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Abstract

Using natural language to write programs
is a touchstone problem for computational
linguistics. We present an approach that
learns to map natural-language descrip-
tions of simple “if-then” rules to executable
code. By training and testing on a large cor-
pus of naturally-occurring programs (called
“recipes”) and their natural language de-
scriptions, we demonstrate the ability to
effectively map language to code. We
compare a number of semantic parsing ap-
proaches on the highly noisy training data
collected from ordinary users, and find that
loosely synchronous systems perform best.

1 Introduction

The ability to program computers using natural lan-
guage would clearly allow novice users to more
effectively utilize modern information technology.
Work in semantic parsing has explored mapping
natural language to some formal domain-specific
programming languages such as database queries
(Woods, 1977; Zelle and Mooney, 1996; Berant et
al., 2013), commands to robots (Kate et al., 2005),
operating systems (Branavan et al., 2009), smart-
phones (Le et al., 2013), and spreadsheets (Gulwani
and Marron, 2014). Developing such language-
to-code translators has generally required specific
dedicated efforts to manually construct parsers or
large corpora of suitable training examples.

An interesting subset of the possible program
space is if-then “recipes,” simple rules that allow
users to control many aspects of their digital life
including smart devices. Automatically parsing

∗Work performed while visiting Microsoft Research.

these recipes represents a step toward complex nat-
ural language programming, moving beyond single
commands toward compositional statements with
control flow.

Several services, such as Tasker and IFTTT, al-
low users to create simple programs with “triggers”
and “actions.” For example, one can program their
Phillips Hue light bulbs to flash red and blue when
the Cubs hit a home run. A somewhat complicated
GUI allows users to construct these recipes based
on a set of information “channels.” These chan-
nels represent many types of information. Weather,
news, and financial services have provided constant
updates through web services. Home automation
sensors and controllers such as motion detectors,
thermostats, location sensors, garage door openers,
etc. are also available. Users can then describe the
recipes they have constructed in natural language
and publish them.

Our goal is to build semantic parsers that al-
low users to describe recipes in natural language
and have them automatically mapped to exe-
cutable code. We have collected 114,408 recipe-
description pairs from the http://ifttt.com website.
Because users often provided short or incomplete
English descriptions, the resulting data is extremely
noisy for the task of training a semantic parser.
Therefore, we have constructed semantic-parser
learners that utilize and adapt ideas from several
previous approaches (Kate and Mooney, 2006;
Wong and Mooney, 2006) to learn an effective in-
terpreter from such noisy training data. We present
results on our collected IFTTT corpus demonstrat-
ing that our best approach produces more accurate
programs than several competing baselines. By
exploiting such “found data” on the web, seman-
tic parsers for natural-language programming can
potentially be developed with minimal effort.
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2 Background

We take an approach to semantic parsing that
directly exploits the formal grammar of the tar-
get meaning representation language, in our case
IFTTT recipes. Given supervised training data in
the form of natural-language sentences each paired
with their corresponding IFTTT recipe, we learn
to introduce productions from the formal-language
grammar into the derivation of the target program
based on expressions in the natural-language input.
This approach originated with the SILT system
(Kate et al., 2005) and was further developed in
the WASP (Wong and Mooney, 2006; Wong and
Mooney, 2007b) and KRISP (Kate and Mooney,
2006) systems.

WASP casts semantic parsing as a syntax-based
statistical machine translation (SMT) task, where
a synchronous context-free grammar (SCFG) (Wu,
1997; Chiang, 2005; Galley et al., 2006) is used
to model the translation of natural language into a
formal meaning representation. It uses statistical
models developed for syntax-based SMT for lexical
learning and parse disambiguation. Productions in
the formal-language grammar are used to construct
synchronous rules that simultaneously model the
generation of the natural language. WASP was sub-
sequently “inverted” to use the same synchronous
grammar to generate natural language from the for-
mal language (Wong and Mooney, 2007a).

KRISP uses classifiers trained using a Support-
Vector Machine (SVM) to introduce productions
in the derivation of the formal translation. The
productions of the formal-language grammar are
treated like semantic concepts to be recognized
from natural-language expressions. For each pro-
duction, an SVM classifier is trained using a string
subsequence kernel (Lodhi et al., 2002). Each clas-
sifier can then estimate the probability that a given
natural-language substring introduces a production
into the derivation of the target representation. Dur-
ing semantic parsing, these classifiers are employed
to estimate probabilities on different substrings
of the sentence to compositionally build the most
probable meaning representation for the sentence.
Unlike WASP whose synchronous grammar needs
to be able to directly parse the input, KRISP’s ap-
proach to “soft matching” productions allows it
to produce a parse for any input sentence. Conse-
quently, KRISP was shown to be much more robust
to noisy training data than previous approaches to
semantic parsing (Kate and Mooney, 2006).

Since our “found data” for IFTTT is extremely
noisy, we have taken an approach similar to KRISP;
however, we use a probabilistic log-linear text clas-
sifier rather than an SVM to recognize productions.

This method of assembling well-formed pro-
grams guided by a natural language query bears
some resemblance to Keyword Programming (Lit-
tle and Miller, 2007). In that approach, users en-
ter natural language queries in the middle of an
existing program; this query drives a search for
programs that are relevant to the query and fit
within the surrounding program. However, the
function used to score derivations is a simple match-
ing heuristic relying on the overlap between query
terms and program identifiers. Our approach uses
machine learning to build a correspondence be-
tween queries and recipes based on parallel data.

There is also a large body of work applying Com-
binatory Categorical Grammars to semantic pars-
ing, starting with Zettlemoyer and Collins (2005).
Depending on the set of combinators used, this ap-
proach can capture more expressive languages than
synchronous context-free MT. In practice, however,
synchronous MT systems have competitive accu-
racy scores (Andreas et al., 2013). Therefore, we
have not yet evaluated CCG on this task.

3 If-this-then-that recipes

The recipes considered in this paper are diverse and
powerful despite being simple in structure. Each
recipe always contains exactly one trigger and one
action. Whenever the conditions of the trigger are
satisfied, the action is performed. The resulting
recipes can perform tasks such as home automation
(“turn on my lights when I arrive home”), home
security (“text me if the door opens”), organization
(“add receipt emails to a spreadsheet”), and much
more (“remind me to drink water if I’ve been at
a bar for more than two hours”). Triggers and
actions are drawn from a wide range of channels
that must be activated by each user. These channels
can represent many entities and services, including
devices (such as Android devices or WeMo light
switches) and knowledge sources (such as ESPN
or Gmail). Each channel exposes a set of functions
for both trigger and action.

Several services such as IFTTT, Tasker, and
Llama allow users to author if-this-then-that
recipes. IFTTT is unique in that it hosts a large
set of recipes along with descriptions and other
metadata. Users of this site construct recipes using
a GUI interface to select the trigger, action, and the
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parameters for both trigger and action. After the
recipe is authored, the user must provide a descrip-
tion and optional set of notes for this recipe and
publish the recipe. Other users can browse and use
these published recipes; if a user particularly likes
a recipe, they can mark it as a favorite.

As of January 2015, we found 114,408 recipes
on http://ifttt.com. Among the available recipes we
encountered a total of 160 channels. In total, we
found 552 trigger functions from 128 of those chan-
nels, and 229 action functions from 99 channels,
for a total of 781 functions. Each recipe includes
a number of pieces of information: description1,
note, author, number of uses, etc. 99.98% of the
entries have a description, and 35% contain a note.
Based on availability, we focused primarily on the
description, though there are cases where the note
is a more explicit representation of program intent.

The recipes at http://ifttt.com are represented as
HTML forms, with combo boxes, inline maps, and
other HTML UI components allowing end users
to select functions and their parameters. This is
convenient for end users, but difficult for automated
approaches. We constructed a formal grammar of
possible program structures, and from each HTML
form we extracted an abstract syntax tree (AST)
conforming to this grammar. We model this as a
context-free grammar, though this assumption is
violated in some cases. Consider the program in
Figure 1, where some of the parameters used the
action are provided by the trigger.

This data could be used in a variety of ways.
Recipes could be suggested to users based on their
activities or interests, for instance, or one could
train a natural language generation system to give
a readable description of code.

In this paper, the paired natural language descrip-
tions and abstract syntax trees serve as training data
for semantic parsing. Given a description, a system
must produce the AST for an IFTTT recipe. We
note in passing that the data was constructed in
the opposite direction: users first implemented the
recipe and then provided a description afterwards.
Ideal data for our application would instead start
with the description and construct the recipe based
on this description. Yet the data is unusually large
and diverse, making it interesting training data for
mapping natural language to code.

1The IFTTT site refers to this as “title”.

4 Program synthesis methods

We consider a number of methods to map the natu-
ral language description of a problem into its for-
mal program representation.

4.1 Program retrieval
One natural baseline is retrieval. Multiple users
could potentially have similar needs and therefore
author similar or even identical programs. Given
a novel description, we can search for the closest
description in a table of program-description pairs,
and return the associated program. We explored
several text-similarity metrics, and found that string
edit distance over the unmodified character se-
quence achieved best performance on the devel-
opment set. As the corpus of program-description
pairs becomes larger, this baseline should increase
in quality and coverage.

4.2 Machine Translation
The downside to retrieval is that it cannot general-
ize. Phrase-based SMT systems(Och et al., 1999;
Koehn et al., 2003) can be seen as an incremental
step beyond retrieval: they segment the training
data and attempt to match and assemble those seg-
ments at runtime. If the phrase length is unbounded,
retrieval is almost a special case: it could return
whole programs from the training data when the
description matches exactly. In addition, they can
find subprograms that are relevant to portions of the
input, and assemble those subprograms into whole
programs.

As a baseline, we adopt a recent approach (An-
dreas et al., 2013) that casts semantic parsing as
phrasal translation. First, the ASTs are converted
into flat sequences of code tokens using a pre-order
left-to-right traversal. The tokens are annotated
with their arity, which is sufficient to reconstruct
the tree given a well formed sequence of tokens
using a simple stack algorithm. Given this paral-
lel corpus of language and code tokens, we train
a conventional statistical machine translation sys-
tem that is similar in structure and performance to
Moses (Koehn et al., 2007). We gather the k-best
translations, retaining the first such output that can
be successfully converted into a well-formed pro-
gram according to the formal grammar. Integration
of the well-formedness constraint into decoding
would likely produce better translations, but would
require more modifications to the MT system.

Approaches to semantic parsing inspired by ma-
chine translation have proven effective when the
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(A) CHANNELS

(B) FUNCTIONS

(C) PARAMETERS

IF

ACTION

Google Drive

Add row to spreadsheet

Drivefolder path

IFTTT Android

Formatted row

{{OccurredAt}} {{FromNumber}} {{ContactName}}

Spreadsheet name

missed

TRIGGER

Android Phone Call

Any phone call missed

Archive your missed calls from Android to Google Drive

Figure 1: Example recipe with description, with nodes corresponding to (a) Channels, (b) Functions, and (c) Parameters indicated
with specific boxes. Note how some of the fields in braces, such as OccurredAt, depend on the trigger.

data is very parallel. In the IFTTT dataset, however,
the available pairs are not particularly clean. Word
alignment quality suffers, and production extrac-
tion suffers in turn. Descriptions in this corpus are
often quite telegraphic (e.g., “Instagram to Face-
book”) or express unnecessary pieces of informa-
tion, or are downright unintelligible (“ 2Mrl14”).
Approaches that rely heavily on lexicalized infor-
mation and assume a one-to-one correspondence
between source and target (at the phrase, if not the
word level) struggle in this setting.

4.3 Generation without alignment

An alternate approach is to treat the source lan-
guage as context and a general direction, rather than
a hard constraint. The target derivation can be pro-
duced primarily according to the formal grammar
while guided by features from the source language.

For each production in the formal grammar, we
can train a binary classifier intended to predict
whether that production should be present in the
derivation. This classifier uses general features of
the source sentence. Note how this allows produc-
tions to be inferred based on context: although a
description might never explicitly say that a pro-
duction is necessary, the surrounding context might
strongly imply it.

We assign probabilities to derivations by looking
at each production independently. A derivation ei-
ther uses or does not use each production. For each
production used in the derivation, we multiply by
the probability of its inclusion. Likewise for each
production not used in the derivation, we multiply
by one minus the probability of its inclusion.

Let G = (V,Σ, R, S) be the formal grammar

with non-terminals V , terminal vocabulary Σ, pro-
ductions R and start symbol S. E represents a
source sentence, and D, a formal derivation tree
for that sentence. R(D) is the set of productions
in that derivation. The score of a derivation is the
following product:

P (D|E) =
∏

r∈R(D)

P (r|E)
∏

r∈R\R(D)

P (¬r|E)

The binary classifiers are log-linear models over
features, F , of the input string: P (r|E) ∝
exp

(
θ>r F (E)

)
.

4.3.1 Training

For each production, we train a binary classifier
predicting its presence or absence. Given a train-
ing set of parallel descriptions and programs, we
create |R| binary classifier training sets, one for
each classifier. We currently use a small set of
simple features: word unigrams and bigrams, and
character trigrams.

4.3.2 Inference

When presented with a novel utterance, E, our sys-
tem must find the best code corresponding to that
utterance. We use a top-down, left-to-right gener-
ation strategy, where each search node contains a
stack of symbols yet to be expanded and a log prob-
ability. The initial node is 〈[S] , 0〉; and a node is
complete when its stack of non-terminals is empty.

Given a search node with a non-terminal as its
first symbol on the stack, we expand with any pro-
duction for that symbol, putting its yield onto the
stack and updating the node cost to include its
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derivation score:

〈[X,α] , p〉 (X → β) ∈ R
〈[β, α] , p+ logP (X → β|E)〉〉

If the first stack item is a terminal, it is scanned:

〈[a, α] , p〉 a ∈ Σ
〈[α] , p〉

Using these inference rules, we utilize a simple
greedy approach that only accounts for the produc-
tions included in the derivation. To account for the
negative

∏
r∈R\R(D) P (¬r|E) factors, we use a

beam search, and rerank the n-best final outcomes
from this search based on the probability of all pro-
ductions that are not included. Partial derivations
are grouped into beams according to the number of
productions in that derivation.

4.4 Loosely synchronous generation
The above method learns distributions over pro-
ductions given the input, but treats the sentence as
an undifferentiated bag of linguistic features. The
syntax of the source sentence is not leveraged at all,
nor is any correspondence between the language
syntax and the program structure used. Often the
pairs are not in sufficient correspondence to sug-
gest synchronous approaches, but some loose corre-
spondence to maintain at least a notion of coverage
could be helpful.

We pursue an approach similar to KRISP (Kate
and Mooney, 2006), with several differences. First,
rather than a string kernel SVM, we use a log-linear
model with character and word n-gram features. 2

Second, we allow the model to consider both span-
internal features and contextual features.

This approach explicitly models the correspon-
dence between nodes in the code side and tokens in
the language. Unlike standard MT systems, word
alignment is not used as a hard constraint. Instead,
this phrasal correspondence is induced as part of
model training.

We define a semantic derivation D of a natu-
ral language sentence E as a program AST where
each production in the AST is augmented with a
span. The substrings covered by the children of
a production must not overlap, and the substring
covered by the parent must be the concatenation
of the substrings covered by the children. Figure 2
shows a sample semantic derivation.

2We have a preference for log-linear models given their
robustness to hyperparameter settings, ease of optimization,
and flexible incorporation of features. An SVM trained with
similar features should have similar performance, though.

IF[1-6]

ACTION[1-2]

Phone call[1-2]

Call my phone[1-2]

TRIGGER[3-6]

ESPN[3-6]

New in-game update[3-6]

Chicago Cubs[5-5]

1 2 3 4 5 6
Call me if the Cubs score

Figure 2: An example training pair with its semantic deriva-
tion. Note the correspondence between formal language and
natural language denoted with indices and spans.

The core components of KRISP are string-kernel
classifiers P (r, i..j|E) denoting the probability
that a production r in the AST covers the span
of words i..j in the sentence E. Here, i < j are
positions in the sentence indicating the span of
tokens most relevant to this production. In other
words, the substring E[i..j] denotes the production
r with probability P (r, i..j|E). The probability of
a semantic derivation D is defined as follows:

P (D|E) =
∏

(r,i..j)∈D

P (r, i..j|E)

That is, we assume that each production is indepen-
dent of all others, and is conditioned only on the
string to which it is aligned. This can be seen as a
refinement of the above production classification
approach using a notion of correspondence.

Rather than using string kernels, we use logis-
tic regression classifiers with word unigram, word
bigram, and character trigram features. Unlike
KRISP, we include features from both inside and
outside the substring. Consider the production
“Phone call→ Call my phone” with span 1-2 from
Figure 2. Word unigram features indicate that “call”
and “me” are inside the span; the remaining words
are outside the span. Word bigram features indicate
that “call me” is inside the span, “me if” is on the
boundary of the span, and all remaining bigrams
are outside the span.

4.4.1 Training
These classifiers are trained in an iterative EM-
like manner (Kate and Mooney, 2006). Starting
with some initial classifiers and a training set of
NL and AST pairs, we search for the most likely
derivation. If the AST underlying this derivation
matches the gold AST, then this derivation is added
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to the set of positive instances. Otherwise, it is
added to the set of negative instances, and the best
derivation constrained to match the gold standard
AST is found and added to the positive instances.
Given this revised training data, the classifiers are
retrained. After each pass through the training data,
we evaluate the current model on the development
set. This procedure is repeated until development-
set performance begins to fall.

4.4.2 Inference
To find the most probable derivation according to
the grammar, KRISP uses a variation on Earley
parsing. This is similar to the inference method
from Section 4.3.2, but each item now additionally
maintains a position and a span. Inference proceeds
left-to-right through the source string. The natural
language may present information in a different
order than the formal language, so all permutations
of rules are considered during inference.

We found this inference procedure to be quite
slow for larger data sets, especially because wide
beams were needed to prevent search failure. To
speed up inference, we used scores from the
position-independent classifiers as completion-cost
estimates.

The completion-cost estimate for a given sym-
bol is defined recursively. Terminals have a cost of
zero. Productions have a completion cost of the log
probability of the production given the sentence,
plus the completion cost of all non-terminal sym-
bols. The completion cost for a non-terminal is
the max cost of any production rooted in that non-
terminal. Computing this cost requires traversing
all productions in the grammar for each sentence.

Given a partial hypothesis, we use exact scores
for the left-corner subtree that has been fully con-
structed, and completion estimates for all the sym-
bols and productions whose left and right spans are
not yet fully instantiated.

5 Experimental Evaluation

Next we evaluate the accuracy of these approaches.
The 114,408 recipes described in Section 3 were
first cleaned and tokenized. We kept only one
recipe per unique description, after mapping to low-
ercase and normalizing punctuation.3 Finally the
recipes were split by author, randomly assigning
each to training, development, or test, to prevent

3We found many recipes with the same description, likely
copies of some initial recipe made by different users. We
selected one representative using a deterministic heuristic.

Language Code

Recipes 77,495 77,495
Train Tokens 527,368 1,776,010

Vocabulary 58,102 140,871

Recipes 5,171 5,171
Dev Tokens 37,541 110,074

Vocabulary 7,741 14,804

Recipes 4,294 4,294
Test Tokens 28,214 94,367

Vocabulary 6,782 13,969

Table 1: Statistics of the data after cleaning and separating
into training, development, and test sets. In each case, the
number of recipes, tokens (including punctuation, etc.) and
vocabulary size are included.

overfitting to the linguistic style of a particular au-
thor. Table 1 presents summary statistics for the
resulting data.

Although certain trigger-action pairs occur much
more often than others, the recipes in this data
are quite diverse. The top 10 trigger-action pairs
account for 14% of the recipes; the top 100 account
for 37%; the top 1000 account for 72%.

5.1 Metrics
To evaluate system performance, several different
measures are employed. Ideally a system would
output exactly the correct abstract syntax tree. One
measure is to count the number of exact matches,
though almost all methods receive a score of 0.4

Alternatively, we can look at the AST as a set of
productions, computing balanced F-measure. This
is a much more forgiving measure, giving partial
credit for partially correct results, though it has the
caveat that all errors are counted equally.

Correctly assigning the trigger and action is the
most important, especially because some of the pa-
rameter values are tailored for particular users. For
example, “turn off my lights when I leave home”
requires a “home” location, which varies for each
user. Therefore, we also measure accuracy at iden-
tifying the correct trigger and action, both at the
channel and function level.

5.2 Human comparison
One remaining difficulty is that multiple programs
may be equally correct. Some descriptions are very
difficult to interpret, even for humans. Second,

4Retrieval gets an exact match 3.7% of the time, likely due
to near-duplicates from copied recipes.
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multiple channels may provide similar functional-
ity: both Phillips Hue and WeMo channels provide
the ability to turn on lights. Even a well-authored
description may not clarify which channel should
be used. Finally, many descriptions are underspec-
ified. For instance, the description “notify me if
it rains” does not specify whether the user should
receive an Android notification, an iOS notification,
an email, or an SMS. This is difficult to capture
with an automatic metric.

To address the prevalence and impact of under-
specification and ambiguity in descriptions, we
asked humans to perform a very similar task.
Human annotators on Amazon Mechanical Turk
(“turkers”) were presented with recipe descriptions
and asked to identify the correct channel and func-
tion (but not parameters). Turkers received careful
instructions and several sample description-recipe
pairs, then were asked to specify the best recipe for
each input. We requested they try their best to find
an action and a trigger even when presented with
vague or ambiguous descriptions, but they could
tag inputs as ‘unintelligible’ if they were unable to
make an educated guess. Turkers created recipes
only for English descriptions, applying the label
’non-English’ otherwise. Five recipes were gath-
ered for each description. The resulting recipes are
not exactly gold, as they have limited training at the
task. However, we imposed stringent qualification
requirements to control the annotation quality.5

Our workers were in fair agreement with one an-
other and the gold standard, producing high quality
annotation at wages calibrated to local minimum
wage. We measure turker agreement with Krippen-
dorff’s α (Krippendorff, 1980), which is a statis-
tical measure of agreement between any number
of coders. Unlike Cohen’s κ (Cohen, 1960), the α
statistic does not require that coders be the same for
each unit of analysis. This property is particularly
desirable in our case, since turkers generally differ
across HITs. A value of α = 1 indicates perfect
agreement, while α ≤ 0 suggests the absence of
agreement or systematic disagreement. Agreement
measures on the Mechanical Turk data are shown
in Table 2. This shows encouraging levels of agree-
ment for both the trigger and the action, especially
considering the large number of categories. Krip-
pendorff (1980) advocates a 0.67 cutoff to allow

5Turkers must have 95% HIT approval rating and be native
speakers of English (As an approximation of the latter, we
required Turkers be from the U.S.). Manual inspection of an-
notation on a control set drawn from the training data ensured
there was no apparent spam.

Trigger Action
C C+F C C+F

# of categories 128 552 99 229

all .592 .492 .596 .532
Intelligible English .687 .528 .731 .627

Table 2: Annotator agreement as measured by Krippendorff’s
α coefficient (Krippendorff, 1980). Agreement is measured
on either channel (C) or channel and function (C+F), and
on either the full test set (4294 recipes) or its English and
intelligible subset (2262 recipes).

“tentative conclusion” of agreement, and turkers are
relatively close to that level for both trigger and
action channels. However, it is important to note
that the coding scheme used by turkers is not mutu-
ally exclusive, as several triggers and actions (e.g.,
“SMS” vs. “Android SMS” actions) accomplish
similar effects. Thus, our levels of agreement are
likely to be greater than suggested by measures in
the table. Finally, we also measured agreement on
the English and intelligible subset of the data, as we
found that confusion between the two labels “non-
English” and “unintelligible” was relatively high.
As shown in the table, this substantially increased
levels of agreement, up to the point where α for
both trigger and action channels are above the 0.67
cutoff drawing tentative conclusion of agreement.

5.3 Systems and baselines

The retrieval method searches for the closest de-
scription in the training data based on character
string-edit-distance and returns the recipe for that
training program. The phrasal method uses phrase-
based machine translation to generate candidate
outputs, searching the resulting n-best candidates
for the first well-formed recipe. After exploring
multiple word alignment approaches, we found
that an unsupervised feature-rich method (Berg-
Kirkpatrick et al., 2010) worked best, leverag-
ing features of string similarity between the de-
scription and the code. We ran MERT on the de-
velopment data to tune parameters. We used a
phrasal decoder with performance similar to Moses.
The synchronous grammar method, a recreation of
WASP, uses the same word alignment as above,
but extracts a synchronous grammar rules from
the parallel data (Wong and Mooney, 2006). The
classifier approach described in Section 4.3 is in-
dependent of word alignment. Finally, the posclass
approach from Section 4.4 derives its own deriva-
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tion structure from the data.
The human annotations are used to establish the

mturk human-performance baseline by taking the
majority selection of the trigger and action over
5 HITs for each description and comparing the
result to the gold standard. The oracleturk human-
performance baseline shows how often at least one
of the turkers agreed with the gold standard.

In addition, we evaluated all systems on a sub-
set of the test data where at least three human-
generated recipes agreed with the gold standard.
This subset represents those programs that are
easily reproducible by human workers. A good
method should strive to achieve 100% accuracy
on this set, and we should perhaps not be overly
concerned about the remaining examples where
humans disagree about the correct interpretation.

5.4 Results and discussion

Table 3 summarizes the main evaluation results.
Most of the measures are in concordance.

Interestingly, retrieval outperforms the phrasal
MT baseline. With a sufficiently long phrase limit,
phrasal MT approaches retrieval, but with a few
crucial differences. First, phrasal requires an exact
match of some substring of the input to some sub-
string of the training data, where retrieval can skip
over words. Second, the phrases are heavily depen-
dent on word alignment; we find the word align-
ment techniques struggle with the noisy IFTTT
descriptions. Sync performs similarly to phrasal.
The underspecified descriptions challenge assump-
tions in synchronous grammars: much of the target
structure is implied rather than stated.

In contrast, the classification method performs
quite well. Some productions may be very likely
given a prior alone, or may be inferred given other
productions and the need for a well-formed deriva-
tion. Augmenting this information with positional
information as in posclass can help with the attri-
bution problem. Consider the input “Download
Facebook Photos you’re tagged in to Dropbox”:
we would like the token “Facebook” to invoke only
the trigger, not the action. We believe further gains
could come from better modeling of the correspon-
dence between derivation and natural language.

We find that semantic parsing systems have ac-
curacy nearly as high or even higher than turkers
in certain conditions. There are several reasons for
this. First, many of the channels overlap in func-
tionality (Gmail vs. email, or Android SMS vs.
SMS); likewise functions may be very closely re-

Channel +Func Prod F1

(a) All: 4,294 recipes

retrieval 28.2 19.3 40.8
phrasal 17.3 10.0 34.8
sync 16.2 9.5 34.9
classifier 46.3 33.0 47.3
posclass 47.4 34.5 48.0
mturk 33.4 22.6 –n/a–
oracleturk 48.8 37.8 –n/a–

(b) Omit non-English: 3,741 recipes

retrieval 28.9 20.2 41.7
phrasal 19.3 11.3 35.3
sync 18.1 10.6 35.1
classifier 48.8 35.2 48.4
posclass 50.0 36.9 49.3
mturk 38.4 26.0 –n/a–
oracleturk 56.0 43.5 –n/a–

(c) Omit non-English & unintelligible: 2,262 recipes

retrieval 36.8 25.4 49.0
phrasal 27.8 16.4 39.9
sync 26.7 15.5 37.6
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7
mturk 59.0 41.5 –n/a–
oracleturk 86.2 59.4 –n/a–

(d) ≥3 turkers agree with gold: 758 recipes

retrieval 43.3 32.3 56.2
phrasal 37.2 23.5 45.5
sync 36.5 24.1 42.8
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5
mturk 100.0 100.0 –n/a–
oracleturk 100.0 100.0 –n/a–

Table 3: Evaluation results. The first column measures how
often the channels are selected correctly for both trigger and
action (e.g. Android Phone Call and Google Drive in Fig-
ure 1). The next column measures how often both the channel
and function are correctly selected for both trigger and ac-
tion (e.g. Android Phone Call::Any phone call missed and
Google Drive::Add row to spreadsheet). The last column
shows balanced F-measure against the gold tree over all pro-
ductions in the proposed derivation, from the root production
down to the lowest parameter. We show results on (a) the
full test data; (b) omitting descriptions marked as non-English
by a majority of the crowdsourced workers; (c) omitting de-
scriptions marked as either non-English or unintelligible by
the crowd; and (d) only recipes where at least three of five
workers agreed with the gold standard.

lated (Post a tweet vs. Post a tweet with an image).
All the systems with access to thousands of train-
ing pairs are at a strong advantage; they can, for
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INPUT Park in garage when snow tomorrow
(a) IFTTT Weather : Tomorrow’s forecast calls for =⇒ SMS : Send me an SMS

OUTPUT Weather : Tomorrow’s forecast calls for =⇒ SMS : Send me an SMS
INPUT Suas fotos do instagr.am salvas no dropbox

(b) IFTTT Instagram : Any new photo by you =⇒ Dropbox : Add file from URL
OUTPUT Instagram : Any new photo by you =⇒ Dropbox : Add file from URL
INPUT Foursquare check-in archive

(c) IFTTT Foursquare : Any new check-in =⇒ Evernote : Create a note
OUTPUT Foursquare : Any new check-in =⇒ Google Drive : Add row to spreadsheet
INPUT if i post something on blogger it will post it to wordpress

(d) IFTTT Blogger : Any new post =⇒WordPress : Create a post
OUTPUT Feed : New feed item =⇒ Blogger : Create a post
INPUT Endless loop!

(e) IFTTT Gmail : New email in inbox from =⇒ Gmail : Send an email
OUTPUT SMS : Send IFTTT any SMS =⇒ Philips hue : Turn on color loop

Table 4: Example output from the posclass system. For each input instance, we show the original query, the recipe originally
authored through IFTTT, and our system output. Instance (a) demonstrates a case where the correct program is produced even
though the input is rather tricky. Even the Portuguese query of (b) is correctly predicted, though keywords help here. In instance
(c), the query is underspecified, and the system predicts that archiving should be done in Google Drive rather than evernote.
Instance (d) shows how we sometimes confuse the trigger and action. Certain queries, such as (e), would require very deep
inference: the IFTTT recipe sets up an endless email loop, where our system assembles a strange interpretation based on keyword
match.

instance, more effectively break such ties by learn-
ing a prior over which channels are more likely.
Turkers, on the other hand, have neither specific
training at this job nor a background corpus and
more frequently disagree with the gold standard.
Second, there are a number of non-English and
unintelligible descriptions. Although the turkers
were asked to skip these sentences, the machine-
learning systems may still correctly predict the
channel and action, since the training set also con-
tains non-English and cryptic descriptions. For
the cases where humans agree with each other and
with the gold standard, the best automated system
(posclass) does fairly well, getting 81% channel
and 71% function accuracy.

Table 4 has some sample outputs from the
posclass system, showing both examples where
the system is effective and where it struggles to
find the intended interpretation.

6 Conclusions

The primary goal of this paper is to highlight
a new application and dataset for semantic pars-
ing. Although if-this-then-that recipes have a lim-
ited structure, many potential recipes are possible.
This is a small step toward broad program synthe-
sis from natural language, but is driven by real
user data for modern hi-tech applications. To en-
courage further exploration, we are releasing the

URLs of recipes along with turker annotations at
http://research.microsoft.com/lang2code/.

The best performing results came from a loosely
synchronous approach. We believe this is a very
promising direction: most work inspired by pars-
ing or machine translation has assumed a strong
connection between the description and the opera-
ble semantic representation. In practical situations,
however, many elements of the semantic representa-
tion may only be implied by the description, rather
than explicitly stated. As we tackle domains with
greater complexity, identifying implied but neces-
sary information will be even more important.

Underspecified descriptions open up new inter-
face possibilities as well. This paper considered
only single-turn interactions, where the user de-
scribes a request and the system responds with an
interpretation. An important next step would be
to engage the user in an interactive dialogue to
confirm and refine the user’s intent and develop a
fully-functional correct program.
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