrease of its accuracy since
it expects probabilities (or values ranging from 0
to 1). The summed votes or the scores produced
by the reranker can have a wider range and can
also be negative. Therefore, we apply logistic re-
gression (LGR) to learn a mapping between the
reranking scores and values ranging from 0 to 1.

4 Experiments
In our experiments we compare our approach with
WebCrow both on ranking candidate answers and
on the end-to-end CP resolution.

4.1 Database of previously resolved CPs
The most commonly used databases of clues con-
tain both single clues taken from various cross-
words (Ginsberg, 2011) and entire crossword puz-
zle (Ernandes et al., 2008). They refer to relatively
clean pairs of clue/answer and other crossword re-
lated information such as date of the clue, name
of the CP editor and difficulty of the clue (e.g.,
clues taken from the CPs published on The Sunday
newspaper are the most difficult). Unfortunately,
they are not publicly available.

Therefore, we compiled a crossword corpus
combining (i) CP downloaded from the Web3 and
(ii) the clue database provided by Otsys4. We re-
moved duplicates, fill-in-the-blank clues (which
are better solved by using other strategies) and
clues representing anagrams or linguistic games.
We collected over 6.3 millions of clues, published
by many different American editors. Although
this is a very rich database, it contains many du-
plicates and non-standard clues, which introduce
significant noise in the dataset. For this reason we
created a compressed dataset of 2,131,034 unique
and standard clues, with associated answers. It ex-
cludes the fill-in-the-blank clues mentioned above.

4.2 Experimental Setup
To train our models, we adopted SVM-light-TK5,
which enables the use of the Partial Tree Kernel
(PTK) (Moschitti, 2006) in SVM-light (Joachims,
2002), with default parameters. We applied a
polynomial kernel of degree 3 to the explicit fea-
ture vectors (FV). To measure the impact of the
rerankers as well as the CWDB module, we used
well-known metrics for assessing the accuracy of

3http://www.crosswordgiant.com
4http://www.otsys.com/clue
5http://disi.unitn.it/moschitti/

Tree-Kernel.htm
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QA and retrieval systems, i.e.: Recall at differ-
ent ranks (R@1, 5, 20, 50, 100), Mean Reciprocal
Rank (MRR) and Mean Average Precision (MAP).
R@1 is the percentage of questions with a cor-
rect answer ranked at the first position. MRR is
computed as follows: MRR = 1

|Q|
∑|Q|

q=1
1

rank(q) ,
where rank(q) is the position of the first correct
answer in the candidate list. For a set of queries
Q, MAP is the mean over the average precision
scores for each query: 1

Q

∑Q
q=1AveP (q).

To measure the complete CP resolution task, we
use the accuracy over the entire words filling a CP
grid (one wrong letter causes the entire definition
to be incorrect).

4.3 Clue reranking experiments
Given an input clue BM25 retrieves a list of 100
clues. On the latter, we tested our different mod-
els for clue reranking. For space constraints, we
only report a short summary of our experiments:
kernel-based rerankers combined with traditional
features (PTK+FV) relatively improve standard IR
by 16%. This is an interesting result as in (Barlac-
chi et al., 2014), the authors showed that standard
IR greatly improves on the DB methods for clue
retrieval, i.e., they showed that BM25 relatively
improves on SQL by about 40% in MRR.

4.4 Answer aggregation and reranking
Reranking clues is just the first step as the solver
must be fed with the list of unique answers. Thus,
we first used our best model (i.e., PTK+FV) for
clue reranking to score the answers of a separate
set, i.e., our answer reranking training set. Then,
we used these scores to train an additional reranker
for aggregating identical answers. The aggrega-
tion module merges clues sharing the same answer
into a single instance.

Tab. 1 shows the results for several answer
reranking models tested on a development set: the
first row shows the accuracy of the answer list pro-
duces by WebCrow. The second row reports the
accuracy of our model using a simple voting strat-
egy, i.e., the score of the clue reranker is used
as a vote for the target candidate answer. The
third row applies Logistic Regression (LGR) to
transform the SVM reranking scores in probabili-
ties. It uses Lucene score for the candidate answer
as well as the max and min scores of the entire
list. From the fourth column, the answer reranker
is trained using SVMrank using FV, AVG, POS,
W2V and some of their combinations. We note
that: (i) voting the answers using the raw score im-

Models MRR R@1 R@5 R@10 R@20 R@50 R@80

WebCrow 39.12 31.51 47.37 54.38 58.60 63.34 64.06
Raw voting 41.84 33.0 52.9 58.7 62.7 66.6 67.5
LGR voting 43.66 35 53.7 59.3 63.4 67.4 67.7

SVMrank

AVG 43.5 35.3 53.5 59.4 63.9 67.4 67.7
AVG+POS 44.1 36.3 53.6 58.9 63.9 67.4 67.6
AVG+W2V 43.2 35 53.3 58.8 63.9 67.4 67.7
AVG+POS+FV 44.4 36.7 54.2 60 64.3 67.4 67.7
AVG+FV+W2V 44.1 35.8 54.4 60 64.4 67.4 67.7
AVG+POS+

FV+W2V 44.6 36.8 54.2 59.8 64.4 67.4 67.7

Table 1: Answer reranking on the dev. set.

proves WebCrow but the probabilities computed
by LGR perform much better, i.e., about 2 per-
cent points better than Raw voting and 4.5 points
better than WebCrow; (ii) the SVMrank aggrega-
tion model can provide another additional point,
when positional features and standard feature vec-
tors are used along with aggregated and W2C fea-
tures. (iii) The overall relative improvement of
14% over WebCrow is promising for improving
the end-to-end CP resolution task.

4.5 Evaluation of the CP resolution
In order to test the effectiveness of our method,
we evaluated the resolution of full CP. We selected
five crosswords from The New York Times newspa-
per and other five from the Washington Post. Fig. 3
shows the average resolution accuracy over the
ten CP of the original WebCrow compared to We-
bCrow using our reranked lists. We ran the solver
by providing it with lists of different size. We
note that our model consistently outperforms We-
bCrow. This means that the lists of candidate an-
swers generated by our models help the solver,
which in turn fills the grid with higher accuracy.
In particular, our CP system achieves an average
accuracy of 99.17%, which makes it competitive
with international CP resolution challenges.

Additionally, WebCrow achieves the highest ac-
curacy when uses the largest candidate lists (both
original or reranked) but a large list size negatively
impacts on the speed of the solver, which in a
CP competition is critical to beat the other com-
petitors (if participants obtain the same score, the
solving time decides who is ranked first). Thus,
our approach also provide a speedup as the best
accuracy is reached for just 50 candidates (in con-
trast with the 100 candidates needed by the origi-
nal WebCrow).

5 Final Remarks
In this paper, we describe our system SACRY
for automatic CP resolution. It is based on
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Figure 3: Average accuracy over 10 CPs.

modeling rerankers for clue retrieval from DBs.
SACRY achieves a higher accuracy than We-
bCrow. SACRY uses rerankers based on SVMs
and structural kernels, where the latter are applied
to robust shallow syntactic structures. Our struc-
tural models applied to clue reranking enable us
to learn clue paraphrasing by exploiting relational
syntactic structures representing pairs of clues.

We collected the biggest clue dataset ever,
which can be also used for QA tasks since it is
composed by pairs of clue/answer. The dataset
includes 2,131,034 unique pairs of clue/answers,
which we are going to make available to the re-
search community. The experiments show that our
methods improve the quality of the lists generated
by WebCrow by 14% in MRR. When used in We-
bCrow solver with its best setting, its resolution er-
ror relatively decreases by 50%, achieving almost
a perfect resolution accuracy, i.e., 99.17%. In the
future, we would like to release the solver to allow
researchers to contribute to the project and make
the system even more competitive.
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