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Abstract

The evaluation of whole-sentence seman-
tic structures plays an important role in
semantic parsing and large-scale seman-
tic structure annotation. However, there is
no widely-used metric to evaluate whole-
sentence semantic structures. In this pa-
per, we present smatch, a metric that cal-
culates the degree of overlap between two
semantic feature structures. We give an
efficient algorithm to compute the metric
and show the results of an inter-annotator
agreement study.

1 Introduction

The goal of semantic parsing is to generate all se-
mantic relationships in a text. Its output is of-
ten represented by whole-sentence semantic struc-
tures. Evaluating such structures is necessary for
semantic parsing tasks, as well as semantic anno-
tation tasks which create linguistic resources for
semantic parsing.

However, there is no widely-used evalua-
tion method for whole-sentence semantic struc-
tures. Current whole-sentence semantic parsing
is mainly evaluated in two ways: 1. task cor-
rectness (Tang and Mooney, 2001), which eval-
uates on an NLP task that uses the parsing re-
sults; 2. whole-sentence accuracy (Zettlemoyer
and Collins, 2005), which counts the number of
sentences parsed completely correctly.

Nevertheless, it is worthwhile to explore evalua-
tion methods that use scores which range from 0 to
1 (“partial credit”) to measure whole-sentence se-
mantic structures. By using such methods, we are
able to differentiate between two similar whole-
sentence semantic structures regardless of specific

tasks or domains. In this work, we provide an eval-
uation metric that uses the degree of overlap be-
tween two whole-sentence semantic structures as
the partial credit.

In this paper, we observe that the difficulty
of computing the degree of overlap between two
whole-sentence semantic feature structures comes
from determining an optimal variable alignment
between them, and further prove that finding such
alignment is NP-complete. We investigate how to
compute this metric and provide several practical
and replicable computing methods by using Inte-
ger Linear Programming (ILP) and hill-climbing
method. We show that our metric can be used
for measuring the annotator agreement in large-
scale linguistic annotation, and evaluating seman-
tic parsing.

2 Semantic Overlap

We work on a semantic feature structure represen-
tation in a standard neo-Davidsonian (Davidson,
1969; Parsons, 1990) framework. For example,
semantics of the sentence “the boy wants to go” is
represented by the following directed graph:

In this graph, there are three concepts: want-
01, boy, and go-01. Both want-01 and go-01 are
frames from PropBank framesets (Kingsbury and
Palmer, 2002). The frame want-01 has two argu-
ments connected with ARG0 and ARG1, and go-
01 has an argument (which is also the same boy
instance) connected with ARG0.
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Following (Langkilde and Knight, 1998) and
(Langkilde-Geary, 2002), we refer to this semantic
representation as AMR (Abstract Meaning Repre-
sentation).

Semantic relationships encoded in the AMR
graph can also be viewed as a conjunction of logi-
cal propositions, or triples:

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

Each AMR triple takes one of these forms:
relation(variable, concept) (the first three triples
above), or relation(variable1, variable2) (the last
three triples above).

Suppose we take a second AMR (for “the boy
wants the football”) and its associated proposi-
tional triples:

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

Our evaluation metric measures precision, re-
call, and f-score of the triples in the second AMR
against the triples in the first AMR, i.e., the
amount of propositional overlap.

The difficulty is that variable names are not
shared between the two AMRs, so there are mul-
tiple ways to compute the propositional overlap
based on different variable mappings. We there-
fore define the smatch score (for semantic match)
as the maximum f-score obtainable via a one-to-
one matching of variables between the two AMRs.

In the example above, there are six ways to
match up variables between the two AMRs:

M P R F
x=a, y=b, z=c: 4 4/5 4/6 0.73
x=a, y=c, z=b: 1 1/5 1/6 0.18
x=b, y=a, z=c: 0 0/5 0/6 0.00
x=b, y=c, z=a: 0 0/5 0/6 0.00
x=c, y=a, z=b: 0 0/5 0/6 0.00
x=c, y=b, z=a: 2 2/5 2/6 0.36
----------------------------------
smatch score: 0.73

Here, M is the number of propositional triples that
agree given a variable mapping, P is the precision

of the second AMR against the first, R is its re-
call, and F is its f-score. The smatch score is the
maximum of the f-scores.

However, for AMRs that contain large number
of variables, it is not efficient to get the f-score by
simply using the method above. Exhaustively enu-
merating all variable mappings requires comput-
ing the f-score for n!/(n−m)! variable mappings
(assuming one AMR has n variables and the other
has m variables, and m ≤ n). This algorithm is
too slow for all but the shortest AMR pairs.

3 Computing the Metric

This section describes how to compute the smatch
score. As input, we are given AMR1 (with m vari-
ables) and AMR2 (with n variables). Without loss
of generality, m ≤ n.

Baseline. Our baseline first matches variables
that share concepts. For example, it would match
a in the first AMR example with x in the second
AMR example of Section 2, because both are in-
stances of want-01. If there are two or more vari-
ables to choose from, we pick the first available
one. The rest of the variables are mapped ran-
domly.

ILP method. We can get an optimal solution
using integer linear programming (ILP). We create
two types of variables:

• (Variable mapping) vij = 1 iff the ith vari-
able in AMR1 is mapped to the jth variable
in AMR2 (otherwise vij = 0)

• (Triple match) tkl = 1 iff AMR1 triple
k matches AMR2 triple l, otherwise tkl
= 0. A triple relation1(xy) matches
relation2(wz) iff relation1 = relation2, vxw
= 1, and vyz = 1 or y and z are the same con-
cept.

Our constraints ensure a one-to-one mapping of
variables, and they ensure that the chosen t values
are consistent with the chosen v values:

For all i,
∑

j

vij ≤ 1

For all j,
∑

i

vij ≤ 1

For all triple pairs r(xy)r(wz) (r for relation),

tr(xy)r(wz) ≤ vxw
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tr(xy)r(wz) ≤ vyz

when y and z are variables.

Finally, we ask the ILP solver to maximize:

∑

kl

tkl

which denotes the maximum number of matching
triples which lead to the smatch score.

Hill-climbing method. Finally, we develop a
portable heuristic algorithm that does not require
an ILP solver1. This method works in a greedy
style. We begin with m random one-to-one map-
pings between the m variables of AMR1 and the
n variables of AMR2. Each variable mapping is
a pair (i,map(i)) with 1 ≤ i ≤ m and 1 ≤
map(i) ≤ n. We refer to the m mappings as a
variable mapping state.

We first generate a random initial variable map-
ping state, compute its triple match number, then
hill-climb via two types of small changes:

1. Move one of the m mappings to a currently-
unmapped variable from the n.

2. Swap two of the m mappings.

Any variable mapping state has m(n − m) +
m(m − 1) = m(n − 1) neighbors during the
hill-climbing search. We greedily choose the best
neighbor, repeating until no neighbor improves the
number of triple matches.

We experiment with two modifications to the
greedy search: (1) executing multiple random
restarts to avoid local optima, and (2) using our
Baseline concept matching (“smart initialization”)
instead of random initialization.

NP-completeness. There is unlikely to be
an exact polynomial-time algorithm for comput-
ing smatch. We can reduce the 0-1 Maximum
Quadratic Assignment Problem (0-1-Max-QAP)
(Nagarajan and Sviridenko, 2009) and the sub-
graph isomorphism problem directly to the full
smatch problem on graphs.2

We note that other widely-used metrics, such as
TER (Snover et al., 2006), are also NP-complete.
Fortunately, the next section shows that the smatch
methods above are efficient and effective.

1The tool can be downloaded at
http://amr.isi.edu/evaluation.html.

2Thanks to David Chiang for observing the subgraph iso-
morphism reduction.

4 Using Smatch

We report an AMR inter-annotator agreement
study using smatch.

1. Our study has 4 annotators (A, B, C, D), who
then converge on a consensus annotation E.
We thus have 10 pairs of annotations: A-B,
A-C, . . . , D-E.

2. The study is carried out 5 times. Each
time annotators build AMRs for 4 sentences
from the Wall Street Journal corpus. Sen-
tence lengths range from 12 to 54 words, and
AMRs range from 6 to 29 variables.

3. We use 7 smatch calculation methods in our
experiments:

• Base: Baseline matching method
• ILP: Integer Linear Programming
• R: Hill-climbing with random initializa-

tion
• 10R: Hill-climbing with random initial-

ization plus 9 random restarts
• S: Hill-climbing with smart initializa-

tion
• S+4R: Hill-climbing with smart initial-

ization plus 4 random restarts
• S+9R: Hill-climbing with smart initial-

ization plus 9 random restarts

Table 1 shows smatch scores provided by the
methods. Columns labeled 1-5 indicate sen-
tence groups. Each individual smatch score is
a document-level score of 4 AMR pairs.3 ILP
scores are optimal, so lower scores (in bold) in-
dicate search errors.

Table 2 summarizes search accuracy as a per-
centage of smatch scores that equal that of ILP.
Results show that the restarts are essential for hill-
climbing, and that 9 restarts are sufficient to obtain
good quality. The table also shows total runtimes
over 200 AMR pairs (10 annotator pairs, 5 sen-
tence groups, 4 AMR pairs per group). Heuris-
tic search with smart initialization and 4 restarts
(S+4R) gives the best trade-off between accuracy
and speed, so this is the setting we use in practice.

Figure 1 shows smatch scores of each annotator
(A-D) against the consensus annotation (E). The

3For documents containing multiple AMRs, we use the
sum of matched triples over all AMR pairs to compute pre-
cision, recall, and f-score, much like corpus-level Bleu (Pap-
ineni et al., 2002).
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B C D E
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Base 0.68 0.74 0.84 0.71 0.83 0.69 0.70 0.80 0.69 0.78 0.77 0.72 0.75 0.68 0.63 0.79 0.86 0.92 0.85 0.89
ILP 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
R 0.74 0.79 0.84 0.75 0.86 0.74 0.75 0.80 0.77 0.88 0.83 0.76 0.75 0.72 0.75 0.85 0.92 0.92 0.89 0.89

A 10R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
S 0.74 0.80 0.84 0.75 0.88 0.75 0.78 0.80 0.76 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92

S+4R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
S+9R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
Base - - - - - 0.72 0.68 0.74 0.69 0.79 0.71 0.72 0.76 0.65 0.57 0.68 0.71 0.83 0.79 0.86
ILP - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
R - - - - - 0.74 0.83 0.72 0.72 0.83 0.78 0.83 0.76 0.68 0.68 0.74 0.81 0.83 0.83 0.89

B 10R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
S - - - - - 0.73 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89

S+4R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
S+9R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
Base - - - - - - - - - - 0.68 0.68 0.74 0.69 0.65 0.64 0.64 0.87 0.79 0.83
ILP - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
R - - - - - - - - - - 0.74 0.79 0.74 0.75 0.78 0.71 0.76 0.87 0.85 0.89

C 10R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
S - - - - - - - - - - 0.74 0.79 0.74 0.77 0.81 0.74 0.76 0.87 0.85 0.89

S+4R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
S+9R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
Base - - - - - - - - - - - - - - - 0.68 0.69 0.81 0.74 0.64
ILP - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
R - - - - - - - - - - - - - - - 0.77 0.73 0.81 0.78 0.79

D 10R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
S - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79

S+4R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
S+9R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79

Table 1: Inter-annotator smatch agreement for 5 groups of sentences, as computed with seven different
methods (Base, ILP, R, 10R, S, S+4R, S+9R). The number 1-5 indicate the sentence group number. Bold
scores are search errors.

Base ILP R 10R S S+4R S+9R
Accuracy 20% 100% 66.5% 100% 92% 100% 100%
Time (sec) 0.86 49.67 5.85 64.78 2.31 28.36 59.69

Table 2: Accuracy and running time (seconds) of
various computing methods of smatch over 200
AMR pairs.

plot demonstrates that, as time goes by, annotators
reach better agreement with the consensus.

We also note that smatch is used to measure
the accuracy of machine-generated AMRs. (Jones
et al., 2012) use it to evaluate automatic seman-
tic parsing in a narrow domain, while Ulf Her-
mjakob4 has developed a heuristic algorithm that
exploits and supplements Ontonotes annotations
(Pradhan et al., 2007) in order to automatically
create AMRs for Ontonotes sentences, with a
smatch score of 0.74 against human consensus
AMRs.

5 Related Work

Related work on directly measuring the seman-
tic representation includes the method in (Dri-
dan and Oepen, 2011), which evaluates semantic
parser output directly by comparing semantic sub-
structures, though they require an alignment be-
tween sentence spans and semantic sub-structures.
In contrast, our metric does not require the align-

4personal communication
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Figure 1: Smatch scores of annotators (A-D)
against the consensus annotation (E) over time.

ment between an input sentence and its semantic
analysis. (Allen et al., 2008) propose a metric
which computes the maximum score by any align-
ment between LF graphs, but they do not address
how to determine the alignments.

6 Conclusion and Future Work

We present an evaluation metric for whole-
sentence semantic analysis, and show that it can
be computed efficiently. We use the metric to
measure semantic annotation agreement rates and
parsing accuracy. In the future, we plan to investi-
gate how to adapt smatch to other semantic repre-
sentations.
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