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Abstract

In this paper, we propose new algorithms
for learning segmentation strategies for si-
multaneous speech translation. In contrast
to previously proposed heuristic methods,
our method finds a segmentation that di-
rectly maximizes the performance of the
machine translation system. We describe
two methods based on greedy search and
dynamic programming that search for the
optimal segmentation strategy. An experi-
mental evaluation finds that our algorithm
is able to segment the input two to three
times more frequently than conventional
methods in terms of number of words,
while maintaining the same score of auto-
matic evaluation.1

1 Introduction

The performance of speech translation systems
has greatly improved in the past several years,
and these systems are starting to find wide use in
a number of applications. Simultaneous speech
translation, which translates speech from the
source language into the target language in real
time, is one example of such an application. When
translating dialogue, the length of each utterance
will usually be short, so the system can simply
start the translation process when it detects the end
of an utterance. However, in the case of lectures,
for example, there is often no obvious boundary
between utterances. Thus, translation systems re-
quire a method of deciding the timing at which
to start the translation process. Using estimated
ends of sentences as the timing with which to start
translation, in the same way as a normal text trans-
lation, is a straightforward solution to this problem
(Matusov et al., 2006). However, this approach

1The implementation is available at
http://odaemon.com/docs/codes/greedyseg.html.

impairs the simultaneity of translation because the
system needs to wait too long until the appearance
of a estimated sentence boundary. For this reason,
segmentation strategies, which separate the input
at appropriate positions other than end of the sen-
tence, have been studied.

A number of segmentation strategies for simul-
taneous speech translation have been proposed in
recent years. Fügen et al. (2007) and Bangalore et
al. (2012) propose using prosodic pauses in speech
recognition to denote segmentation boundaries,
but this method strongly depends on characteris-
tics of the speech, such as the speed of speaking.
There is also research on methods that depend on
linguistic or non-linguistic heuristics over recog-
nized text (Rangarajan Sridhar et al., 2013), and it
was found that a method that predicts the location
of commas or periods achieves the highest perfor-
mance. Methods have also been proposed using
the phrase table (Yarmohammadi et al., 2013) or
the right probability (RP) of phrases (Fujita et al.,
2013), which indicates whether a phrase reorder-
ing occurs or not.

However, each of the previously mentioned
methods decides the segmentation on the basis
of heuristics, so the impact of each segmenta-
tion strategy on translation performance is not di-
rectly considered. In addition, the mean number
of words in the translation unit, which strongly af-
fects the delay of translation, cannot be directly
controlled by these methods.2

In this paper, we propose new segmentation al-
gorithms that directly optimize translation perfor-
mance given the mean number of words in the
translation unit. Our approaches find appropri-
ate segmentation boundaries incrementally using
greedy search and dynamic programming. Each
boundary is selected to explicitly maximize trans-

2The method using RP can decide relative frequency of
segmentation by changing a parameter, but guessing the
length of a translation unit from this parameter is not trivial.
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lation accuracy as measured by BLEU or another
evaluation measure.

We evaluate our methods on a speech transla-
tion task, and we confirm that our approaches can
achieve translation units two to three times as fine-
grained as other methods, while maintaining the
same accuracy.

2 Optimization Framework

Our methods use the outputs of an existing ma-
chine translation system to learn a segmentation
strategy. We define F = {fj : 1 ≤ j ≤ N},
E = {ej : 1 ≤ j ≤ N} as a parallel corpus
of source and target language sentences used to
train the segmentation strategy. N represents the
number of sentences in the corpus. In this work,
we consider sub-sentential segmentation, where
the input is already separated into sentences, and
we want to further segment these sentences into
shorter units. In an actual speech translation sys-
tem, these sentence boundaries can be estimated
automatically using a method like the period es-
timation mentioned in Rangarajan Sridhar et al.
(2013). We also assume the machine translation
system is defined by a function MT (f) that takes
a string of source words f as an argument and re-
turns the translation result ê.3

We will introduce individual methods in the fol-
lowing sections, but all follow the general frame-
work shown below:

1. Decide the mean number of words µ and the
machine translation evaluation measure EV
as parameters of algorithm. We can use an
automatic evaluation measure such as BLEU
(Papineni et al., 2002) as EV . Then, we cal-
culate the number of sub-sentential segmen-
tation boundaries K that we will need to in-
sert into F to achieve an average segment
length µ:

K := max
(

0,

⌊∑
f∈F |f |

µ

⌋
−N

)
. (1)

2. Define S as a set of positions in F in which
we will insert segmentation boundaries. For
example, if we will segment the first sentence
after the third word and the third sentence af-
ter the fifth word, then S = {⟨1, 3⟩ , ⟨3, 5⟩}.

3In this work, we do not use the history of the language
model mentioned in Bangalore et al. (2012). Considering this
information improves the MT performance and we plan to
include this in our approach in future work.

Figure 1: Concatenated translation MT (f ,S).

Based on this representation, choose K seg-
mentation boundaries in F to make the set
S∗ that maximizes an evaluation function ω
as below:

S∗ := arg max
S∈{S′:|S′|=K}

ω(S;F , E , EV, MT ).

(2)
In this work, we define ω as the sum of the
evaluation measure for each parallel sentence
pair ⟨fj ,ej⟩:

ω(S) :=
N∑

j=1

EV (MT (fj ,S), ej), (3)

where MT (f ,S) represents the concatena-
tion of all partial translations {MT (f (n))}
given the segments S as shown in Figure 1.

Equation (3) indicates that we assume all
parallel sentences to be independent of each
other, and the evaluation measure is calcu-
lated for each sentence separately. This lo-
cality assumption eases efficient implementa-
tion of our algorithm, and can be realized us-
ing a sentence-level evaluation measure such
as BLEU+1 (Lin and Och, 2004).

3. Make a segmentation model MS∗ by treating
the obtained segmentation boundaries S∗ as
positive labels, all other positions as negative
labels, and training a classifier to distinguish
between them. This classifier is used to de-
tect segmentation boundaries at test time.

Steps 1. and 3. of the above procedure are triv-
ial. In contrast, choosing a good segmentation ac-
cording to Equation (2) is difficult and the focus
of the rest of this paper. In order to exactly solve
Equation (2), we must perform brute-force search
over all possible segmentations unless we make
some assumptions about the relation between the
ω yielded by different segmentations. However,
the number of possible segmentations is exponen-
tially large, so brute-force search is obviously in-
tractable. In the following sections, we propose 2
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I ate lunch but she left

Segments already selected at the k-th iteration

ω = 0.5 ω = 0.8
(k+1)-th segment

ω = 0.7

Figure 2: Example of greedy search.

Algorithm 1 Greedy segmentation search
S∗ ← ∅
for k = 1 to K do

S∗ ← S∗ ∪
{

arg max
s�∈S∗

ω(S∗ ∪ {s})
}

end for
return S∗

methods that approximately search for a solution
to Equation (2).

2.1 Greedy Search
Our first approximation is a greedy algorithm that
selects segmentation boundaries one-by-one. In
this method, k already-selected boundaries are left
unchanged when deciding the (k+1)-th boundary.
We find the unselected boundary that maximizes ω
and add it to S:

Sk+1 = Sk ∪
{

arg max
s�∈Sk

ω(Sk ∪ {s})
}

. (4)

Figure 2 shows an example of this process for a
single sentence, and Algorithm 1 shows the algo-
rithm for calculating K boundaries.

2.2 Greedy Search with Feature Grouping
and Dynamic Programming

The method described in the previous section
finds segments that achieve high translation per-
formance for the training data. However, because
the translation system MT and evaluation mea-
sure EV are both complex, the evaluation function
ω includes a certain amount of noise. As a result,
the greedy algorithm that uses only ω may find a
segmentation that achieves high translation perfor-
mance in the training data by chance. However,
these segmentations will not generalize, reducing
the performance for other data.

We can assume that this problem can be solved
by selecting more consistent segmentations of the
training data. To achieve this, we introduce a con-
straint that all positions that have similar charac-
teristics must be selected at the same time. Specif-
ically, we first group all positions in the source

I ate lunch but she left
PRP VBD NN CC PRP VBD

I ate an apple and an orange
PRP VBD DT NN CC DT NN

WORD:
 POS:

WORD:
 POS:

Group
PRP+VBD

Group
NN+CC

Group
DT+NN

Figure 3: Grouping segments by POS bigrams.

sentences using features of the position, and intro-
duce a constraint that all positions with identical
features must be selected at the same time. Figure
3 shows an example of how this grouping works
when we use the POS bigram surrounding each
potential boundary as our feature set.

By introducing this constraint, we can expect
that features which have good performance over-
all will be selected, while features that have rela-
tively bad performance will not be selected even if
good performance is obtained when segmenting at
a specific location. In addition, because all posi-
tions can be classified as either segmented or not
by evaluating whether the corresponding feature is
in the learned feature set or not, it is not necessary
to train an additional classifier for the segmenta-
tion model when using this algorithm. In other
words, this constraint conducts a kind of feature
selection for greedy search.

In contrast to Algorithm 1, which only selected
one segmentation boundary at once, in our new
setting there are multiple positions selected at one
time. Thus, we need to update our search algo-
rithm to handle this setting. To do so, we use
dynamic programming (DP) together with greedy
search. Algorithm 2 shows our Greedy+DP search
algorithm. Here, c(ϕ;F) represents the number
of appearances of ϕ in the set of source sentences
F , and S(F , Φ) represents the set of segments de-
fined by both F and the set of features Φ.

The outer loop of the algorithm, like Greedy,
iterates over all S of size 1 to K. The inner loop
examines all features that appear exactly j times
in F , and measures the effect of adding them to
the best segmentation with (k − j) boundaries.

2.3 Regularization by Feature Count

Even after we apply grouping by features, it
is likely that noise will still remain in the less
frequently-seen features. To avoid this problem,
we introduce regularization into the Greedy+DP
algorithm, with the evaluation function ω rewrit-
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Algorithm 2 Greedy+DP segmentation search
Φ0 ← ∅
for k = 1 to K do

for j = 0 to k − 1 do
Φ′ ← {ϕ : c(ϕ;F) = k − j ∧ ϕ�∈ Φj}
Φk,j ← Φj∪

{
arg max

ϕ∈Φ′
ω(S(F , Φj ∪ {ϕ}))

}
end for
Φk ← arg max

Φ∈{Φk,j :0≤j<k}
ω(S(F , Φ))

end for
return S(F , ΦK)

ten as below:

ωα(Φ) := ω(S(F , Φ))− α|Φ|. (5)

The coefficient α is the strength of the regulariza-
tion with regards to the number of selected fea-
tures. A larger α will result in a larger penalty
against adding new features into the model. As
a result, the Greedy+DP algorithm will value fre-
quently appearing features. Note that the method
described in the previous section is equal to the
case of α = 0 in this section.

2.4 Implementation Details

Our Greedy and Greedy+DP search algorithms
are completely described in Algorithms 1 and 2.
However, these algorithms require a large amount
of computation and simple implementations of
them are too slow to finish in realistic time. Be-
cause the heaviest parts of the algorithm are the
calculation of MT and EV , we can greatly im-
prove efficiency by memoizing the results of these
functions, only recalculating on new input.

3 Experiments

3.1 Experimental Settings

We evaluated the performance of our segmentation
strategies by applying them to English-German
and English-Japanese TED speech translation data
from WIT3 (Cettolo et al., 2012). For English-
German, we used the TED data and splits from
the IWSLT2013 evaluation campaign (Cettolo et
al., 2013), as well as 1M sentences selected from
the out-of-domain training data using the method
of Duh et al. (2013). For English-Japanese, we
used TED data and the dictionary entries and sen-
tences from EIJIRO.4 Table 1 shows summaries of
the datasets we used.

4http://eowp.alc.co.jp/info2/

f -e Type #words
f e

En-De
Train MT 21.8M 20.3M
Train Seg. 424k 390k
Test 27.6k 25.4k

En-Ja
Train MT 13.7M 19.7M
Train Seg. 401k 550k
Test 8.20k 11.9k

Table 1: Size of MT training, segmentation train-
ing and testing datasets.

We use the Stanford POS Tagger (Toutanova
et al., 2003) to tokenize and POS tag English
and German sentences, and KyTea (Neubig et al.,
2011) to tokenize Japanese sentences. A phrase-
based machine translation (PBMT) system learned
by Moses (Koehn et al., 2007) is used as the trans-
lation system MT . We use BLEU+1 as the eval-
uation measure EV in the proposed method. The
results on the test data are evaluated by BLEU and
RIBES (Isozaki et al., 2010), which is an evalu-
ation measure more sensitive to global reordering
than BLEU.

We evaluated our algorithm and two conven-
tional methods listed below:
Greedy is our first method that uses simple greedy

search and a linear SVM (using surrounding
word/POS 1, 2 and 3-grams as features) to
learn the segmentation model.

Greedy+DP is the algorithm that introduces
grouping the positions in the source sentence
by POS bigrams.

Punct-Predict is the method using predicted po-
sitions of punctuation (Rangarajan Sridhar et
al., 2013).

RP is the method using right probability (Fujita et
al., 2013).

3.2 Results and Discussion
Figures 4 and 5 show the results of evaluation for
each segmentation strategy measured by BLEU
and RIBES respectively. The horizontal axis is the
mean number of words in the generated transla-
tion units. This value is proportional to the delay
experienced during simultaneous speech transla-
tion (Rangarajan Sridhar et al., 2013) and thus a
smaller value is desirable.

RP, Greedy, and Greedy+DP methods have
multiple results in these graphs because these
methods have a parameter that controls segmen-
tation frequency. We move this parameter from
no segmentation (sentence-based translation) to

554



0 5 10 15
10

12

14

16

18

20

En-De

En-Ja

#words/segment

B
L

E
U

 

 

Punct-Predict
RP
Greedy
Greedy+DP
Greedy+DP(α=0.5)

Figure 4: BLEU score of test set.
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Figure 5: RIBES score of test set.

segmenting every possible boundary (word-based
translation) and evaluate the results.

First, focusing on the Greedy method, we can
see that it underperforms the other methods. This
is a result of over-fitting as will be described in
detail later. In contrast, the proposed Greedy+DP
method shows high performance compared to the
other methods. Especially, the result of BLEU on
the English-German and the RIBES on both lan-
guage pairs show higher performance than RP at
all speed settings. Punct-Predict does not have
an adjustable parameter, so we can only show
one point. We can see that Greedy+DP can be-
gin translation about two to three times faster than
Punct-Predict while maintaining the same perfor-
mance.

Figure 6 shows the BLEU on the training data.
From this figure, it is clear that Greedy achieves
much higher performance than Greedy+DP. From
this result, we can see that the Greedy algorithm is
choosing a segmentation that achieves high accu-
racy on the training data but does not generalize to
the test data. In contrast, the grouping constraint in
the Greedy+DP algorithm is effectively suppress-
ing this overfitting.

The mean number of words µ can be decided
independently from other information, but a con-
figuration of µ affects tradeoff relation between
translation accuracy and simultaneity. For exam-
ple, smaller µ makes faster translation speed but
it also makes less translation accuracy. Basically,
we should choose µ by considering this tradeoff.

4 Conclusion and Future Work

We proposed new algorithms for learning a seg-
mentation strategy in simultaneous speech trans-
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Figure 6: BLEU score of training set.

lation. Our algorithms directly optimize the per-
formance of a machine translation system accord-
ing to an evaluation measure, and are calculated by
greedy search and dynamic programming. Exper-
iments show our Greedy+DP method effectively
separates the source sentence into smaller units
while maintaining translation performance.

With regards to future work, it has been
noted that translation performance can be im-
proved by considering the previously translated
segment when calculating LM probabilities (Ran-
garajan Sridhar et al., 2013). We would like to ex-
pand our method to this framework, although in-
corporation of context-sensitive translations is not
trivial. In addition, the Greedy+DP algorithm uses
only one feature per a position in this paper. Using
a variety of features is also possible, so we plan to
examine expansions of our algorithm to multiple
overlapping features in future work.
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