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Abstract

In this demo paper, we present
NEED4Tweet, a Twitterbot for named en-
tity extraction (NEE) and disambiguation
(NED) for Tweets. The straightforward
application of state-of-the-art extraction
and disambiguation approaches on infor-
mal text widely used in Tweets, typically
results in significantly degraded perfor-
mance due to the lack of formal structure;
the lack of sufficient context required;
and the seldom entities involved. In this
paper, we introduce a novel framework
that copes with the introduced challenges.
We rely on contextual and semantic
features more than syntactic features
which are less informative. We believe
that disambiguation can help to improve
the extraction process. This mimics the
way humans understand language.

1 Introduction

Twitter is an important source for continuously
and instantly updated information. It contains a
large amount of unstructured information about
users, locations, events, etc. Shortness and infor-
mality of Tweets are challenges for Natural Lan-
guage Processing (NLP) tasks. Information Ex-
traction (IE) is the NLP field of research that is
concerned with obtaining structured information
from unstructured text. IE systems attempt to in-
terpret human language text in order to extract in-
formation about different types of events, entities,
or relationships. Named entity extraction (NEE) is
a subtask of IE that aims to locate phrases (men-
tions) in the text that represent names of persons,
organizations, or locations regardless of their type.
Named entity disambiguation (NED) is the task of
determining which concrete person, place, event,
etc. is referred to by a mention. Wikipedia articles
are widely used as an entity’s reference.

Challenges: NEE and NED in informal text are
challenging. Here we summarize the challenges of
NEE and NED for Tweets:

• The informal language widely used in Tweets
makes the extraction process more difficult.
Proper capitalization is a key feature that the
state-of-the-art NEE approaches have relied
on. However, this feature gets less atten-
tion from Twitter users when they write their
Tweets.

• The limited length (140 characters) of Tweets
forces the senders to provide dense informa-
tion by using acronyms and informal lan-
guage. This makes both the extraction and
the disambiguation processes more complex.

• The limited coverage of a Knowledge Base
(KB) is another challenge facing NED for
tweets. According to (Lin et al., 2012), 5 mil-
lion out of 15 million mentions on the Web
cannot be linked to Wikipedia. This means
that relying only on a KB for NED leads to
around 33% loss in the disambiguated enti-
ties. This percentage is higher on Twitter be-
cause of its social nature where users also dis-
cuss information about seldom entities.

• The processes of NEE and NED involve
degrees of uncertainty. For example, in
the tweet “history should show that bush jr
should be in jail or at least never should
have been president”, for some NEE systems,
it may be uncertain whether the word ‘jr’
should be part of the mention bush or not.
This motivates us to fundamentally consider
sets of possible alternatives in an early stage
of the extraction and the disambiguation pro-
cesses and do a later filtration instead of mak-
ing hard decisions from the beginning.

• Named entity (NE) representation in KBs
poses another NED challenge. The YAGO
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KB (Suchanek et al., 2007) uses the
Wikipedia anchor text as a possible mention
representation for named entities. However,
there may be more representations that do
not appear in the Wikipedia anchor text, but
are meant to refer to the entity because of a
spelling mistake or because of a new abbre-
viation for the entity.

In this demo, we introduce NEED4Tweet, a
Twitterbot for a combined system for NEE and
NED in Tweets that uses their interdependency
and mimics how humans exploit it in language
understanding. The system is based on our work
(Habib and van Keulen, 2015). We use a generic
open world approach for NED in Tweets for any
named entity even though it has no Wikipedia ar-
ticle. Mentions are disambiguated by assigning
them to either a Wikipedia article or a home page.
We handle the uncertainty involved in the extrac-
tion process by considering possible alternatives
in an early stage then evaluate these alternatives
later based on disambiguation outcomes. The pro-
posed approach is shown to be robust against the
coverage of KBs and the informality of the used
language.

2 Related work

2.1 Named Entity Disambiguation

NED in Web documents is a topic that is well
covered in literature. Recently, researchers have
attempted NED for informal short text such as
Tweets. Most of this research investigate the prob-
lem of entity-oriented disambiguation. Within this
theme, (Spina et al., 2011), (Christoforaki et al.,
2011), (Yerva et al., 2012) and (Delgado et al.,
2012) focus on the task of filtering Tweets con-
taining a given a mention of topic-centric entity,
depending whether the Tweet is actually related to
the entity or not. They develop a set of features
(co-occurrence, Web-based features, collection-
based features) to find keywords for positive and
negative cases.

Similar to our problem discussed in Section 3.2,
is the problem of entity home page finding, which
was part of the TREC Web and entity tracks.
One of the proposed approaches for this task was
(Westerveld et al., 2002). The authors combine
content information with other sources as diverse
as inlinks, URLs and anchors to find an entry page.
Although the TREC problem looks similar to ours,

the Tweets’ short informal nature makes it more
tricky to find an entity reference page.

2.2 Named Entity Extraction

Many tools and services have been developed for
the NEE task in web documents written in for-
mal language. In spite of this, few research efforts
studied NEE in Tweets. In (Ritter et al., ), the au-
thors built an NLP pipeline to perform NEE. The
pipeline involves part-of-speech tagging, shallow
parsing, and a novel SVM classifier that predicts
the informativeness of capitalization in a Tweet. It
trains a Conditional Random Fields (CRF) model
with all the aforementioned features for NEE. For
classification, LabeledLDA is applied where entity
types are used as classes. A bag-of-words-based
profile is generated for each entity type, and the
same is done with each extracted mention. Clas-
sification is done based on the comparison of the
two.

The contextual relationship between the micro-
posts is considered by (Jung, 2012). The pa-
per proposes merging the microtexts by discov-
ering contextual relationship between the micro-
texts. A group of microtexts contextually linked
with each other is regarded as a microtext clus-
ter. Once this microtext cluster is obtained, they
expect that the performance of NEE can be better.
The authors provide some suggestions for Contex-
tual closure, Microtext cluster, Semantic closure,
Temporal closure, and Social closure. Those clo-
sures are used by Maximum Entropy for the NER
task.

Similarly, (Li et al., 2012) exploits the gregari-
ous property in the local context derived from the
Twitter stream in an unsupervised manner. The
system first leverages the global context obtained
from Wikipedia and Web N-Gram corpus to par-
tition Tweets into valid segments (phrases) using
a dynamic programming algorithm. Each such
Tweet segment is a candidate NE. Afterwards, a
ranking approach tries to rank segments according
to their probability of being an NE. The highly-
ranked segments have a higher chance of being
true NEs. Each segment is represented as a node
in a graph, and using the Wikipedia and the con-
text of Tweet (adjacent nodes (segments)), a score
is assigned to that segment if it is an NE or not.
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Figure 1: Traditional approaches versus our approach for NEE and NED.

3 NEED4Tweet

Although the logical order for a traditional IE
system is to complete the extraction process be-
fore commencing with the disambiguation pro-
cess, we start with an initial extraction-like phase
aiming for high recall (i.e. aiming to find as many
reasonable mention candidates as possible). We
then attempt disambiguation for all the extracted
mentions. Finally we classify extracted mention
candidates into true and false NE using features
(clues) derived from the results of the disambigua-
tion phase such as KB information and entity co-
herency. Figure 1 illustrates our general approach
contrasted with the traditional process.

The potential of this order is that the disam-
biguation step gives extra clues (such as Entity-
Tweet context similarity) about each NE candi-
date. This information can help in the decision
whether the candidate is a true NE or not.

3.1 Mention Candidates Generation

This phase is aiming to find as many reasonable
mention candidates as possible. For this task, we
unionize the output of the following mention can-
didates generation methods:

• Tweet Segmentation: Tweet text is seg-
mented using the segmentation algorithm de-
scribed in (Li et al., 2012). Each segment is
considered a mention candidate.

• KB Lookup: We scan all possible n-grams of
the Tweet against the mentions-entities table
of YAGO KB. N-grams that matches a YAGO
mention are considered mention candidates.

3.2 Disambiguation

For NED, we use a generic open world NED
approach where mentions are disambiguated by
assigning them to either a Wikipedia article
(Wikipedia entity) or a home page (non-Wikipedia
entity) (Habib and van Keulen, 2013). The NED
approach is composed of three modules; matcher,
feature extractor, and SVM ranker.

• Matcher: This module is responsible for
finding the possible candidate entities of a
given mention. For this task, we use the
mention-entity table of YAGO KB to get the
possible entities for the given mention. Fur-
thermore, we use the mention as an input
query for the Google API. The top 18 Web
pages retrieved by Google are also consid-
ered candidate entities for that mention.

• Feature Extractor: For each entity page
candidate, we extract a set of context and
URL features. Context features (such as
language model and overlapping terms be-
tween tweet and document) measure the
context similarity between mention context
(the tweet text) and entity candidates’ home
pages. URL features (such as path length and
mention-URL string similarity) measure the
likelihood of the candidate URL being a rep-
resentative of the entity home page. These
features give indicators on how likely the
candidate entity page could be a representa-
tive to the mention.

• SVM Ranker: After extracting the afore-
mentioned set of features, SVM classifier is
used to rank candidate entity pages of a men-
tion. We consider the top ranked page to be
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the entity of the input mention. In this demo,
we use an SVM which is trained on the two
NED datasets presented in (Habib and van
Keulen, 2013).

3.3 Mention Candidates Filtering
After generating the mentions candidate list, we
apply our disambiguate approach to disambiguate
each mention candidate. After that, we use another
SVM classifier to predict which mention candi-
dates are true positives and which ones are not. For
each mention candidate, we extract the following
set of features :

• Shape Features: If the mention candidate is
initially or fully capitalized and if it contains
digits.

• Probabilistic Features:

– The joint and conditional probability of
the mention candidate obtained from the
Microsoft Web N-Gram service.

– The stickiness of the segment as de-
scribed in (Li et al., 2012).

– The segment frequency over around
5 million tweets1.

• KB Features:

– Whether the segment appears in Word-
Net.

– Whether the segment appears in the
YAGO mention-entity look-up table.

• Disambiguation Features: All the features
described in Section 3.2 derived from the en-
tity page linked to the given mention candi-
date.

In this demo, we use an SVM which is trained
on four different NEE datasets presented in (Ritter
et al., ), (Basave et al., 2013), (Locke and Martin,
2009), and (Habib and van Keulen, 2012).

3.4 Final NE Set Generation
Beside the SVM, we also use a trained CRF model
for NEE. We use the CRF model described in (Zhu
et al., 2014) trained on the four collections men-
tioned in Section 3.3. To train the CRF, Tweet text
is tokenized using a special tweet tokenizer (Gim-
pel et al., 2011) and the following features are ex-
tracted and used for training:

1http://wis.ewi.tudelft.nl/umap2011/ +
TREC 2011 Microblog track collection.

(a) Example 1: Tweet for testing both NEE and NED.

(b) Example 2: Tweet for testing NED only.

(c) Tweet reply.

(d) Results of example 1

(e) Results of example 2

Figure 2: NEED4Tweet Twitterbot

• The Part of Speech (POS) tag of the token
provided by a special POS tagger designed
for tweets (Gimpel et al., 2011).

• Whether the token’s initial is capitalized.

• Whether the token’s characters are all capi-
talized.

• Whether the token has any capital letters.

We consider the best annotation set for the tweet
given by the CRF model as true positives. To gen-
erate the final NE set, we take the union of the
CRF annotation set (after being disambiguated)
and the SVM results, after removing duplicate and
overlapped extractions. To resolve the overlapped
mentions, we select the mention that appears in
Yago KB. If both mentions appear in Yago or both
don’t, we select the one with the longer length.

The idea behind this combination is that the
SVM and the CRF work in a different way. The
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former is a distance based classifier that uses nu-
meric features for classification which CRF can
not handle, while the latter is a probabilistic model
that can naturally consider state-to-state depen-
dencies and feature-to-state dependencies. On the
other hand, SVM does not consider such depen-
dencies. The hybrid approach of both makes use
of the strength of each. While the CRF makes
better use of the traditional features like POS and
Capitalization, the SVM makes better use of the
disambiguation (coherency) features.

4 Twitterbot

A Twitterbot is a program used to produce au-
tomated posts on the Twitter microblogging ser-
vice. We developed our system as a Twitter-
bot which receives the Tweet, processes it and
sends a reply message contains a link to a page
that shows the generated annotations. We use
Twitter API2 for both receiving the Tweets and
sending the replies. To use NEED4Tweet Twit-
terbot, one should send a Tweet contains either
the mention ‘@UT NEED4Tweet’ or the hashtag
‘#NEED4Tweet’ as shown in Figures 2(a) and 2(b)
respectively. Withing few seconds after sending
the tweet, the sender will get a reply Tweet (see
Figure 2(c)) that includes link to a simple HTML
page contains the generated annotations (see Fig-
ures 2(d) and 2(e)). The page contains a list of
the extracted mentions, their start offset in the
Tweet, and their linked entities. It is also possi-
ble to test only the disambiguation component by
manually coating the mentions required to be dis-
ambiguated using double square brackets ([[]])as
shown in Figure 2(b).

5 Evaluation

5.1 Data sets

To validate our approach, we use three collections
of tweets. The first two data sets are mainly de-
signed for a NER task. We manually construct the
NED ground truth by linking each NE to only one
appropriate entity page. We give higher priority to
Wikipedia pages. When no Wikipedia page exists
for a mention, we link it to a non-Wikipedia home
page or profile page.

The first data set (Locke collection) is the one
used in (Locke and Martin, 2009). The second
data set (Habib collection) is the one used in

2https://dev.twitter.com/

(a) Locke collection

Pre. Rec. F1
DBpedia Spotlight 0.1004 0.2669 0.1459
Stanford + AIDA 0.5005 0.2940 0.3704
NEED4Tweet 0.5455 0.5640 0.5546

(b) Habib collection

Pre. Rec. F1
DBpedia Spotlight 0.3711 0.5333 0.4377
Stanford + AIDA 0.7263 0.5569 0.6304
NEED4Tweet 0.6861 0.7157 0.7006

(c) #Microposts collection

Pre. Rec. F1
DBpedia Spotlight 0.1873 0.3349 0.2403
Stanford + AIDA 0.5092 0.2795 0.3609
NEED4Tweet 0.5337 0.5343 0.5339

Table 1: Combined evaluation of NEE and NED.

(Habib and van Keulen, 2012) which is relatively
small in the number of tweets but rich in the num-
ber of NEs. It is composed mainly from tweeted
news about sportsmen, celebrities, politics, etc.

The third data set (#Microposts collection)
is provided by the #Microposts Named Entity
Extraction & Linking (NEEL) Challenge (Cano
Basave et al., 2014). The NEEL Challenge task
required participants to build systems to extract
entity mentions from a tweet and to link the ex-
tracted mentions to DBpedia. Note that this data
set does not contain any non-Wikipedia entities.
We have done the mapping from the YAGO KB to
DBpedia by identifying the Wikipedia page as a
common property for the identical entities.

5.2 Experimental Results

In this experiment, we compare the performance
of NEED4Tweet against two competitors: AIDA3

and DBpedia Spotlight.4 AIDA is a disambigua-
tion system although it uses Stanford NER for
automatic NE extraction. We consider the com-
bination of Stanford NER and the AIDA disam-
biguation system as one competitor to our extrac-
tion and disambiguation system. DBpedia Spot-
light (Mendes et al., 2011) is a tool for automat-
ically annotating mentions of DBpedia resources
in text. We used DBpedia Spotlight through its
Annotate Web Service endpoint. We used the

3https://d5gate.ag5.mpi-sb.mpg.de/
webaida/

4https://github.com/dbpedia-spotlight/
dbpedia-spotlight/wiki
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NESpotter implementation for the extraction con-
figuration. The results in Table 1 show the superi-
ority of NEED4Tweet over DBpedia Spotlight and
the combined Stanford and AIDA system. More
experimental results and analysis can be found in
(Habib and van Keulen, 2015).

6 Conclusion

In this demo paper, we present NEED4Tweet, a
Twitterbot for NEE and NED in tweets. The sys-
tem is composed of three phases. The first phase
aims to generate NE candidates with an emphasis
on achieving high recall. The second phase aims
to disambiguate all the candidates generated in the
first phase. For this task, we use a generic non-
entity oriented disambiguation approach. Men-
tions are disambiguated by assigning them to ei-
ther a Wikipedia article or a home page. Finally,
the third phase is to filter the NE candidates using
features derived from disambiguation and other
shape and KB features. The proposed approach
is shown to be robust against the coverage of KBs
and the informality of the used language.
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