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Abstract

Relation triples produced by open domain
information extraction (open IE) systems
are useful for question answering, infer-
ence, and other IE tasks. Traditionally
these are extracted using a large set of pat-
terns; however, this approach is brittle on
out-of-domain text and long-range depen-
dencies, and gives no insight into the sub-
structure of the arguments. We replace this
large pattern set with a few patterns for
canonically structured sentences, and shift
the focus to a classifier which learns to
extract self-contained clauses from longer
sentences. We then run natural logic infer-
ence over these short clauses to determine
the maximally specific arguments for each
candidate triple. We show that our ap-
proach outperforms a state-of-the-art open
IE system on the end-to-end TAC-KBP
2013 Slot Filling task.

1 Introduction

Open information extraction (open IE) has been
shown to be useful in a number of NLP tasks, such
as question answering (Fader et al., 2014), rela-
tion extraction (Soderland et al., 2010), and infor-
mation retrieval (Etzioni, 2011). Conventionally,
open IE systems search a collection of patterns
over either the surface form or dependency tree
of a sentence. Although a small set of patterns
covers most simple sentences (e.g., subject verb
object constructions), relevant relations are often
spread across clauses (see Figure 1) or presented
in a non-canonical form.

Systems like Ollie (Mausam et al., 2012) ap-
proach this problem by using a bootstrapping
method to create a large corpus of broad-coverage
partially lexicalized patterns. Although this is
effective at capturing many of these patterns, it

Born in Honolulu, Hawaii, Obama is a US Citizen.

Our System Ollie

(Obama; is; US citizen) (Obama; is; a US citizen)

(Obama; born in; (Obama; be born in; Honolulu)

Honolulu, Hawaii) (Honolulu; be born in; Hawaii)

(Obama; is citizen of; US)

Friends give true praise.

Enemies give fake praise.

Our System Ollie

(friends; give; true praise) (friends; give; true praise)

(friends; give; praise)

(enemies; give; fake praise) (enemies; give; fake praise)

Heinz Fischer of Austria visits the US

Our System Ollie

(Heinz Fischer; visits; US) (Heinz Fischer of Austria;

visits; the US)

Figure 1: Open IE extractions produced by
the system, alongside extractions from the state-
of-the-art Ollie system. Generating coherent
clauses before applying patterns helps reduce false
matches such as (Honolulu; be born in; Hawaii).
Inference over the sub-structure of arguments, in
turn, allows us to drop unnecessary information
(e.g., of Austria), but only when it is warranted
(e.g., keep fake in fake praise).

can lead to unintuitive behavior on out-of-domain
text. For instance, while Obama is president is
extracted correctly by Ollie as (Obama; is; pres-
ident), replacing is with are in cats are felines
produces no extractions. Furthermore, existing
systems struggle at producing canonical argument
forms – for example, in Figure 1 the argument
Heinz Fischer of Austria is likely less useful for
downstream applications than Heinz Fischer.

In this paper, we shift the burden of extracting
informative and broad coverage triples away from
this large pattern set. Rather, we first pre-process
the sentence in linguistically motivated ways to
produce coherent clauses which are (1) logically
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entailed by the original sentence, and (2) easy to
segment into open IE triples. Our approach con-
sists of two stages: we first learn a classifier for
splitting a sentence into shorter utterances (Sec-
tion 3), and then appeal to natural logic (Sánchez
Valencia, 1991) to maximally shorten these utter-
ances while maintaining necessary context (Sec-
tion 4.1). A small set of 14 hand-crafted patterns
can then be used to segment an utterance into an
open IE triple.

We treat the first stage as a greedy search prob-
lem: we traverse a dependency parse tree recur-
sively, at each step predicting whether an edge
should yield an independent clause. Importantly,
in many cases naı̈vely yielding a clause on a de-
pendency edge produces an incomplete utterance
(e.g., Born in Honolulu, Hawaii, from Figure 1).
These are often attributable to control relation-
ships, where either the subject or object of the
governing clause controls the subject of the sub-
ordinate clause. We therefore allow the produced
clause to sometimes inherit the subject or object
of its governor. This allows us to capture a large
variety of long range dependencies with a concise
classifier.

From these independent clauses, we then extract
shorter sentences, which will produce shorter ar-
guments more likely to be useful for downstream
applications. A natural framework for solving this
problem is natural logic – a proof system built on
the syntax of human language (see Section 4.1).
We can then observe that Heinz Fischer of Aus-
tria visits China entails that Heinz Fischer visits
China. On the other hand, we respect situations
where it is incorrect to shorten an argument. For
example, No house cats have rabies should not en-
tail that cats have rabies, or even that house cats
have rabies.

When careful attention to logical validity is nec-
essary – such as textual entailment – this approach
captures even more subtle phenomena. For exam-
ple, whereas all rabbits eat fresh vegetables yields
(rabbits; eat; vegetables), the apparently similar
sentence all young rabbits drink milk does not
yield (rabbits; drink; milk).

We show that our new system performs well on
a real world evaluation – the TAC KBP Slot Filling
challenge (Surdeanu, 2013). We outperform both
an official submission on open IE, and a baseline
of replacing our extractor with Ollie, a state-of-
the-art open IE systems.

2 Related Work

There is a large body of work on open information
extraction. One line of work begins with Text-
Runner (Yates et al., 2007) and ReVerb (Fader
et al., 2011), which make use of computation-
ally efficient surface patterns over tokens. With
the introduction of fast dependency parsers, Ol-
lie (Mausam et al., 2012) continues in the same
spirit but with learned dependency patterns, im-
proving on the earlier WOE system (Wu and Weld,
2010). The Never Ending Language Learning
project (Carlson et al., 2010) has a similar aim,
iteratively learning more facts from the internet
from a seed set of examples. Exemplar (Mesquita
et al., 2013) adapts the open IE framework to n-
ary relationships similar to semantic role labeling,
but without the expensive machinery.

Open IE triples have been used in a number
of applications – for example, learning entail-
ment graphs for new triples (Berant et al., 2011),
and matrix factorization for unifying open IE and
structured relations (Yao et al., 2012; Riedel et
al., 2013). In each of these cases, the concise ex-
tractions provided by open IE allow for efficient
symbolic methods for entailment, such as Markov
logic networks or matrix factorization.

Prior work on the KBP challenge can be cate-
gorized into a number of approaches. The most
common of these are distantly supervised relation
extractors (Craven and Kumlien, 1999; Wu and
Weld, 2007; Mintz et al., 2009; Sun et al., 2011),
and rule based systems (Soderland, 1997; Grish-
man and Min, 2010; Chen et al., 2010). However,
both of these approaches require careful tuning to
the task, and need to be trained explicitly on the
KBP relation schema. Soderland et al. (2013) sub-
mitted a system to KBP making use of open IE re-
lations and an easily constructed mapping to KBP
relations; we use this as a baseline for our empiri-
cal evaluation.

Prior work has used natural logic for RTE-style
textual entailment, as a formalism well-suited for
formal semantics in neural networks, and as a
framework for common-sense reasoning (Mac-
Cartney and Manning, 2009; Watanabe et al.,
2012; Bowman et al., 2014; Angeli and Manning,
2013). We adopt the precise semantics of Icard
and Moss (2014). Our approach of finding short
entailments from a longer utterance is similar in
spirit to work on textual entailment for informa-
tion extraction (Romano et al., 2006).
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Born in a small town, she took the midnight train going anywhere.

prep in

amod
det

vmod

nsubj

dobj

nn
det

vmod dobj

she Born in a small town

prep in

amod
detnsubj

(input) (extracted clause)
↓ ↓

she took the midnight train going anywhere she took the midnight train

Born in a small town, she took the midnight train she took midnight train
Born in a town, she took the midnight train . . .

she Born in small town
she Born in a town

she Born in town
↓ ↓

(she; took; midnight train)
(she; born in; small town)
(she; born in; town)

Figure 2: An illustration of our approach. From left to right, a sentence yields a number of independent
clauses (e.g., she Born in a small town – see Section 3). From top to bottom, each clause produces a set
of entailed shorter utterances, and segments the ones which match an atomic pattern into a relation triple
(see Section 4.1).

3 Inter-Clause Open IE

In the first stage of our method, we produce a set
of self-contained clauses from a longer utterance.
Our objective is to produce a set of clauses which
can stand on their own syntactically and seman-
tically, and are entailed by the original sentence
(see Figure 2). Note that this task is not specific to
extracting open IE triples. Conventional relation
extractors, entailment systems, and other NLP ap-
plications may also benefit from such a system.

We frame this task as a search problem. At a
given node in the parse tree, we classify each out-
going arc e = p

l−→ c, from the governor p to a de-
pendent c with [collapsed] Stanford Dependency
label l, into an action to perform on that arc. Once
we have chosen an action to take on that arc, we
can recurse on the dependent node. We decom-
pose the action into two parts: (1) the action to
take on the outgoing edge e, and (2) the action
to take on the governor p. For example, in our
motivating example, we are considering the arc:
e = took vmod−−−→ born. In this case, the correct
action is to (1) yield a new clause rooted at born,
and (2) interpret the subject of born as the subject
of took.

We proceed to describe this action space in
more detail, followed by an explanation of our
training data, and finally our classifier.

3.1 Action Space

The three actions we can perform on a dependency
edge are:

Yield Yields a new clause on this depen-
dency arc. A canonical case of this action is
the arc suggest

ccomp−−−−→ brush in Dentists suggest
that you should brush your teeth, yielding you
should brush your teeth.

Recurse Recurse on this dependency arc, but
do not yield it as a new clause. For example,
in the sentence faeries are dancing in the field
where I lost my bike, we must recurse through
the intermediate constituent the field where I lost
my bike – which itself is not relevant – to get to
the clause of interest: I lost my bike.

Stop Do not recurse on this arc, as the subtree
under this arc is not entailed by the parent sen-
tence. This is the case, for example, for most
leaf nodes (furry cats are cute should not entail
the clause furry), and is an important action for
the efficiency of the algorithm.

With these three actions, a search path through
the tree becomes a sequence of Recurse and
Yield actions, terminated by a Stop action (or leaf
node). For example, a search sequence A

Recurse−−−−−→
B

Y ield−−−→ C
Stop−−−→ D would yield a clause rooted

at C. A sequence A
Y ield−−−→ B

Y ield−−−→ C
Stop−−−→ D

would yield clauses rooted at both B and C. Find-
ing all such sequences is in general exponential in
the size of the tree. In practice, during training we
run breadth first search to collect the first 10 000
sequences. During inference we run uniform cost
search until our classifier predictions fall below a
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given threshold.
For the Stop action, we do not need to further

specify an action to take on the parent node. How-
ever, for both of the other actions, it is often the
case that we would like to capture a controller in
the higher clause. We define three such common
actions:

Subject Controller If the arc we are consider-
ing is not already a subject arc, we can copy the
subject of the parent node and attach it as a sub-
ject of the child node. This is the action taken in
the example Born in a small town, she took the
midnight train.

Object Controller Analogous to the subject
controller action above, but taking the object in-
stead. This is the intended action for examples
like I persuaded Fred to leave the room.1

Parent Subject If the arc we are taking is the
only outgoing arc from a node, we take the par-
ent node as the (passive) subject of the child.
This is the action taken in the example Obama,
our 44th president to yield a clause with the se-
mantics of Obama [is] our 44th president.

Although additional actions are easy to imagine,
we found empirically that these cover a wide range
of applicable cases. We turn our attention to the
training data for learning these actions.

3.2 Training
We collect a noisy dataset to train our clause gen-
eration model. We leverage the distant supervision
assumption for relation extraction, which creates a
noisy corpus of sentences annotated with relation
mentions (subject and object spans in the sentence
with a known relation). Then, we take this anno-
tation as itself distant supervision for a correct se-
quence of actions to take: any sequence which re-
covers the known relation is correct.

We use a small subset of the KBP source doc-
uments for 2010 (Ji et al., 2010) and 2013 (Sur-
deanu, 2013) as our distantly supervised corpus.
To try to maximize the density of known relations
in the training sentences, we take all sentences
which have at least one known relation for ev-
ery 10 tokens in the sentence, resulting in 43 155
sentences. In addition, we incorporate the 23 725
manually annotated examples from Angeli et al.
(2014).

1The system currently misses most most such cases due
to insufficient support in the training data.

Once we are given a collection of labeled sen-
tences, we assume that a sequence of actions
which leads to a correct extraction of a known
relation is a positive sequence. A correct ex-
traction is any extraction we produce from our
model (see Section 4) which has the same argu-
ments as the known relation. For instance, if we
know that Obama was born in Hawaii from the
sentence Born in Hawaii, Obama . . . , and an ac-
tion sequence produces the triple (Obama, born in,
Hawaii), then we take that action sequence as a
positive sequence.

Any sequence of actions which results in a
clause which produces no relations is in turn con-
sidered a negative sequence. The third case to con-
sider is a sequence of actions which produces a
relation, but it is not one of the annotated rela-
tions. This arises from the incomplete negatives
problem in distantly supervised relation extraction
(Min et al., 2013): since our knowledge base is
not exhaustive, we cannot be sure if an extracted
relation is incorrect or correct but previously un-
known. Although many of these unmatched re-
lations are indeed incorrect, the dataset is suffi-
ciently biased towards the STOP action that the
occasional false negative hurts end-to-end perfor-
mance. Therefore, we simply discard such se-
quences.

Given a set of noisy positive and negative se-
quences, we construct training data for our action
classifier. All but the last action in a positive se-
quence are added to the training set with the label
Recurse; the last action is added with the label
Split. Only the last action in a negative sequence
is added with the label Stop. We partition the fea-
ture space of our dataset according to the action
applied to the parent node.

3.3 Inference

We train a multinomial logistic regression classi-
fier on our noisy training data, using the features
in Table 1. The most salient features are the label
of the edge being taken, the incoming edge to the
parent of the edge being taken, neighboring edges
for both the parent and child of the edge, and the
part of speech tag of the endpoints of the edge.
The dataset is weighted to give 3× weight to ex-
amples in the Recurse class, as precision errors
in this class are relatively harmless for accuracy,
while recall errors are directly harmful to recall.

Inference now reduces to a search problem. Be-
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Feature Class Feature Templates
Edge taken {l, short name(l)}
Last edge taken {incoming edge(p)}
Neighbors of parent {nbr(p), (p, nbr(p))}
Grandchild edges {out edge(c),

(e, out edge(c))}
Grandchild count {count (nbr(echild))

(e, count (nbr(echild)))}
Has subject/object ∀e∈{e,echild}∀l∈{subj,obj}

1(l ∈ nbr(e))
POS tag signature {pos(p), pos(c),

(pos(p), pos(c))}
Features at root {1(p = root), POS(p)}

Table 1: Features for the clause splitter model, de-
ciding to split on the arc e = p

l−→ c. The fea-
ture class is a high level description of features;
the feature templates are the particular templates
used. For instance, the POS signature contains the
tag of the parent, the tag of the child, and both tags
joined in a single feature. Note that all features are
joined with the action to be taken on the parent.

ginning at the root of the tree, we consider every
outgoing edge. For every possible action to be
performed on the parent (i.e., clone subject, clone
root, no action), we apply our trained classifier to
determine whether we (1) split the edge off as a
clause, and recurse; (2) do not split the edge, and
recurse; or (3) do not recurse. In the first two
cases, we recurse on the child of the arc, and con-
tinue until either all arcs have been exhausted, or
all remaining candidate arcs have been marked as
not recursable.

We will use the scores from this classifier to
inform the score assigned to our generated open
IE extractions (Section 4). The score of a clause
is the product of the scores of actions taken to
reach the clause. The score of an extraction will
be this score multiplied by the score of the extrac-
tion given the clause.

4 Intra-Clause Open IE

We now turn to the task of generating a maximally
compact sentence which retains the core seman-
tics of the original utterance, and parsing the sen-
tence into a conventional open IE subject verb ob-
ject triple. This is often a key component in down-
stream applications, where extractions need to be
not only correct, but also informative. Whereas
an argument like Heinz Fischer of Austria is often

correct, a downstream application must apply fur-
ther processing to recover information about either
Heinz Fischer, or Austria. Moreover, it must do so
without the ability to appeal to the larger context
of the sentence.

4.1 Validating Deletions with Natural Logic
We adopt a subset of natural logic semantics dic-
tating contexts in which lexical items can be re-
moved. Natural logic as a formalism captures
common logical inferences appealing directly to
the form of language, rather than parsing to a spe-
cialized logical syntax. It provides a proof theory
for lexical mutations to a sentence which either
preserve or negate the truth of the premise.

For instance, if all rabbits eat vegetables then
all cute rabbits eat vegetables, since we are al-
lowed to mutate the lexical item rabbit to cute
rabbit. This is done by observing that rabbit is
in scope of the first argument to the operator all.
Since all induces a downward polarity environ-
ment for its first argument, we are allowed to re-
place rabbit with an item which is more specific –
in this case cute rabbit. To contrast, the operator
some induces an upward polarity environment for
its first argument, and therefore we may derive the
inference from cute rabbit to rabbit in: some cute
rabbits are small therefore some rabbits are small.
For a more comprehensive introduction to natural
logic, see van Benthem (2008).

We mark the scopes of all operators (all, no,
many, etc.) in a sentence, and from this deter-
mine whether every lexical item can be replaced
by something more general (has upward polarity),
more specific (downward polarity), or neither. In
the absence of operators, all items have upwards
polarity.

Each dependency arc is then classified into
whether deleting the dependent of that arc makes
the governing constituent at that node more
general, more specific (a rare case), or nei-
ther.2 For example, removing the amod edge in
cute amod←−−− rabbit yields the more general lexical
item rabbit. However, removing the nsubj edge in

Fido
nsubj←−−− runs would yield the unentailed (and

nonsensical) phrase runs. The last, rare, case is
an edge that causes the resulting item to be more

specific – e.g., quantmod: about
quantmod←−−−−−− 200 is

more general than 200.
2We use the Stanford Dependencies representation (de

Marneffe and Manning, 2008).
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For most dependencies, this semantics can be
hard-coded with high accuracy. However, there
are at least two cases where more attention is war-
ranted. The first of these concerns non-subsective
adjectives: for example a fake gun is not a gun. For
this case, we make use of the list of non-subsective
adjectives collected in Nayak et al. (2014), and
prohibit their deletion as a hard constraint.

The second concern is with prepositional at-
tachment, and direct object edges. For example,

whereas Alice went to the playground
prep with−−−−−−→

Bob entails that Alice went to the playground, it
is not meaningful to infer that Alice is friends
prep with−−−−−−→ Bob entails Alice is friends. Analo-

gously, Alice played
dobj−−→ baseball on Sunday en-

tails that Alice played on Sunday; but, Obama

signed
dobj−−→ the bill on Sunday should not entail

the awkward phrase *Obama signed on Sunday.
We learn these attachment affinities empirically

from the syntactic n-grams corpus of Goldberg
and Orwant (2013). This gives us counts for how
often object and preposition edges occur in the
context of the governing verb and relevant neigh-
boring edges. We hypothesize that edges which
are frequently seen to co-occur are likely to be
essential to the meaning of the sentence. To this
end, we compute the probability of seeing an arc
of a given type, conditioned on the most specific
context we have statistics for. These contexts, and
the order we back off to more general contexts, is
given in Figure 3.

To compute a score s of deleting the edge from
the affinity probability p collected from the syn-
tactic n-grams, we simply cap the affinity and sub-
tract it from 1:

s = 1−min(1,
p

K
)

where K is a hyperparameter denoting the mini-
mum fraction of the time an edge should occur in
a context to be considered entirely unremovable.
In our experiments, we set K = 1

3 .
The score of an extraction, then, is the product

of the scores of each deletion multiplied by the
score from the clause splitting step in Section 3.

4.2 Atomic Patterns

Once a set of short entailed sentences is produced,
it becomes straightforward to segment them into
conventional open IE triples. We employ 6 sim-
ple dependency patterns, given in Table 2, which

Obama signed the bill into law on Friday

nsubj
dobj

det

prep into
prep on

pr
ep

ba
ck

of
f



p
(

prep on | Obama signed bill

nsubj dobj )
p
(

prep on | Obama signed law

nsubj prep into )
p
(

prep on | Obama signed

nsubj )
p
(

prep on | signed
)

do
bj

ba
ck

of
f {

p
(

dobj | Obama signed bill

nsubj dobj )
p
(

dobj | signed
)

Figure 3: The ordered list of backoff probabilities
when deciding to drop a prepositional phrase or di-
rect object. The most specific context is chosen for
which an empirical probability exists; if no con-
text is found then we allow dropping prepositional
phrases and disallow dropping direct objects. Note
that this backoff arbitrarily orders contexts of the
same size.

Input Extraction
cats play with yarn (cats; play with; yarn)

fish like to swim (fish; like to; swim)

cats have tails (cats; have; tails)

cats are cute (cats; are; cute)

Tom and Jerry are fighting (Tom; fighting; Jerry)

There are cats with tails (cats; have; tails)

Table 2: The six dependency patterns used to seg-
ment an atomic sentence into an open IE triple.

cover the majority of atomic relations we are in-
terested in.

When information is available to disambiguate
the substructure of compound nouns (e.g., named
entity segmentation), we extract additional re-
lations with 5 dependency and 3 TokensRegex
(Chang and Manning, 2014) surface form patterns.
These are given in Table 3; we refer to these
as nominal relations. Note that the constraint of
named entity information is by no means required
for the system. In other applications – for exam-
ple, applications in vision – the otherwise trivial
nominal relations could be quite useful.
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KBP Relation Open IE Relation PMI2 KBP Relation Open IE Relation PMI2

Org:Founded found in 1.17 Per:Date Of Birth be bear on 1.83
be found in 1.15 bear on 1.28

Org:Dissolved *buy Chrysler in 0.95 Per:Date Of Death die on 0.70
*membership in 0.60 be assassinate on 0.65

Org:LOC Of HQ in 2.12 Per:LOC Of Birth be bear in 1.21
base in 1.82 Per:LOC Of Death *elect president of 2.89

Org:Member Of *tough away game in 1.80 Per:Religion speak about 0.67
*away game in 1.80 popular for 0.60

Org:Parents ’s bank 1.65 Per:Parents daughter of 0.54
*also add to 1.52 son of 1.52

Org:Founded By invest fund of 1.48 Per:LOC Residence of 1.48
own stake besides 1.18 *independent from 1.18

Table 4: A selection of the mapping from KBP to lemmatized open IE relations, conditioned on the types
of the arguments being correct. The top one or two relations are shown for 7 person and 6 organization
relations. Incorrect or dubious mappings are marked with an asterisk.

Input Extraction
Durin, son of Thorin (Durin; is son of; Thorin)

Thorin’s son, Durin (Thorin; ’s son; Durin)

IBM CEO Rometty (Rometty; is CEO of; IBM)

President Obama (Obama; is; President)

Fischer of Austria (Fischer; is of; Austria)

IBM’s research group (IBM; ’s; research group)

US president Obama (Obama; president of; US)

Our president, Obama, (Our president; be; Obama)

Table 3: The eight patterns used to segment a noun
phrase into an open IE triple. The first five are de-
pendency patterns; the last three are surface pat-
terns.

5 Mapping OpenIE to a Known Relation
Schema

A common use case for open IE systems is to map
them to a known relation schema. This can either
be done manually with minimal annotation effort,
or automatically from available training data. We
use both methods in our TAC-KBP evaluation. A
collection of relation mappings was constructed
by a single annotator in approximately a day,3 and
a relation mapping was learned using the proce-
dure described in this section.

We map open IE relations to the KBP schema
by searching for co-occurring relations in a large
distantly-labeled corpus, and marking open IE and

3The official submission we compare against claimed two
weeks for constructing their manual mapping, although a ver-
sion of their system constructed in only 3 hours performs
nearly as well.

KBP relation pairs which have a high PMI2 value
(Béatrice, 1994; Evert, 2005) conditioned on their
type signatures matching. To compute PMI2, we
collect probabilities for the open IE and KBP re-
lation co-occurring, the probability of the open IE
relation occurring, and the probability of the KBP
relation occurring. Each of these probabilities is
conditioned on the type signature of the relation.
For example, the joint probability of KBP relation
rk and open IE relation ro, given a type signature
of t1, t2, would be

p(rk, ro | t1, t2) =
count(rk, ro, t1, t2)∑

r′
k,r′

o
count(r′k, r′o, t1, t2)

.

Omitting the conditioning on the type signature
for notational convenience, and defining p(rk) and
p(ro) analogously, we can then compute The PMI2

value between the two relations:

PMI2(rk, ro) = log
(

p(rk, ro)2

p(rk) · p(ro)

)
Note that in addition to being a measure

related to PMI, this captures a notion simi-
lar to alignment by agreement (Liang et al.,
2006); the formula can be equivalently written
as log [p(rk | ro)p(ro | rk)]. It is also function-
ally the same as the JC WordNet distance measure
(Jiang and Conrath, 1997).

Some sample type checked relation mappings
are given in Table 4. In addition to intuitive map-
pings (e.g., found in→Org:Founded), we can note
some rare, but high precision pairs (e.g., invest
fund of → Org:Founded By). We can also see
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the noise in distant supervision occasionally per-
meate the mapping, e.g., with elect president of →
Per:LOC Of Death – a president is likely to die in
his own country.

6 Evaluation

We evaluate our approach in the context of a real-
world end-to-end relation extraction task – the
TAC KBP Slot Filling challenge. In Slot Filling,
we are given a large unlabeled corpus of text, a
fixed schema of relations (see Section 5), and a
set of query entities. The task is to find all rela-
tion triples in the corpus that have as a subject the
query entity, and as a relation one of the defined
relations. This can be viewed intuitively as popu-
lating Wikipedia Infoboxes from a large unstruc-
tured corpus of text.

We compare our approach to the University
of Washington submission to TAC-KBP 2013
(Soderland et al., 2013). Their system used
OpenIE v4.0 (a successor to Ollie) run over the
KBP corpus and then they generated a mapping
from the extracted relations to the fixed schema.
Unlike our system, Open IE v4.0 employs a se-
mantic role component extracting structured SRL
frames, alongside a conventional open IE system.
Furthermore, the UW submission allows for ex-
tracting relations and entities from substrings of
an open IE triple argument. For example, from
the triple (Smith; was appointed; acting director of
Acme Corporation), they extract that Smith is em-
ployed by Acme Corporation. We disallow such
extractions, passing the burden of finding correct
precise extractions to the open IE system itself (see
Section 4).

For entity linking, the UW submission uses Tom
Lin’s entity linker (Lin et al., 2012); our sub-
mission uses the Illinois Wikifier (Ratinov et al.,
2011) without the relational inference component,
for efficiency. For coreference, UW uses the Stan-
ford coreference system (Lee et al., 2011); we em-
ploy a variant of the simple coref system described
in (Pink et al., 2014).

We report our results in Table 5.4 UW Offi-
cial refers to the official submission in the 2013
challenge; we show a 3.1 F1 improvement (to 22.7

4All results are reported with the anydoc flag set to true
in the evaluation script, meaning that only the truth of the
extracted knowledge base entry and not the associated prove-
nance is scored. In absence of human evaluators, this is in
order to not penalize our system unfairly for extracting a new
correct provenance.

System P R F1

UW Official∗ 69.8 11.4 19.6
Ollie† 57.4 4.8 8.9

+ Nominal Rels∗ 57.7 11.8 19.6
Our System

- Nominal Rels† 64.3 8.6 15.2
+ Nominal Rels∗ 61.9 13.9 22.7
+ Alt. Name 57.8 17.8 27.1
+ Alt. Name + Website 58.6 18.6 28.3

Table 5: A summary of our results on the end-
to-end KBP Slot Filling task. UW official is the
submission made to the 2013 challenge. The sec-
ond row is the accuracy of Ollie embedded in
our framework, and of Ollie evaluated with nom-
inal relations from our system. Lastly, we report
our system, our system with nominal relations re-
moved, and our system combined with an alternate
names detector and rule-based website detector.
Comparable systems are marked with a dagger† or
asterisk∗.

F1) over this submission, evaluated using a com-
parable approach. A common technique in KBP
systems but not employed by the official UW sub-
mission in 2013 is to add alternate names based
on entity linking and coreference. Additionally,
websites are often extracted using heuristic name-
matching as they are hard to capture with tradi-
tional relation extraction techniques. If we make
use of both of these, our end-to-end accuracy be-
comes 28.2 F1.

We attempt to remove the variance in scores
from the influence of other components in an end-
to-end KBP system. We ran the Ollie open IE sys-
tem (Mausam et al., 2012) in an identical frame-
work to ours, and report accuracy in Table 5. Note
that when an argument to an Ollie extraction con-
tains a named entity, we take the argument to be
that named entity. The low performance of this
system can be partially attributed to its inability to
extract nominal relations. To normalize for this,
we report results when the Ollie extractions are
supplemented with the nominal relations produced
by our system (Ollie + Nominal Rels in Table 5).
Conversely, we can remove the nominal relation
extractions from our system; in both cases we out-
perform Ollie on the task.
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Figure 4: A precision/recall curve for Ollie and
our system (without nominals). For clarity, recall
is plotted on a range from 0 to 0.15.

6.1 Discussion
We plot a precision/recall curve of our extractions
in Figure 4 in order to get an informal sense of
the calibration of our confidence estimates. Since
confidences only apply to standard extractions, we
plot the curves without including any of the nom-
inal relations. The confidence of a KBP extrac-
tion in our system is calculated as the sum of the
confidences of the open IE extractions that support
it. So, for instance, if we find (Obama; be bear
in; Hawaii) n times with confidences c1 . . . cn,
the confidence of the KBP extraction would be∑n

i=0 ci. It is therefore important to note that
the curve in Figure 4 necessarily conflates the
confidences of individual extractions, and the fre-
quency of an extraction.

With this in mind, the curves lend some inter-
esting insights. Although our system is very high
precision on the most confident extractions, it has
a large dip in precision early in the curve. This
suggests that the model is extracting multiple in-
stances of a bad relation. Systematic errors in
the clause splitter are the likely cause of these er-
rors. While the approach of splitting sentences
into clauses generalizes better to out-of-domain
text, it is reasonable that the errors made in the
clause splitter manifest across a range of sentences
more often than the fine-grained patterns of Ollie
would.

On the right half of the PR curve, however, our
system achieves both higher precision and extends
to a higher recall than Ollie. Furthermore, the
curve is relatively smooth near the tail, suggesting

that indeed we are learning a reasonable estimate
of confidence for extractions that have only one
supporting instance in the text – empirically, 46%
of our extractions.

In total, we extract 42 662 862 open IE triples
which link to a pair of entities in the corpus
(i.e., are candidate KBP extractions), covering
1 180 770 relation types. 202 797 of these rela-
tion types appear in more than 10 extraction in-
stances; 28 782 in more than 100 instances, and
4079 in more than 1000 instances. 308 293 rela-
tion types appear only once. Note that our system
over-produces extractions when both a general and
specific extraction are warranted; therefore these
numbers are an overestimate of the number of se-
mantically meaningful facts.

For comparison, Ollie extracted 12 274 319
triples, covering 2 873 239 relation types.
1 983 300 of these appeared only once; 69 010
appeared in more than 10 instances, 7951 in more
than 100 instances, and 870 in more than 1000
instances.

7 Conclusion

We have presented a system for extracting open
domain relation triples by breaking a long sen-
tence into short, coherent clauses, and then find-
ing the maximally simple relation triples which are
warranted given each of these clauses. This allows
the system to have a greater awareness of the con-
text of each extraction, and to provide informative
triples to downstream applications. We show that
our approach performs well on one such down-
stream application: the KBP Slot Filling task.
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