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Abstract

Incremental parsing is the task of assign-
ing a syntactic structure to an input sen-
tence as it unfolds word by word. Incre-
mental parsing is more difficult than full-
sentence parsing, as incomplete input in-
creases ambiguity. Intuitively, an incre-
mental parser that has access to seman-
tic information should be able to reduce
ambiguity by ruling out semantically im-
plausible analyses, even for incomplete in-
put. In this paper, we test this hypothesis
by combining an incremental TAG parser
with an incremental semantic role labeler
in a discriminative framework. We show
a substantial improvement in parsing per-
formance compared to the baseline parser,
both in full-sentence F-score and in incre-
mental F-score.

1 Introduction

When humans listen to speech, the input becomes
available gradually as the speech signal unfolds.
Reading happens in a similarly gradual manner
when the eyes scan a text. There is good evidence
that the human language processor is adapted to
this and works incrementally, i.e., computes an in-
terpretation for an incoming sentence on a word-
by-word basis (Tanenhaus et al., 1995; Altmann
and Kamide, 1999). Also language processing
systems often deal with speech as it is spoken, or
text as it is typed. A dialogue system should start
interpreting a sentence while it is spoken, and an
information retrieval system should start retrieving
results while the user is typing.

Incremental processing is therefore essential
both for realistic models of human language pro-
cessing and for NLP applications that react to
user input in real time. In response to this, a
number of incremental parsers have been devel-
oped, which use context-free grammar (Roark,

2001; Schuler et al., 2010), dependency grammar
(Chelba and Jelinek, 2000; Nivre, 2007; Huang
and Sagae, 2010), or tree-substitution grammars
(Sangati and Keller, 2013). Typical applications
of incremental parsers include speech recognition
(Chelba and Jelinek, 2000; Roark, 2001; Xu et al.,
2002), machine translation (Schwartz et al., 2011;
Tan et al., 2011), reading time modeling (Demberg
and Keller, 2008), or dialogue systems (Stoness
et al., 2004).

Incremental parsing, however, is considerably
harder than full-sentence parsing: when process-
ing the n-th word in a sentence, an, the parser only
has access to the left context (words a1 . . .an−1);
the right context (words an+1 . . .aN) is not known
yet. This can lead to local ambiguity, i.e., pro-
duce additional syntactic analyses that are valid
for the sentence prefix, but become invalid as the
right context is processed. As an example consider
the sentence prefix in (1):

(1) The athlete realized her goals . . .
a. at the competition
b. were out of reach

The prefix could continue as in (1-a), i.e., as a
main clause structure. Or the next words could
be as in (1-b), in which case her goals is part of a
subordinate clause.

Intuitively, an incremental parser that has access
to semantic information would be able to decide
which of these two analyses is likely to be correct,
even without knowing the rest of the sentence. If
the NP her goals is a likely ARG1 of realized the
parser should prefer the main clause structure. On
the other hand, if the NP is a likely ARG0 of an (as
yet unseen) embedded verb, then the parser should
go for the subordinate clause structure. This is il-
lustrated in Figure 2. Note that the preference can
easily be reversed: if the prefix was the athlete re-
alized her shoes, then her shoes is very likely to
be an ARG0 rather than an ARG1.
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The basis of this paper is the hypothesis that
semantic information can aid incremental parsing.
To test this hypothesis, we combine an incremen-
tal TAG parser with an incremental semantic role
labeling (iSRL) system. The iSRL system takes
prefix trees and computes their most likely seman-
tic role assignments. We show that these role as-
signments can be used to re-rank the output of
the incremental parser, leading to substantial im-
provements in parsing performance compared to
the baseline parser, both in full-sentence F-score
and in incremental F-score.

2 Incremental Semantic Role Labeling

The current work builds on an existing incremen-
tal parser, the Psycholinguistically Motivated Tree
Adjoining Grammar (PLTAG) parser of Demberg
et al. (2013). The distinguishing feature of this
parser is that it builds fully connected structures
(no words are left unattached during incremental
parsing); this requires it to make predictions about
the right context, which are verified as more of
the input becomes available. Konstas et al. (2014)
show that semantic information can be attached to
PLTAG structures, making it possible to assign se-
mantic roles incrementally. In the present paper,
we use these semantic roles to re-rank the output
of the PLTAG parser.

2.1 Psycholinguistically Motivated TAG
PLTAG extends standard TAG (Joshi and Sch-
abes, 1992) in order to enable incremental parsing.
Standard TAG assumes a lexicon of elementary
trees, each of which contains at least one lexical
item as an anchor and at most one leaf node as
a foot node, marked with A∗. All other leaves
are marked with A↓ and are called substitution
nodes. To derive a TAG parse for a sentence, we
start with the elementary tree of the head of the
sentence and integrate the elementary trees of the
other lexical items of the sentence using two oper-
ations: adjunction at an internal node and substi-
tution at a substitution node (the node at which the
operation applies is the integration point). Stan-
dard TAG derivations are not guaranteed to be in-
cremental, as adjunction can happen anywhere in
a sentence, possibly violating left-to-right process-
ing order. PLTAG addresses this limitation by in-
troducing prediction trees, elementary trees with-
out a lexical anchor. These are used to predict
syntactic structure anchored by words that appears
later in an incremental derivation. This ensures

a

S

 B↓  C↓ a

S

B  C↓ 

b

a

S

 B↓ C

c

(a) valid (b) invalid

Figure 1: The current fringe (dashed line) indi-
cates where valid substitutions can occur. Other
substitutions result in an invalid prefix tree.

that fully connected prefix trees can be built for
every prefix of the input.

In order to efficiently parse PLTAG, Demberg
et al. (2013) introduce the concept of fringes.
Fringes capture the fact that in an incremental
derivation, a prefix tree can only be combined with
an elementary tree at a limited set of nodes. For
instance, the prefix tree in Figure 1 has two substi-
tution nodes, for B and C. However, only substi-
tution into B leads to a valid new prefix tree; if we
substitute into C, we obtain the tree in Figure 1b,
which is not a valid prefix tree (i.e., it represents a
non-incremental derivation).

2.2 Incremental Role Propagation
The output of a semantic role labeler is a set of
semantic dependency triples 〈l,r, p〉, where l is a
semantic role label (e.g., ARG0, ARG1, ARGM in
Propbank), and r and p are the words (argument
and predicate) to which the role applies. An incre-
mental semantic role labeler assigns semantic de-
pendency triples to a prefix of the input sentence.
Note that not every word is an argument to a pred-
icate, therefore the set of triples will not necessar-
ily change at every input word. Also, triples can be
incomplete, as either the predicate or the argument
may not have been observed yet.

Konstas et al. (2014) propose an iSRL system
based on a PLTAG parser with a semantically aug-
mented lexicon. They parse an input sentence in-
crementally, applying their incremental role prop-
agation algorithm (IRPA) to the resulting prefix
trees. This creates new semantic triples (or up-
dates existing, incomplete ones) whenever an el-
ementary or prediction tree that carries semantic
role information is attached to the prefix tree. As
soon as a triple is completed a two-stage classifica-
tion process is applied, that first identifies whether
the predicate/argument pair is a good candidate,
and then disambiguates the role label (often multi-
ple roles are possible for a lexical entry). Figure 2
shows the incremental role assignment for the two
readings of the prefix the athlete realized her goals

21192



S

VP

NP

NNS

goals
{A1}

DT

her

VP

VBD

realized

NP

NN

athlete
{A0}

DT

The

〈A0,athlete,realized〉
〈A1,goals,realized〉

(a)

S

VP

SBAR

VP
{A1}

NP

NNS

goals
{A0}

DT

her

VP

VBD

realized

NP

NN

athlete
{A0}

DT

The

〈A0,athlete,realized〉
〈A1,nil,realized〉
〈A0,goals,nil〉

(b)

Figure 2: Incremental Role Propagation Algorithm application for two different prefix trees of the sen-
tence prefix the athlete realized her goals. In (a) the parser builds a main clause, so IRPA assigns an A1
to goals with realized as predicate. In (b) the parser predicts an embedded clause, so IRPA delays the
assignment of the A1 to realized, and instead introduces two incomplete triples: the first one is predicate-
incomplete, with the argument goals assigned an A0, waiting to be attached to a predicate. The second
one is argument-incomplete with predicate realized assigned an A1, waiting for an argument to follow.

(see Section 1). Note the use of incomplete seman-
tic role triples in Figure 2b.

3 Model

We use a discriminative model in order to re-rank
the output of the baseline PLTAG parser based on
semantic roles assigned by the iSRL system.

3.1 Problem Formulation
Our overall approach is closely related to the
discriminative incremental parsing framework of
Collins and Roark (2004). The goal is to learn
a mapping from input sentences x ∈ X to parse
trees y ∈ Y . For a given set of training pairs of
sentences and gold-standard parse trees (x,y) ∈
X ×Y , the output ŷ can be defined as:

ŷ = argmax
y∈GEN(x)

Φ(x,y) · w̄ (1)

where GEN(x) is a function that enumerates can-
didate parse trees for a given input x, Φ is a rep-
resentation that maps each training example (x,y)
to a feature vector Φ(x,y) ∈ Rd , and w̄ ∈ Rd is a
vector of feature weights.

During training, the task is to estimate w̄ given
the training examples. In terms of efficiency, a
crucial part of Equation (1) is the search strategy
over parses produced by GEN and, to a smaller
degree, the dimensionality of w̄. One common de-
coding technique is to implement a dynamic pro-
gram, thus avoiding the explicit enumeration of

all analyses for a given timestamp (Huang, 2008).
However, central to the discriminative approach is
the exploration of features that cannot be straight-
forwardly embedded into the parser using a dy-
namic program. These include arbitrarily long-
range dependencies contained in a parse tree, and
more importantly non-isomorphic representations
of the input sentence such as its semantic frame,
i.e., the set of all semantic roles tripes that pertain
to the same predicate. In order to accommodate
these, we decode via beam search over candidate
parses. We keep a list of the k-best analyses and
prune those whose score scr(x) = Φ(x,y) · w̄ falls
below a threshold.

3.2 Incremental k-best Parsing

What we described in the previous section could
equally apply to k-best re-ranking for full-sentence
parsing (e.g., Charniak and Johnson, 2005). For
incremental parsing, in addition to outputting ŷ for
the full sentence, we need to output prefix trees
ŷn for every prefix of length n ∈ {1 . . .N} of sen-
tence x = a1 . . .aN with length N. Let 〈xn, ŷn,n〉,
be the state of our model after we have parsed the
first n words of sentence x, resulting in analysis ŷn.
The initial state is defined as 〈x0, /0,0〉, where /0 is
the empty analysis, and the final state is 〈x, ŷ,N〉,
which represents a full analysis for the input sen-
tence. We need a function ADV that transitions
from a state at word an to a set of states at word
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an+1 by combining the prefix tree ŷn with an+1:

ADV
(〈xn, ŷn,n〉

)
= 〈xn, ŷn,n〉⊗an+1

= {〈xn+1, ŷn+1,n+1〉}
Next, we define the set of states representing
prefix trees as π, with π0 = {〈x0, /0,0〉}, and
πn = ∪π′∈πn−1ADV (π′). We can now redefine
GEN(xn) = πn, for any prefix of length n.

We enumerate prefix trees (function GEN) with
the incremental parser of Demberg et al. (2013).
The states of the model are stored in a chart; each
cell holds the top-k prefix trees. The transition
to the next state (function ADV ) is performed by
combining each prefix tree with a set of candidate
of elementary (and prediction) trees via adjunc-
tion and substitution, subject to restrictions im-
posed by incrementallity (see Figure 2). In or-
der to efficiently compute all combinations, the
PLTAG parser computes only the fringes (see Sec-
tion 2) of the prefix tree, and the candidate ele-
mentary trees and matches these two; this avoids
the computation of the prefix tree entirely.1

Each prefix tree is weighted using a probabil-
ity model estimated over PLTAG operations and
the lexicon. This probability is used as a feature
in Φ. In addition, we define a set of features of
increasing sophistication, which include features
specific to PLTAG, standard tree-based features,
and, crucially, features extracted from the seman-
tic role triples produced incrementally by the iSRL
system of Konstas et al. (2014). The features are
computed for each prefix tree yn, so Φ can be re-
written as Φ(xn,yn), and therefore Equation (1) be-
comes:

ŷn = argmax
yn∈πn

Φ(xn,yn) · w̄ (2)

Our goal now becomes to learn mappings between
sentence prefixes xn and prefix trees ŷn. In contrast
to models that estimate features weights on full
sentence parses (Collins and Roark, 2004; Char-
niak and Johnson, 2005), we do not observe gold-
standard prefix trees during training. However, we
can use gold-standard lexicon entries when pars-
ing the training data with the PLTAG parser, which
gives an approximation of gold-standard prefix
trees y+

n . Finally, during testing, given an unseen
sentence x and a trained set of feature weights w̄,
our model generates prefix trees yn for every sen-
tence prefix of size n.

1As in a chart parser, the prefix tree can be re-constructed
by following backpointers in the chart. This is done only
for evaluation at the end of the sentence or incrementally on
demand.

4 Reranking Features

This section describes the features used for rerank-
ing the prefix trees generated by the incremental
parser. We include three different classes of fea-
tures, based on local information from PLTAG el-
ementary trees, based on global and structural in-
formation from prefix trees, and based on seman-
tic information provided by iSRL triples. In con-
trast to work on discriminative full-sentence pars-
ing (e.g., Charniak and Johnson, 2005; Collins and
Koo, 2005), we can only use features extracted
from the prefix trees being constructed incremen-
tally as the sentence is parsed. The right context of
the current word cannot be used, as this would vio-
late incrementality. Every feature combination we
try also includes the following baseline features:

Prefix Tree Probability is the log probability of
the prefix tree as scored by the probability model
of the baseline parser. The score is normalized by
prefix length, to avoid getting larger negative log
probability scores for longer prefixes.

Elementary Tree Probability is the log proba-
bility of the elementary tree corresponding to the
word just added to the prefix tree according to the
probability model of the baseline parser.

4.1 PLTAG Features
The baseline generative model of the PLTAG
parser employs features based on parsing actions,
the elementary trees used at each timestamp, and
the previous word and PoS tag. In the discrimi-
native model, we extend the locality of these fea-
tures, as well as addressing sparsity issues arising
from rare elementary trees. In all cases, both lex-
icalized and unlexicalized versions of the elemen-
tary trees are used.

Unigram Trees is a family of binary features
that record the local elementary trees chosen by
the parser for the n-th word, i.e., current word for
n = 1 and previous word for n = 2.

Parent-Unigram Trees is a variation of the pre-
vious feature, where we encode the elementary
tree of the current word along with the category of
the node it attaches to in the prefix tree. This cap-
tures the attachment decisions the parser makes.

Bigram Trees are pairs of elementary trees for
adjacent words (i.e., the elementary tree currently
added to the prefix tree and the previous one).
This extends the history the parser has access to,
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and captures pairs of elementary trees that are fre-
quently chosen together, e.g., a verb-headed tree
with a PP foot node, followed by an NP-headed
prepositional tree.

4.2 Tree Features

The following features are inspired by Charniak
and Johnson (2005) and attempt to encode proper-
ties of the prefix tree, as well as capture regulari-
ties for specific syntactic construction such as co-
ordination. Even though the PLTAG parser builds
fully connected structures and predicts upcoming
context, some constituents in a given prefix tree
may be incomplete. We therefore compute the fea-
tures in this group only for those constituents that
have been completed in the current prefix tree (i.e.,
constituents that are complete at word an, but were
incomplete at word an−1). This ensures each of
the features is only counted once per constituent.
For example, the coordination parallelism feature
(see below) should be computed only after all the
words in the yield of the CC non-terminal have
been observed.

Right Branch encodes the number of nodes on
the longest path from the root of the prefix tree to
the rightmost pre-terminal. We also include the
symmetrical feature which records the number of
the remaining nodes in the prefix tree. This feature
allows the parser to prefer right-branching trees,
commonly found in English syntax.

Coordination Parallelism records whether the
two sibling subtrees of a coordination node are
identical in terms of structure and node categories
up to depth l. We encode identity in a bit mask,
and set l = 4 (e.g., 1100 means the subtrees have
identical children and grandchildren).

Coordination Parallelism Length indicates the
binned difference in size between the yields of
each sibling subtree under a coordination node. It
also stores whether the second subtree is at the end
of the sentence.

Heavy stores the category of each node in a
completed constituent, along with the binned
length of its yield and whether it is at the end of
the sentence. This feature captures the tendency
of larger constituents to occur towards the end of
the sentence.

Neighbors encodes the category of each node in
the completed constituent, the binned yield size,

and the PoS tags of the l preceding words, were
l = 1 or 2.

Word stores the current word along with the cat-
egories of its l immediate ancestor nodes (exclud-
ing pre-terminals); l = 2 or 3.

4.3 SRL Features

The features in this group are extracted from the
output of iSRL system of Konstas et al. (2014),
which annotates prefix trees with semantic roles.
The setup proposed in the current paper makes
it possible to feed the semantic information back
to the PLTAG parser by using it to re-rank the k-
best prefix trees generated by the parser. (The re-
ranked prefix trees could then also result in better
iSRL performance, an issue we will return to in
Section 6.3.)

Recall that the SRL information comes in the
form of triples 〈l,r, p〉, where l is a semantic role
label and r and p are the words to which the role
applies (see Figure 2 for examples). For each fea-
ture, we also compute an unlexicalized version
by replacing the argument and predicates in the
triples with their PoS tags.

Complete SRL Triples stores the complete
triples (if any) generated by the current word. The
word can be the predicate or the argument in one
or more dependency relations involving previous
words.

Semantic Frame records all the arguments of
a predicate (if present) for frequent semantic la-
bels, i.e., A0, A1 and A2, as well as the presence
of a modifier (e.g., AM-TMP, AM-LOC, etc.).
This feature usually fires when a verb is added to
the prefix tree and generates several complete SRL
triples. The feature captures the semantic frame of
a verb as a whole (while the previous feature just
records it as a collection of triples).

Back-off SRL Triples are generated by remov-
ing either the argument, or the predicate, or the
role label, from a complete triple. This provides
a way of generalizing between triples that share
some information without being completely iden-
tical.

Predicate/Argument/Role encodes the ele-
ments of a complete SRL triple individually
(argument, predicate, or role). This allows for
further generalization and reduces sparsity.
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5 Feature Weight Estimation

We estimate the vector of feature weights w̄ in
Equation (2) using the averaged structured percep-
tron algorithm of Collins (2002); we give the pseu-
docode in Algorithm 1. The perceptron makes
T passes over L training examples. In each it-
eration, for each sentence prefix/prefix tree pair
(xn,yn), it computes the best scoring prefix tree ŷn
among the candidate prefix trees, given the cur-
rent feature weights w̄. In line 7, the algorithm
updates w̄ with the difference (if any) between the
feature representations of the best scoring prefix
tree ŷn and the approximate gold-standard prefix
tree y+

n (see Section 3.2). Note that since we use
a constant beam during decoding with the PLTAG
parser in order to enumerate the set of prefix trees
πn, there is no guarantee that the argmax in line 5
will find the highest scoring (in terms of F-score)
prefix tree y∗n 6= ŷn. Search errors due to the best
analysis falling out of the beam at a given pre-
fix length will create errors both when decoding
unseen sentences at test time, and when learning
the feature weights with the perceptron algorithm.
The final weight vector w̄ is the average of the
weight vectors over T iterations, L examples and
N words. The averaging avoids overfitting and
produces more stable results (Collins, 2002).

Note that features are computed for every prefix
of the input sentence. Recall that the parser avoids
the explicit computation of the prefix trees in πn
through the use of the fringes (see Sections 2.1
and 3.2). This is sufficient for the computation of
PLTAG and SRL features, but we need to explic-
itly calculate every prefix tree yn for the computa-
tion of the tree features (see Section 4.2). This is
an expensive operation if we are parsing the whole
training corpus. To overcome this time bottleneck,
we compute features only for those analyses of
every input sentence prefix that belongs to the k-
best analyses at the end of the sentence. In other
words, πn is the set of only those prefix trees that
are used by the k-best analyses at the end of the
sentence. This results in a much smaller number
of prefix trees that need to be computed for each
word. However, during testing, given the trained
w̄ and an unseen sentence, we compute all features
for each prefix length of the sentence, hence calcu-
late all prefix trees in πn and incrementally re-rank
the chart entries of the parser on the fly.

Algorithm 1: Averaged Structured Perceptron
Input: Training Examples: (x,y)L

i=1,xi = a1 . . .aN
1 w̄← 0
2 for t← 1 . . .T do
3 for i← 1 . . .L do
4 for n← 1 . . .N do
5 ŷn = argmaxyn∈πn

Φ(xn,yn) · w̄
6 if y+

n 6= ŷn then
7 w̄← w̄+Φ(xn,y+

n )−Φ(xn,yn)
8 return 1

T ∑T
t=1

1
L ∑L

i=1 ∑N
n=1

1
N wt,i,n

6 Experiments

6.1 Setup
We use the PLTAG parser of Demberg et al. (2013)
to enumerate prefix trees yn and to compute the
prefix tree and word probability scores which we
use as features. We also use the iSRL system
of Konstas et al. (2014) to generate incremental
SRL triples. Their system includes a semantically-
enriched lexicon extracted from the Wall Street
Journal (WSJ) part of the Penn Treebank corpus
(Marcus et al., 1993), converted to PLTAG for-
mat. Semantic role annotation is sourced from
Propbank. We trained the probability model of
the parser and the identification and labeling clas-
sifiers of the iSRL system using the intersection of
Sections 2–21 of WSJ and the English portion of
the CoNLL 2009 Shared Task (Hajič et al., 2009).
We learn the weight vector w̄ by training the per-
ceptron algorithm also on Sections 2–21 of WSJ
(see Section 5 for details). We use the PoS tags
predicted by the parser, rather than gold standard
PoS tags. Testing is performed on section 23 of
WSJ, for sentences up to 40 words.

6.2 Evaluation
In addition to standard full-sentence labeled
bracket score, we evaluate our model incremen-
tally, by scoring the prefix trees generated for each
sentence prefix (Sangati and Keller, 2013). For
each prefix of the input sentence (two words or
more), we compute the labeled bracket score for
the minimal structure spanning that prefix. The
minimal structure is defined as the subtree rooted
in the lowest common ancestor of the prefix nodes,
while removing any leftover intermediate nodes
on the right edge of the subtree that do not have
a word in the prefix as their yield.

Although not the main focus of this paper, we
also report full-sentence combined SRL accuracy
(counting verb-predicates only). This score is ob-
tained by re-applying the iSRL system to the syn-
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System Prec Rec F AUC SRL
BASELINE 75.51 76.93 76.21 71.49 69.43
TREE 75.99 77.52 76.75 73.02 68.80
SRL 75.99 77.65 76.81 73.97 69.96
TREE+PLTAG 76.67 78.27 77.47 72.27 70.27
TREE+PLTAG

+SRL

77.00 78.57 77.77 74.97 70.00

Table 1: Full-sentence parsing results2, area under
the curve (AUC) for the incremental parsing re-
sults of Figure 3, and combined SRL score across
different groups of features.

tactic parses output by our re-ranker. (In contrast,
Konstas et al. (2014) work with gold-standard syn-
tactic parses.)

We evaluate four variants of our model (see Sec-
tion 4 for an explanation of the different groups of
features):

TREE is the model that uses tree features
only; this essentially simulates standard parse re-
ranking approaches such as the one of Charniak
and Johnson (2005).

SRL uses only features based on iSRL triples;
it provides a proof-of-concept, demonstrating that
the semantic information encoded in SRL triples
can help the parser building better syntactic trees.

TREE+PLTAG adds PLTAG Features to the
TREE model, taking advantage of local infor-
mation specific to elementary PLTAG trees;
TREE+PLTAG essentially provides a strong
syntax-only baseline.

TREE+PLTAG+SRL combines SRL features
and syntactic features.

Finally, our baseline is the PLTAG parser of
Demberg et al. (2013), using the original proba-
bility model without any re-ranking. A compari-
son with other incremental parsers would be de-
sirable, but is not trivial to achieve. This is be-
cause the PLTAG parser is trained and evaluated
on a version of the Penn Treebank that was con-
verted to PLTAG format. This renders our results
not directly comparable to parsers that reproduce
the Penn Treebank bracketing. For example, the
PLTAG parser produces deeper tree structures in-
formed by Propbank and the noun phrase annota-
tion of Vadas and Curran (2007).

10 20 30 40
0.65

0.7

0.75

0.8

0.85

0.9

Prefix Length

F-
sc

or
e

BASELINE

TREE

SRL

TREE+PLTAG

TREE+PLTAG+SRL

Figure 3: Incremental parsing F-score for increas-
ing sentence prefixes, up to 40 words.

6.3 Results

Figure 3 gives the results of evaluating incre-
mental parsing performance. The x-axis shows
prefix length, and the y-axis shows incremental
F-score computed as suggested by Sangati and
Keller (2013). Each point is averaged over all pre-
fixes of a given length in the test set. To quantify
the trends shown in this figure, we also compute
the area under the curve (AUC) for each feature
combination; this is given in Table 1.

We find that TREE performs consistently bet-
ter than the baseline for short prefixes (up to the
first 20 words), and then is very close to the base-
line. This is expected given that tree features add
structure-specific information (e.g., about coordi-
nation) to the baseline model, and is consistent
with results obtained using similar features in the
literature (Charniak and Johnson, 2005). Adding
PLTAG features (TREE+PLTAG) hurts incremen-
tal performance for short prefixes (up to about 20
words), but then performance gradually increases
over the baseline and over TREE alone. It seems
that the PLTAG features, which are specific to the
grammar formalism used, are able to help with
longer and more complex prefixes, but introduce
noise in smaller prefixes.

The SRL feature set, on the other hand, results
in a consistent increase in performance compared

2Note that the baseline score is lower than the published
F = 77.41 of Demberg et al. (2013). This is expected, since
we use a semantically-enriched lexicon, which increases the
size of the lexicon, resulting in higher ambiguity per word as
well as increased sparsity in the probability model.
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to the baseline, across all prefix lengths. SRL pro-
vides semantic knowledge, while TREE provides
syntactic knowledge, but the performance of both
feature sets is very close to each other, up to a
prefix length of about 30 words, after which SRL

has a clear advantage. SRL features seem to fil-
ter out local ambiguity caused by creating pre-
fix trees incrementally and result in correct parses
closer to the end of sentence, even without the
use of the syntactic information contained in the
TREE+PLTAG feature set. Recall that SRL uses in-
formation provided by the semantic frame, some-
thing that a syntax-only model does not have ac-
cess to. It seems that this makes it possible for SRL

to (partially) compensate for mistakes made by the
parser. The AUC of SRL is higher by 0.95 and 1.7
points compared to TREE and TREE+PLTAG, re-
spectively.

We observe an additional boost in perfor-
mance when using all features together in the
TREE+PLTAG+SRL configuration, which outper-
forms SRL alone by 1.0 points in AUC. Recall that
SRL features do not apply to every word; they fire
only when semantic information is introduced to
the parser via the semantically-enriched lexicon.
Hence by adding tree and PLTAG features, which
normally apply for every new word, we are able to
perform effective re-ranking for all sentence pre-
fixes, which explains the boost in performance.
Note that for all variants of our model we observe
a dip in performance at around 38 words. This is
probably due to noise, caused by the small number
of sentences of this length. The upward trend seen
around word 40 is probably the effect of observ-
ing the end of the sentence, which boosts parsing
accuracy.

Turning to full sentence evaluation (Table 1),
we observe a similar trend. Both TREE and
SRL beat the baseline by about 0.55 points in F-
score. Progressively adding features increases per-
formance, with the greatest gain of 1.56 points
attained by the combination of all features in
TREE+PLTAG+SRL.

We also report combined SRL F-score com-
puted on the re-ranked syntactic trees (rightmost
column of Table 1). We find that compared to
the baseline, only a small improvement of 0.55
points is achieved by TREE+PLTAG+SRL, while
TREE+PLTAG improves by 0.84 points. The
syntax-only variant therefore outperforms the full
model, but only by a small margin.

7 Related Work

The most similar approach in the literature is
Collins and Roark’s (2004) re-ranking model for
incremental parsing. They learn the syntactic fea-
tures of Roark (2001) using the perceptron model
of Collins (2002). Similar to us, they use the in-
cremental parser to search over candidate parses.
However, they limited themselves to local deriva-
tion features (akin to our PLTAG features), and do
not explore global syntactic feature (tree features)
or SRL features. Even though they re-rank the
output of an incremental parser, they only evalu-
ate full sentence parsing performance. Other re-
ranking approaches to syntactic parsing make use
of an extensive set of global features, but apply it
on the k-best list of full sentence parses (Charniak
and Johnson, 2005; Collins and Koo, 2005) or the
k-best list of derivations of a packed forest (Huang,
2008), i.e., these approaches are not incremental.

Based on the CoNLL Shared Tasks (e.g., Hajič
et al., 2009), a number of systems exist that per-
form syntactic parsing and semantic role label-
ing jointly. Toutanova et al. (2008), Sutton and
McCallum (2005) and Li et al. (2010) combine
the scores of two separate models, i.e., a syntac-
tic parser and a semantic role labeler, and re-rank
the combination using features from each domain.
Titov et al. (2009) and Gesmundo et al. (2009),
instead of combining models, create a common
search space for syntactic parsing and SRL, using
a shift reduce-style technique (Nivre, 2007) and
learn a latent variable model (Incremental Sigmoid
Belief Networks) that optimizes over both tasks at
the same time. Volokh and Neumann (2008) use a
variant of Nivre’s (2007) incremental shift-reduce
parser and rely only on the current word and pre-
vious content to output partial dependency trees;
then they output role labels given the full parser
output. In contrast to all the joint approaches, we
perform both parsing and semantic role labeling
strictly incrementally, without having access to the
whole sentence, outputting prefix trees and iSRL
triples for every sentence prefix. Our approach
creates a feedback loop, i.e., we generate a prefix
tree using the baseline model, give it as input to
iSRL, then re-rank it using a set of syntactic and
SRL features. The resulting new prefix tree can
then be fed back into iSRL, etc.
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8 Conclusions

We started from the observation that human pars-
ing uses semantic knowledge to rule out parses
that lead to implausible interpretations. Based on
this, we hypothesized that also in NLP, an incre-
mental syntactic parser should benefit from se-
mantic information. To test this hypothesis, we
combined an incremental TAG parser with an in-
cremental semantic role labeler. We used the out-
put of the iSRL system to derive features that can
be used to re-rank the prefix trees generated by the
incremental parser. We found that SRL features,
both in isolation and together with standard syn-
tactic features, improve parsing performance, both
when measured using full-sentence F-score, and in
terms of incremental F-score.

In future work, we plan to combine our incre-
mental parsing/role labeling approach with a com-
positional model of semantics, which would have
to be modified to take semantic role triples as in-
put (rather than words or word pairs). The re-
sulting plausibility estimates could then be used
as another source of semantic information for the
parser, or employed in down-stream tasks.
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