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Abstract
We present an efficient approach for
broadcast news story segmentation using a
manifold learning algorithm on latent top-
ic distributions. The latent topic distribu-
tion estimated by Latent Dirichlet Alloca-
tion (LDA) is used to represent each text
block. We employ Laplacian Eigenmap-
s (LE) to project the latent topic distribu-
tions into low-dimensional semantic rep-
resentations while preserving the intrinsic
local geometric structure. We evaluate t-
wo approaches employing LDA and prob-
abilistic latent semantic analysis (PLSA)
distributions respectively. The effects of
different amounts of training data and dif-
ferent numbers of latent topics on the two
approaches are studied. Experimental re-
sults show that our proposed LDA-based
approach can outperform the correspond-
ing PLSA-based approach. The proposed
approach provides the best performance
with the highest F1-measure of 0.7860.

1 Introduction
Story segmentation refers to partitioning a mul-
timedia stream into homogenous segments each
embodying a main topic or coherent story (Allan,
2002). With the explosive growth of multimedia
data, it becomes difficult to retrieve the most rel-
evant components. For indexing broadcast news
programs, it is desirable to divide each of them
into a number of independent stories. Manual seg-
mentation is accurate but labor-intensive and cost-
ly. Therefore, automatic story segmentation ap-
proaches are highly demanded.

Lexical-cohesion based approaches have been
widely studied for automatic broadcast news story
segmentation (Beeferman et al., 1997; Choi, 1999;
Hearst, 1997; Rosenberg and Hirschberg, 2006;
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Lo et al., 2009; Malioutov and Barzilay, 2006;
Yamron et al., 1999; Tur et al., 2001). In this
kind of approaches, the audio portion of the da-
ta stream is passed to an automatic speech recog-
nition (ASR) system. Lexical cues are extracted
from the ASR transcripts. Lexical cohesion is the
phenomenon that different stories tend to employ
different sets of terms. Term repetition is one of
the most common appearances.

These rigid lexical-cohesion based approach-
es simply take term repetition into consideration,
while term association in lexical cohesion is ig-
nored. Moreover, polysemy and synonymy are not
considered. To deal with these problems, some
topic model techniques which provide conceptu-
al level matching have been introduced to text and
story segmentation task (Hearst, 1997). Proba-
bilistic latent semantic analysis (PLSA) (Hofman-
n, 1999) is a typical instance and used widely.
PLSA is the probabilistic variant of latent seman-
tic analysis (LSA) (Choi et al., 2001), and offers a
more solid statistical foundation. PLSA provides
more significant improvement than LSA for story
segmentation (Lu et al., 2011; Blei and Moreno,
2001).

Despite the success of PLSA, there are con-
cerns that the number of parameters in PLSA
grows linearly with the size of the corpus. This
makes PLSA not desirable if there is a consid-
erable amount of data available, and causes seri-
ous over-fitting problems (Blei, 2012). To deal
with this issue, Latent Dirichlet Allocation (L-
DA) (Blei et al., 2003) has been proposed. LDA
has been proved to be effective in many segmenta-
tion tasks (Arora and Ravindran, 2008; Hall et al.,
2008; Sun et al., 2008; Riedl and Biemann, 2012;
Chien and Chueh, 2012).

Recent studies have shown that intrinsic di-
mensionality of natural text corpus is significant-
ly lower than its ambient Euclidean space (Belkin
and Niyogi, 2002; Xie et al., 2012). Therefore,
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Laplacian Eigenmaps (LE) was proposed to com-
pute corresponding natural low-dimensional struc-
ture. LE is a geometrically motivated dimen-
sionality reduction method. It projects data into
a low-dimensional representation while preserv-
ing the intrinsic local geometric structure infor-
mation (Belkin and Niyogi, 2002). The locali-
ty preserving property attempts to make the low-
dimensional data representation more robust to the
noise from ASR errors (Xie et al., 2012).

To further improve the segmentation perfor-
mance, using latent topic distributions and LE in-
stead of term frequencies to represent text blocks
is studied in this paper. We study the effects of
the size of training data and the number of latent
topics on the LDA-based and the PLSA-based ap-
proaches. Another related work (Lu et al., 2013)
is to use local geometric information to regularize
the log-likelihood computation in PLSA.

2 Our Proposed Approach
In this paper, we propose to apply LE on the L-
DA topic distributions, each of which is estimat-
ed from a text block. The low-dimensional vec-
tors obtained by LE projection are used to detect
story boundaries through dynamic programming.
Moreover, as in (Xie et al., 2012), we incorporate
the temporal distances between block pairs as a
penalty factor in the weight matrix.

2.1 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) (Blei et al.,
2003) is a generative probabilistic model of a cor-
pus. It considers that documents are represented
as random mixtures over latent topics, where each
topic is characterized by a distribution over terms.

In LDA, given a corpus D = {d1, d2, . . . , dM}
and a set of terms W = (w1, w2, . . . , wV ), the
generative process can be summarized as follows:

1) For each document d, pick a multinomial dis-
tribution θ from a Dirichlet distribution parameter
α, denoted as θ ∼ Dir(α).

2) For each term w in document d, select a topic
z from the multinomial distribution θ, denoted as
z ∼ Multinomial(θ).

3) Select a term w from P (w|z, β), which is a
multinomial probability conditioned on the topic.

An LDA model is characterized by two sets of
prior parameters α and β. α = (α1, α2, . . . , αK)
represents the Dirichlet prior distributions for each
K latent topics. β is a K×V matrix, which defines
the latent topic distributions over terms.

2.2 Construction of weight matrix in
Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is introduced to project
high-dimensional data into a low-dimensional rep-
resentation while preserving its locality property.
Given the ASR transcripts of N text blocks, we ap-
ply LDA algorithm to compute the corresponding
latent topic distributions X = [x1, x2, . . . , xN ] in
RK , where K is the number of latent topics, name-
ly the dimensionality of LDA distributions.

We use G to denote an N-node (N is number of
LDA distributions) graph which represents the re-
lationship between all the text block pairs. If dis-
tribution vectors xi and xj come from the same
story, we put an edge between nodes i and j. We
define a weight matrix S of the graph G to denote
the cohesive strength between the text block pairs.
Each element of this weight matrix is defined as:

sij = cos(xi, xj)µ
|i−j|, (1)

where µ|i−j| serves the penalty factor for the dis-
tance between i and j. µ is a constant lower than
1.0 that we tune from a set of development data.
It makes the cohesive strength of two text blocks
dramatically decrease when their distance is much
larger than the normal length of a story.

2.3 Data projection in Laplacian Eigenmaps
Given the weight matrix S, we define C as the di-
agonal matrix with its element:

cij =
∑K

i=1
sij . (2)

Finally, we obtain the Laplacian matrix L, which
is defined as:

L = C − S. (3)

We use Y = [y1, y2, . . . , yN ] (yi is a column
vector) to indicate the low-dimensional represen-
tation of the latent topic distributions X. The pro-
jection from the latent topic distribution space to
the target space can be defined as:

f : xi ⇒ yi. (4)

A reasonable criterion for computing an optimal
mapping is to minimize the objective as follows:

K∑

i=1

K∑

j=1

∥ yi − yj ∥2 sij . (5)

Under this constraint condition, we can preserve
the local geometrical property in LDA distribu-
tions. The objective function can be transformed
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as:
K∑

i=1

K∑

j=1

(yi − yj)sij = tr(YT LY). (6)

Meanwhile, zero matrix and matrices with it-
s rank less than K are meaningless solutions for
our task. We impose YT LY = I to prevent this
situation, where I is an identity matrix. By the
Reyleigh-Ritz theorem (Lutkepohl, 1997), the so-
lution can obtained by the Q smallest eigenvalues
of the generalized eigenmaps problem:

XLXT y = λXCXT y. (7)

With this formula, we calculate the mapping ma-
trix Y, and its row vectors y′

1, y′
2, . . . , y′

Q are in the
order of their eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λQ.
y′

i is a Q-dimensional (Q<K) eigenvectors.

2.4 Story boundary detection
In story boundary detection, dynamic program-
ming (DP) approach is adopted to obtain the glob-
al optimal solution. Given the low-dimensional se-
mantic representation of the test data, an objective
function can be defined as follows:

ℑ =

Ns∑

t=1

(
∑

i,j∈Segt

∥ yi − yj ∥2), (8)

where yi and yj are the latent topic distributions of
text blocks i and j respectively, and ∥ yi − yj ∥2

is the Euclidean distance between them. Segt in-
dicates these text blocks assigned to a certain hy-
pothesized story. Ns is the number of hypothe-
sized stories.

The story boundaries which minimize the ob-
jective function ℑ in Eq.(8) form the optimal re-
sult. Compared with classical local optimal ap-
proach, DP can more effectively capture the s-
mooth story shifts, and achieve better segmenta-
tion performance.

3 Experimental setup
Our experiments were evaluated on the ASR tran-
scripts provided in TDT2 English Broadcast news
corpus1, which involved 1033 news programs. We
separated this corpus into three non-overlapping
sets: a training set of 500 programs for parameter
estimation in topic modeling and LE, a develop-
ment set of 133 programs for empirical tuning and
a test set of 400 programs for performance evalu-
ation.

In the training stage, ASR transcripts with man-
ually labeled boundary tags were provided. Text

1http://projects.ldc.upenn.edu/TDT2/

streams were broken into block units according to
the given boundary tags, with each text block be-
ing a complete story. In the segmentation stage,
we divided test data into text blocks using the time
labels of pauses in the transcripts. If the pause du-
ration between two blocks last for more than 1.0
sec, it was considered as a boundary candidate. To
avoid the segmentation being suffered from ASR
errors and the out-of-vocabulary issue, phoneme
bigram was used as the basic term unit (Xie et al.,
2012). Since the ASR transcripts were at word lev-
el, we performed word-to-phoneme conversion to
obtain the phoneme bigram basic units. The fol-
lowing approaches, in which DP was used in story
boundary detection, were evaluated in the experi-
ments:

• PLSA-DP: PLSA topic distributions were
used to compute sentence cohesive strength.

• LDA-DP: LDA topic distributions were used
to compute sentence cohesive strength.

• PLSA-LE-DP: PLSA topic distributions fol-
lowed by LE projection were used to com-
pute sentence cohesive strength.

• LDA-LE-DP: LDA topic distributions fol-
lowed by LE projection were used to com-
pute sentence cohesion strength.

For LDA, we used the implementation from
David M. Blei’s webpage2. For PLSA, we used
the Lemur Toolkit3.

F1-measure was used as the evaluation crite-
rion.We followed the evaluation rule: a detected
boundary candidate is considered correct if it lies
within a 15 sec tolerant window on each side of a
reference boundary. A number of parameters were
set through empirical tuning on the developent set.
The penalty factor was set to 0.8. When evaluating
the effects of different size of the training set, the
number of latent topics in topic modeling process
was set to 64. After the number of latent topics
was fixed, the dimensionality after LE projection
was set to 32. When evaluating the effects of d-
ifferent number of latent topics in topic modeling
computation, we fixed the size of the training set
to 500 news programs and changed the number of
latent topics from 16 to 256.

4 Experimental results and analysis
4.1 Effect of the size of training dataset
We used the training set from 100 programs to 500
programs (adding 100 programs in each step) to e-

2http://www.cs.princeton.edu/ blei/lda-c/
3http://www.lemurproject.org/
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valuate the effects of different size of training data
in both PLSA-based and LDA-based approaches.
Figure 1 shows the results on the development set
and the test set.
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Figure 1: Segmentation performance with differ-
ent amounts of training data

LDA-LE-DP approach achieved the best result
(0.7927 and 0.7860) on both the development and
the test sets, when there were 500 programs in the
training set. This demonstrates that LDA model
and LE projection used in combination is excellent
for the story segmentation task. The LE projection
applied on the latent topic representations made
relatively 9.88% and 10.93% improvement over
the LDA-based approach and the PLSA-based ap-
proach, respectively on the test set. We can reveal
that employing LE on PLSA and LDA topic dis-
tributions achieves much better performance than
the corresponding approaches without using LE.

We have compared the performances between
PLSA and LDA. We found that when the train-
ing data size was small, PLSA performed better
than LDA. Both PLSA-based and LDA-based ap-
proaches got better with the increase in the size of
the training data set. All the four approaches had
similar performances on the development set and
the test set.

With the increase in the size of the training da-
ta, the LDA-based approaches were improved dra-
matically. They even outperformed the PLSA-
based approaches when the training data contained
more than 300 programs. This may be attributed
to the fact that LDA needs more training data to
estimate the parameters. When the training data is
not enough, its parameters estimated in the train-
ing stage is not stable for the development and the

test data. Moreover, compared with PLSA, the pa-
rameters in LDA do not grow linearly with the size
of the corpus.

4.2 Effect of the number of latent topics
We evaluated the F1-measure of the four ap-
proaches with different number of latent topics
prior to LE projection. Figure 2 shows the cor-
responding results.
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Figure 2: Segmentation performance with differ-
ent numbers of latent topics

The best performances (0.7816-0.7847) were
achieved at the number of latent topics between
64 and 96. When the number of latent topics was
increased from 16 to 64, F1-measure increased.
When the number of latent topics was larger than
96, F1-measure decreased gradually. We found
that the best results were achieved when the num-
ber of topics was close to the real number of top-
ics. There are 80 manually labeled main topics in
the test set.

We observe that LE projection makes the topic
model more stable with different numbers of latent
topics. The best and the worst performances dif-
fered by relatively 9.12% in LDA-DP and 7.97%
in PLSA-DP. However, the relative difference of
2.79% and 2.46% were observed in LDA-LE-DP
and PLSA-LE-DP respectively.

5 Conclusions

Our proposed approach achieves the best F1-
measure of 0.7860. In the task of story segmen-
tation, we believe that LDA can avoid data overfit-
ting problem when there is a sufficient amount of
training data. This is also applicable to LDA-LE-
LP. Moreover, we find that when we apply LE pro-
jection to latent topic distributions, the segmen-
tation performances become less sensitive to the
predefined number of latent topics.
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