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Abstract

Conversational implicatures involve rea-
soning about multiply nested belief struc-
tures. This complexity poses significant
challenges for computational models of
conversation and cognition. We show that
agents in the multi-agent Decentralized-
POMDP reach implicature-rich interpreta-
tions simply as a by-product of the way
they reason about each other to maxi-
mize joint utility. Our simulations involve
a reference game of the sort studied in
psychology and linguistics as well as a
dynamic, interactional scenario involving
implemented artificial agents.

1 Introduction

Gricean conversational implicatures (Grice, 1975)
are inferences that listeners make in order to
reconcile the speaker’s linguistic behavior with
the assumption that the speaker is cooperative.
As Grice conceived of them, implicatures cru-
cially involve reasoning about multiply-nested be-
lief structures: roughly, for p to count as an impli-
cature, the speaker must believe that the listener
will infer that the speaker believes p. This com-
plexity makes implicatures an important testing
ground for models of conversation and cognition.

Implicatures have received considerable atten-
tion in the context of simple reference games in
which the listener uses the speaker’s utterance
to try to identify the speaker’s intended referent
(Rosenberg and Cohen, 1964; Clark and Wilkes-
Gibbs, 1986; Dale and Reiter, 1995; DeVault and
Stone, 2007; Krahmer and van Deemter, 2012).
Many implicature patterns can be embedded in
these games using specific combinations of poten-
tial referents and message sets. The paradigm has
proven fruitful not only for evaluating computa-
tional models (Golland et al., 2010; Degen and

Franke, 2012; Frank and Goodman, 2012; Rohde
et al., 2012; Bergen et al., 2012) but also for study-
ing children’s pragmatic abilities without implic-
itly assuming they have mastered challenging lin-
guistic structures (Stiller et al., 2011).

In this paper, we extend these results beyond
simple reference games to full decision-problems
in which the agents reason about language and ac-
tion together over time. To do this, we use the De-
centralized Partially Observable Markov Decision
Process (Dec-POMDP) to implement agents that
are capable of manipulating the multiply-nested
belief structures required for implicature calcula-
tion. Optimal decision making in Dec-POMDPs
is NEXP complete, so we employ the single-agent
POMDP approximation of Vogel et al. (2013).
We show that agents in the Dec-POMDP reach
implicature-rich interpretations simply as a by-
product of the way they reason about each other
to maximize joint utility. Our simulations involve
a reference game and a dynamic, interactional sce-
nario involving implemented artificial agents.

2 Decision-Theoretic Communication

The Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Bernstein et
al., 2002) is a multi-agent generalization of the
POMDP, where agents act to maximize a shared
utility function. Formally, a Dec-POMDP con-
sists of a tuple (S,A,O,R, T,Ω, b0, γ). S is a
finite set of states, A is the set of actions, O is
the set of observations, and T (s′|a1, a2, s) is the
transition distribution which determines what ef-
fect the joint action (a1, a2) has on the state of the
world. The true state s ∈ S is not observable to
the agents, who must utilize observations o ∈ O,
which are emitted after each action according to
the observation distribution Ω(o1, o2|s′, a). The
reward functionR(s, a1, a2) represents the goal of
the agents, who act to maximize expected reward.
Lastly, b0 ∈ ∆(S) is the initial belief state and
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γ ∈ [0, 1) is the discount factor.
The true state of the world s ∈ S is not ob-

servable to either agent. In single-agent POMDPs,
agents maintain a belief state b(s) ∈ ∆(S), which
is a distribution over states. Agents acting in Dec-
POMDPs must take into account not only their
beliefs about the state of the world, but also the
beliefs of their partners, leading to nested belief
states. In the model presented here, our agent
models the other agent’s beliefs about the state of
the world, and assumes that the other agent does
not take into account our own beliefs, a common
approach (Gmytrasiewicz and Doshi, 2005).

Agents make decisions according to
a policy πi : ∆(S) → A which max-
imizes the discounted expected reward∑∞

t=0 γ
t
E[R(st, at1, a

t
2)|b0, π1, π2]. Using

the assumption that the other agent tracks one less
level of belief, we can solve for the other agent’s
policy π̄, which allows us to estimate his actions
and beliefs over time. To construct policies,
we use Perseus (Spaan and Vlassis, 2005), a
point-based value iteration algorithm.

Even tracking just one level of nested beliefs
quickly leads to a combinatorial explosion in the
number of belief states the other agent might have.
This causes decision making in Dec-POMDPs to
be NEXP complete, limiting their application to
problems with only a handful of states (Bernstein
et al., 2002). To ameliorate this difficulty, we
use the method of Vogel et al. (2013), which cre-
ates a single-agent approximation to the full Dec-
POMDP. To form this single-agent POMDP, we
augment the state space to be S × S, where the
second set of state variables allows us to model
the other agent’s beliefs. We maintain a point
estimate b̄ of the other agent’s beliefs, which
is formed by summing out observations O that
the other player might have received. To ac-
complish this, we factor the transition distribu-
tion into two terms: T ((s′, s̄′)|a, π̄(s̄), (s, s̄)) =
T̄ (s̄′|s′, a, π̄(s̄), (s, s̄))T (s′|a, π̄(s̄), (s, s̄)). This
observation marginalization can be folded into the
transition distribution T̄ (s̄′|s′, a, π̄(s̄), (s, s̄)):

T̄ (s̄′| s′, a, π̄(s̄), (s, s̄)) = Pr(s̄′|s′, a, π̄(s̄), (s, s̄))

=
∑

ō∈O

(
Ω(ō|s̄′, a, π̄(s̄))T (s̄′|a, π̄(s̄), s̄)∑
s̄′′ Ω(ō|s̄′′, a, π̄(s̄))T (s̄′′|a, π̄(s̄), s̄)

× Ω(ō|s′, a, π̄(s̄))

)
(1)

Communication is treated as another type of ob-

servation, with messages coming from a finite set
M . Each message m ∈ M has the semantics
Pr(s|m), which represents the probability that the
world is in state s ∈ S given that m is true. Mes-
sages m received from a partner are combined
with perceptual observations o ∈ O, to form a
joint observation (m, o).

A literal listener, denoted L, interprets mes-
sages according to this semantics, without taking
into account the beliefs of the speaker. L assumes
that the perceptual observations and messages are
conditionally independent given the state of the
world. Using Bayes’ rule, the literal listener’s joint
observation/message distribution is

Pr((o,m)|s, s′, a) = Ω(o|s′, a) Pr(m|s)

= Ω(o|s′, a)
Pr(s|m) Pr(m)∑

m′∈M Pr(s|m′) Pr(m′)
(2)

The Pr(m) prior over messages can be estimated
from corpus data, but we use a uniform prior for
simplicity.

A literal speaker, denoted S, produces mes-
sages according to the most descriptive term:

πS(s) = arg max
m∈M

p(s|m). (3)

The literal speaker does not model the beliefs of
the listener.

To interpret implicatures, a level-one lis-
tener, denoted L(S), models the beliefs a literal
speaker must have had to produce an utterance:
Pr(m|s) = 1[π̄S(s) = m], where π̄S is the level-
one listener’s estimate of the speaker’s policy. In
this setting, we denote the level-one listener’s es-
timate of the speaker’s belief as s̄, yielding the be-
lief update equation

Pr((o,m)|(s, s̄), (s′, s̄′), a, π̄S(s̄)) =

Ω(o|s′, a)1[π̄S(s̄) = m] (4)

The literal semantics of messages is not explicitly
included in the level-one listener’s belief update.
Instead, when he solves for the literal speaker’s
policy π̄S , the meaning of a message is the set of
beliefs that would lead the literal speaker to pro-
duce the utterance.

A level-one speaker, S(L), produces utterances
to influence a literal listener, and a level-two lis-
tener, L(S(L)), uses two levels of belief nesting to
interpret utterances as the beliefs that a level-one
speaker might have to produce that utterance. At
each level of nesting, we apply the marginalized
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r1 0 0 1
r2 0 1 1
r3 1 1 0

hat glasses mustache

r1 r2 r3

(a) Scenario.

Message r1 r2 r3

moustache 1
2

1
2 0

glasses 0 1
2

1
2

hat 0 0 1

(b) Literal interpretations.

Message r1 r2 r3

moustache 1 0 0
glasses 0 1 0

hat 0 0 1

(c) Implicature-rich interpretations.

Figure 1: A simple reference game. The matrices
give distributions Pr(t = ri|utterance)

belief-state approach of (Vogel et al., 2013), aug-
menting the state space with another copy of the
underlying world state space, where the new copy
represents the next level of belief. For instance, the
L(S(L)) agent will make decisions in the S×S×S
space. For an L(S(L)) state (s, s̄, ŝ), s is the true
state of the world, s̄ is the speaker’s belief of the
state of the world, and ŝ is the speaker’s belief of
the listener’s beliefs. In the next two sections we
show how a level-one and level-two listener infer
implicatures.

3 Reference Game Implicatures

Fig. 1a is the scenario for a reference game of the
sort pioneered by Rosenberg and Cohen (1964)
and Dale and Reiter (1995). The potential refer-
ents are r1, r2, and r3. Speakers use a restricted
vocabulary consisting of three messages: ‘mous-
tache’, ‘glasses’, and ‘hat’. The speaker is as-
signed a referent ri (hidden from the listener) and
produces a message on that basis. The speaker and
listener share the goal of having the listener iden-
tify the speaker’s intended referent ri.

Fig. 1b depicts the literal interpretations for
this game. It looks like the listener’s chances
of success are low. Only ‘hat’ refers unambigu-

ously. However, the language and scenario fa-
cilitate scalar implicature (Horn, 1972; Harnish,
1979; Gazdar, 1979). Briefly, the scalar implica-
ture pattern is that a speaker who is knowledgeable
about the relevant domain will choose a commu-
nicatively weak utterance U over a communica-
tively stronger utterance U ′ iff U ′ is false (assum-
ing U and U ′ are relevant). The required sense of
communicative strength encompasses logical en-
tailments as well as more particularized pragmatic
partial orders (Hirschberg, 1985).

In our scenario, ‘hat’ is stronger than ‘glasses’:
the referents wearing a hat are a proper subset
of those wearing glasses. Thus, given the play-
ers’ goal, if the speaker says ‘glasses’, the lis-
tener should draw the scalar implicature that ‘hat’
is false. Thus, ‘glasses’ comes to unambiguously
refer to r2 (Fig. 1c, line 2). Similarly, though
‘moustache’ and ‘glasses’ do not literally stand in
the specific–general relationship needed for scalar
implicature, they do with ‘glasses’ pragmatically
associated with r2 (Fig. 1c, line 1).

Our implementation of these games as Dec-
POMDPs mirrors their intuitive description and
their treatment in iterated best response models
(Jäger, 2007; Jäger, 2012; Franke, 2009; Frank
and Goodman, 2012). The state space S encodes
the attributes of the referents (e.g., hat(r2) = T,
glasses(r1) = F) and includes a target variable t
identifying the speaker’s referent (hidden from the
listener). The speaker has three speech actions,
identified with the three messages. The listener
has four actions: ‘listen’ plus a ‘choose’ action ci
for each referent ri. The set of observations O is
just the set of messages (construed as utterances).
The agents receive a positive reward iff the listener
action ci corresponds to the speaker’s target t. Be-
cause this is a one-step reference game, the transi-
tion distribution T is the identity distribution.

The literal listener L interprets utterances as
a truth-conditional speaker would produce them
(Fig. 1b). The level-one speaker S(L) augments
the state space with a variable ‘listener target’ and
models L’s beliefs b̄ using the approximate meth-
ods of Sec. 2. Crucially, the optimal speaker pol-
icy πS(L) is such that πS(L)(t=r3) = ‘hat’ and
πS(L)(t=r1) = ‘moustache’. The level-two lis-
tener L(S(L)) models S(L) via an estimate of the
‘listener target’ variable. For each speech action
m, L(S(L)) considers all values of t and the likeli-
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hood that S(L) would have produced m:

Pr(t=ri|m) ∝ 1[π̄S(L)(t=ri) = m]

Since S(L) uses ‘hat’ to describe r3 and
‘moustache’ to describe r1, L(S(L)) correctly in-
fers that ‘glasses’ refers to r2, completing Fig. 1c’s
full implicature-rich pattern of mutual exclusivity
(Clark, 1987; Frank et al., 2009).

This basic pattern is robustly attested empiri-
cally in human data. The experimental data are,
of course, invariably less crisp than our idealized
model predicts, but many important sources of
variation could be brought into our model, with
the addition of strong salience priors (Frank and
Goodman, 2012; Stiller et al., 2011), assumptions
about bounded rationality (Camerer et al., 2004;
Franke, 2009), and a ‘soft-max’ view of the lis-
tener (Frank et al., 2009).

4 Cards World Implicatures

The Cards corpus1 contains 1266 metadata-rich
transcripts from a two-player chat-based game.
The world is a simple maze in which a deck of
cards has been distributed. The players’ goal is to
find specific subsets of the cards, subject to a vari-
ety of constraints on what they can see and do. The
Dec-POMDP-based agents of Vogel et al. (2013)
play a simplified version in which the goal is to be
co-located with a single card. Vogel et al. show
that their agents’ linguistic behavior is broadly
Gricean. However, their agents’ language is too
simple to reveal implicatures. The present section
remedies this shortcoming. Implicature-rich inter-
pretations are an immediate consequence.

We implement the simplified Cards tasks as fol-
lows. The state space S is composed of the loca-
tion of each player and the location of the card.
The transition distribution T (s′|s, a1, a2) encodes
the outcome of movement actions. Agents receive
one of two sensor observations, indicating whether
the card is at their current location. The players are
rewarded when they are both located on the card.
Each player begins knowing his own location, but
not the location of the other player nor of the card.

The players have four movement actions (‘up’,
‘down’, ‘left’, ‘right’) and nine speech actions in-
terpreted as identifying card locations. Fig. 2 de-
picts these utterances as a partial order determined
by entailment. These general-to-specific relation-

1
http://cardscorpus.christopherpotts.net
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Figure 2: Cards world utterance actions.

top left (5.75) top (6.68) top right (5.57)

left (6.81) middle (7.16) right (6.86)

bottom left (6.11) bottom (6.37) bottom right (5.42)

Figure 3: Literal interpretations derived from the
Cards corpus. The entropy of each distribution is
included in parentheses. Each term is estimated
from all tokens that contain it, which washes
out implicature-rich usage, thereby providing our
model with an empirically-grounded literal start.

ships show that the language can support scalar
conversational implicatures.2

Fig. 2 is not entirely appropriate in our setting,
however. Our expressions are vague; there is no
sharp boundary between, e.g., ‘top’ and ‘bottom’,
nor is it clear where ‘top right’ begins. To model
this vagueness, we analyze each message m as
denoting a conditional distribution Pr(x|m) over
grid squares x in the gameboard. These distribu-
tions are derived from human–human Cards inter-
actions using the data and methods of Potts (2012).
Of course, there is a tension here: our model as-
sumes that we begin with literal interpretations,
but human–human data will reflect pragmatically-
enriched usage. To get around this, we approxi-
mate literal interpretations by deriving each term’s
distribution from all the corpus tokens that con-
tain it. For example, the distribution for ‘top’ is

2Our agents cannot produce modified versions of ‘mid-
dle’ like ‘middle right’. These would be synonymous with
implicature-enriched general terms. We work with a simple
cost-function that treats all forms alike, but future versions of
this work will incorporate more realistic form-based costs.
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top left (5.17) top (3.46) top right (5.04)

left (3.91) middle (2.35) right (3.58)

bottom left (4.81) bottom (3.70) bottom right (5.04)

Figure 4: Implicature-rich interpretations, derived
using the level-one listener L(S).

estimated not only from ‘top’ but also from ‘top
right’, ‘middle right’, and so forth. The denotation
for ‘top right’ excludes simple ‘top’ and ‘right’
utterances but includes expressions like ‘very top
right’. This semantics washes out any implicature
patterns, thereby giving us a proper literal starting
point. Fig. 3 shows these denotations for the full
set of expressions. The entailment relations from
Fig. 2 are (fuzzily) evident. For example, the areas
of high probability for ‘right’ properly contain the
areas of high probability for ‘top right’.

To show how the Dec-POMDP model delivers
implicatures, we begin with a literal speaker S
who does not consider the location of the other
player and instead searches the board until he finds
the card. After finding it, he communicates the re-
ferring expression with highest literal probability
for his location, using the distributions from Fig. 3.
We denote the literal speaker’s policy by πS. The
level-one listener L(S) tracks an estimate of S’s lo-
cation and beliefs about the card location. Using
the approximation defined in Sec. 2, L(S) inter-
prets an utterancem as Pr(m|s) = 1[π̄S(s) = m].
Thus, the meaning of each m is the set of be-
liefs that S might have to produce this utterance.
Fig. 4 shows how L(S) interprets each message.
The meaning of general terms like ‘top’ and ‘right’
now exclude their modified counterparts. This
is evident in the lack of overlap between high-
probability areas and in the lower entropy values.

Direct evaluation of this result against the cor-
pus data is not possible, because the corpus does
not encode interpretations. However, we expect

top left (5.82) top (5.74) top right (5.49)

left (6.15) middle (6.14) right (6.57)

bottom left (5.29) bottom (5.43) bottom right (5.44)

Figure 5: Distributions reflecting human speakers’
aggregate referential intentions . Each term is es-
timated only from tokens that exactly match it.

listener interpretations to align with speaker in-
tentions, and we can gain insight into (aggregate)
speaker intentions using our method for ground-
ing referential terms. Whereas the literal inter-
pretation for message m is obtained from all the
tokens that contain it (Fig. 3), the speaker’s in-
tended interpretation for m is obtained from all
of the tokens that exactly match it. For instance,
the meaning of ‘top’ now excludes tokens like ‘top
left’. Fig. 5 shows these denotations, which mirror
the distributions predicted by our model (Fig. 4).
Thus, the L(S) model correctly infers the prag-
matic meaning of referring expressions as used by
human speakers, albeit in an idealized manner.

5 Future Work

We showed that implicatures arise in cooperative
contexts from nested belief models. Our listener-
centric implicatures must be combined with ratio-
nal speaker behavior (Vogel et al., 2013) to pro-
duce general dialog agents. The computational
complexity of Dec-POMDPs is prohibitive, and
our approximations can be problematic for deep
belief nesting. Future work will explore sampling-
based approaches to belief update and decision
making (Doshi and Gmytrasiewicz, 2009) to over-
come these problems. These steps will move us
closer to a computationally effective, unified the-
ory of pragmatic enrichment and decision making.
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