
Proceedings of the ACL 2010 Conference Short Papers, pages 348–352,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Hierarchical A∗ Parsing with Bridge Outside Scores

Adam Pauls and Dan Klein
Computer Science Division

University of California at Berkeley
{adpauls,klein}@cs.berkeley.edu

Abstract

Hierarchical A∗ (HA∗) uses of a hierarchy
of coarse grammars to speed up parsing
without sacrificing optimality. HA∗ pri-
oritizes search in refined grammars using
Viterbi outside costs computed in coarser
grammars. We present Bridge Hierarchi-
cal A∗ (BHA∗), a modified Hierarchial A∗

algorithm which computes a novel outside
cost called a bridge outside cost. These
bridge costs mix finer outside scores with
coarser inside scores, and thus consti-
tute tighter heuristics than entirely coarse
scores. We show that BHA∗ substan-
tially outperforms HA∗ when the hierar-
chy contains only very coarse grammars,
while achieving comparable performance
on more refined hierarchies.

1 Introduction

The Hierarchical A∗ (HA∗) algorithm of Felzen-
szwalb and McAllester (2007) allows the use of a
hierarchy of coarse grammars to speed up pars-
ing without sacrificing optimality. Pauls and
Klein (2009) showed that a hierarchy of coarse
grammars outperforms standard A∗ parsing for a
range of grammars. HA∗ operates by computing
Viterbi inside and outside scores in an agenda-
based way, using outside scores computed under
coarse grammars as heuristics which guide the
search in finer grammars. The outside scores com-
puted by HA∗ are auxiliary quantities, useful only
because they form admissible heuristics for search
in finer grammars.

We show that a modification of the HA∗ algo-
rithm can compute modified bridge outside scores
which are tighter bounds on the true outside costs
in finer grammars. These bridge outside scores
mix inside and outside costs from finer grammars
with inside costs from coarser grammars. Because
the bridge costs represent tighter estimates of the

true outside costs, we expect them to reduce the
work of computing inside costs in finer grammars.
At the same time, because bridge costs mix com-
putation from coarser and finer levels of the hier-
archy, they are more expensive to compute than
purely coarse outside costs. Whether the work
saved by using tighter estimates outweighs the ex-
tra computation needed to compute them is an em-
pirical question.

In this paper, we show that the use of bridge out-
side costs substantially outperforms the HA∗ al-
gorithm when the coarsest levels of the hierarchy
are very loose approximations of the target gram-
mar. For hierarchies with tighter estimates, we
show that BHA∗ obtains comparable performance
to HA∗. In other words, BHA∗ is more robust to
poorly constructed hierarchies.

2 Previous Work

In this section, we introduce notation and review
HA∗. Our presentation closely follows Pauls and
Klein (2009), and we refer the reader to that work
for a more detailed presentation.

2.1 Notation

Assume we have input sentence s0 . . . sn−1 of
length n, and a hierarchy of m weighted context-
free grammars G1 . . .Gm. We call the most refined
grammar Gm the target grammar, and all other
(coarser) grammars auxiliary grammars. Each
grammar Gt has a set of symbols denoted with cap-
ital letters and a subscript indicating the level in
the hierarchy, including a distinguished goal (root)
symbol Gt. Without loss of generality, we assume
Chomsky normal form, so each non-terminal rule
r in Gt has the form r = At → Bt Ct with weight
wr.

Edges are labeled spans e = (At, i, j). The
weight of a derivation is the sum of rule weights
in the derivation. The weight of the best (mini-
mum) inside derivation for an edge e is called the
Viterbi inside score β(e), and the weight of the

348



(a) (b) Gt

s0 s2 sn-1

VPt

Gt

s3 s4 s5 .. s0 s2 sn-1s3 s4 s5 ..

VPt

.. ..

Figure 1: Representations of the different types of items
used in parsing and how they depend on each other. (a)
In HA∗, the inside item I(VPt, 3, 5) relies on the coarse
outside item O(πt(VPt), 3, 5) for outside estimates. (b) In
BHA∗, the same inside item relies on the bridge outside item
Õ(VPt, 3, 5), which mixes coarse and refined outside costs.
The coarseness of an item is indicated with dotted lines.

best derivation of G → s0 . . . si−1 At sj . . . sn−1

is called the Viterbi outside score α(e). The goal
of a 1-best parsing algorithm is to compute the
Viterbi inside score of the edge (Gm, 0, n); the
actual best parse can be reconstructed from back-
pointers in the standard way.

We assume that each auxiliary grammar Gt−1

forms a relaxed projection of Gt. A grammar Gt−1

is a projection of Gt if there exists some many-
to-one onto function πt which maps each symbol
in Gt to a symbol in Gt−1; hereafter, we will use
A′t to represent πt(At). A projection is relaxed
if, for every rule r = At → Bt Ct with weight
wr the projection r′ = A′t → B′t C

′
t has weight

wr′ ≤ wr in Gt−1. In other words, the weight of r′

is a lower bound on the weight of all rules r in Gt

which project to r′.

2.2 Deduction Rules

HA∗ and our modification BHA∗ can be formu-
lated in terms of prioritized weighted deduction
rules (Shieber et al., 1995; Felzenszwalb and
McAllester, 2007). A prioritized weighted deduc-
tion rule has the form

φ1 : w1, . . . , φn : wn
p(w1,...,wn)−−−−−−−−→ φ0 : g(w1, . . . , wn)

where φ1, . . . , φn are the antecedent items of the
deduction rule and φ0 is the conclusion item. A
deduction rule states that, given the antecedents
φ1, . . . , φn with weights w1, . . . , wn, the conclu-
sion φ0 can be formed with weight g(w1, . . . , wn)
and priority p(w1, . . . , wn).

These deduction rules are “executed” within
a generic agenda-driven algorithm, which con-
structs items in a prioritized fashion. The algo-
rithm maintains an agenda (a priority queue of

items), as well as a chart of items already pro-
cessed. The fundamental operation of the algo-
rithm is to pop the highest priority item φ from
the agenda, put it into the chart with its current
weight, and form using deduction rules any items
which can be built by combining φ with items al-
ready in the chart. If new or improved, resulting
items are put on the agenda with priority given by
p(·). Because all antecedents must be constructed
before a deduction rule is executed, we sometimes
refer to particular conclusion item as “waiting” on
an other item(s) before it can be built.

2.3 HA∗

HA∗ can be formulated in terms of two types of
items. Inside items I(At, i, j) represent possible
derivations of the edge (At, i, j), while outside
items O(At, i, j) represent derivations of G →
s1 . . . si−1 At sj . . . sn rooted at (Gt, 0, n). See
Figure 1(a) for a graphical depiction of these
edges. Inside items are used to compute Viterbi in-
side scores under grammar Gt, while outside items
are used to compute Viterbi outside scores.

The deduction rules which construct inside and
outside items are given in Table 1. The IN deduc-
tion rule combines two inside items over smaller
spans with a grammar rule to form an inside item
over larger spans. The weight of the resulting item
is the sum of the weights of the smaller inside
items and the grammar rule. However, the IN rule
also requires that an outside score in the coarse
grammar1 be computed before an inside item is
built. Once constructed, this coarse outside score
is added to the weight of the conclusion item to
form the priority of the resulting item. In other
words, the coarse outside score computed by the
algorithm plays the same role as a heuristic in stan-
dard A∗ parsing (Klein and Manning, 2003).

Outside scores are computed by the OUT-L and
OUT-R deduction rules. These rules combine an
outside item over a large span and inside items
over smaller spans to form outside items over
smaller spans. Unlike the IN deduction, the OUT
deductions only involve items from the same level
of the hierarchy. That is, whereas inside scores
wait on coarse outside scores to be constructed,
outside scores wait on inside scores at the same
level in the hierarchy.

Conceptually, these deduction rules operate by

1For the coarsest grammar G1, the IN rule builds rules
using 0 as an outside score.

349



HA∗

IN: I(Bt, i, l) : w1 I(Ct, l, j) : w2 O(A′t, i, j) : w3

w1+w2+wr+w3−−−−−−−−−−→ I(At, i, j) : w1 + w2 + wr

OUT-L: O(At, i, j) : w1 I(Bt, i, l) : w2 I(Ct, l, j) : w3
w1+w3+wr+w2−−−−−−−−−−→ O(Bt, i, l) : w1 + w3 + wr

OUT-R: O(At, i, j) : w1 I(Bt, i, l) : w2 I(Ct, l, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ O(Ct, l, j) : w1 + w2 + wr

Table 1: HA∗ deduction rules. Red underline indicates items constructed under the previous grammar in the hierarchy.

BHA∗

B-IN: I(Bt, i, l) : w1 I(Ct, l, j) : w2 Õ(At, i, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ I(At, i, j) : w1 + w2 + wr

B-OUT-L: Õ(At, i, j) : w1 I(B′t, i, l) : w2 I(C′t, l, j) : w3

w1+wr+w2+w3−−−−−−−−−−→ Õ(Bt, i, l) : w1 + wr + w3

B-OUT-R: Õ(At, i, j) : w1 I(Bt, i, l) : w2 I(C′t, l, j) : w3

w1+w2+wr+w3−−−−−−−−−−→ Õ(Ct, l, j) : w1 + w2 + wr

Table 2: BHA∗ deduction rules. Red underline indicates items constructed under the previous grammar in the hierarchy.

first computing inside scores bottom-up in the
coarsest grammar, then outside scores top-down
in the same grammar, then inside scores in the
next finest grammar, and so on. However, the cru-
cial aspect of HA∗ is that items from all levels
of the hierarchy compete on the same queue, in-
terleaving the computation of inside and outside
scores at all levels. The HA∗ deduction rules come
with three important guarantees. The first is a
monotonicity guarantee: each item is popped off
the agenda in order of its intrinsic priority p̂(·).
For inside items I(e) over edge e, this priority
p̂(I(e)) = β(e) + α(e′) where e′ is the projec-
tion of e. For outside items O(·) over edge e, this
priority is p̂(O(e)) = β(e) + α(e).

The second is a correctness guarantee: when
an inside/outside item is popped of the agenda, its
weight is its true Viterbi inside/outside cost. Taken
together, these two imply an efficiency guarantee,
which states that only items x whose intrinsic pri-
ority p̂(x) is less than or equal to the Viterbi inside
score of the goal are removed from the agenda.

2.4 HA∗ with Bridge Costs

The outside scores computed by HA∗ are use-
ful for prioritizing computation in more refined
grammars. The key property of these scores is
that they form consistent and admissible heuristic
costs for more refined grammars, but coarse out-
side costs are not the only quantity which satisfy
this requirement. As an alternative, we propose
a novel “bridge” outside cost α̃(e). Intuitively,
this cost represents the cost of the best deriva-
tion where rules “above” and “left” of an edge e
come from Gt, and rules “below” and “right” of
the e come from Gt−1; see Figure 2 for a graph-
ical depiction. More formally, let the spine of
an edge e = (At, i, j) for some derivation d be

VPt

NPt
Xt-1

s1 s2 s3

Gt

s0

NNt

NPt

s4 s5

VPt

VPt

St

Xt-1Xt-1 Xt-1

NPt
Xt-1

NPt
Xt-1

sn-1

Figure 2: A concrete example of a possible bridge outside
derivation for the bridge item Õ(VPt, 1, 4). This edge is
boxed for emphasis. The spine of the derivation is shown
in bold and colored in blue. Rules from a coarser grammar
are shown with dotted lines, and colored in red. Here we have
the simple projection πt(A) = X , ∀A.

the sequence of rules between e and the root edge
(Gt, 0, n). A bridge outside derivation of e is a
derivation d of G → s1 . . . si At sj+1 . . . sn such
that every rule on or left of the spine comes from
Gt, and all other rules come from Gt−1. The score
of the best such derivation for e is the bridge out-
side cost α̃(e).

Like ordinary outside costs, bridge outside costs
form consistent and admissible estimates of the
true Viterbi outside score α(e) of an edge e. Be-
cause bridge costs mix rules from the finer and
coarser grammar, bridge costs are at least as good
an estimate of the true outside score as entirely
coarse outside costs, and will in general be much
tighter. That is, we have

α(e′) ≤ α̃(e) ≤ α(e)

In particular, note that the bridge costs become
better approximations farther right in the sentence,
and the bridge cost of the last word in the sentence
is equal to the Viterbi outside cost of that word.

To compute bridge outside costs, we introduce

350



bridge outside items Õ(At, i, j), shown graphi-
cally in Figure 1(b). The deduction rules which
build both inside items and bridge outside items
are shown in Table 2. The rules are very simi-
lar to those which define HA∗, but there are two
important differences. First, inside items wait for
bridge outside items at the same level, while out-
side items wait for inside items from the previous
level. Second, the left and right outside deductions
are no longer symmetric – bridge outside items
can extended to the left given two coarse inside
items, but can only be extended to the right given
an exact inside item on the left and coarse inside
item on the right.

2.5 Guarantees
These deduction rules come with guarantees anal-
ogous to those of HA∗. The monotonicity guaran-
tee ensures that inside and (bridge) outside items
are processed in order of:

p̂(I(e)) = β(e) + α̃(e)

p̂(Õ(e)) = α̃(e) + β(e′)

The correctness guarantee ensures that when an
item is removed from the agenda, its weight will
be equal to β(e) for inside items and α̃(e) for
bridge items. The efficiency guarantee remains the
same, though because the intrinsic priorities are
different, the set of items processed will be differ-
ent from those processed by HA∗.

A proof of these guarantees is not possible
due to space restrictions. The proof for BHA∗

follows the proof for HA∗ in Felzenszwalb and
McAllester (2007) with minor modifications. The
key property of HA∗ needed for these proofs is
that coarse outside costs form consistent and ad-
missible heuristics for inside items, and exact in-
side costs form consistent and admissible heuris-
tics for outside items. BHA∗ also has this prop-
erty, with bridge outside costs forming admissi-
ble and consistent heuristics for inside items, and
coarse inside costs forming admissible and consis-
tent heuristics for outside items.

3 Experiments

The performance of BHA∗ is determined by the
efficiency guarantee given in the previous sec-
tion. However, we cannot determine in advance
whether BHA∗ will be faster than HA∗. In fact,
BHA∗ has the potential to be slower – BHA∗

0

10

20

30

40

0-split 1-split 2-split 3-split 4-split 5-split

It
em

s 
P

u
sh

ed
 (

B
il

li
o
n
s) BHA*

HA*

Figure 3: Performance of HA∗ and BHA∗ as a function of
increasing refinement of the coarse grammar. Lower is faster.

0

2.5

5

7.5

10

3 3-5 0-5

E
d
g
es

 P
u
sh

ed
 (

b
il

li
o
n
s)

Figure 4: Performance of BHA∗ on hierarchies of varying
size. Lower is faster. Along the x-axis, we show which coarse
grammars were used in the hierarchy. For example, 3-5 in-
dicates the 3-,4-, and 5-split grammars were used as coarse
grammars.

builds both inside and bridge outside items under
the target grammar, where HA∗ only builds inside
items. It is an empirical, grammar- and hierarchy-
dependent question whether the increased tight-
ness of the outside estimates outweighs the addi-
tional cost needed to compute them. We demon-
strate empirically in this section that for hier-
archies with very loosely approximating coarse
grammars, BHA∗ can outperform HA∗, while
for hierarchies with good approximations, perfor-
mance of the two algorithms is comparable.

We performed experiments with the grammars
of Petrov et al. (2006). The training procedure for
these grammars produces a hierarchy of increas-
ingly refined grammars through state-splitting, so
a natural projection function πt is given. We used
the Berkeley Parser2 to learn such grammars from
Sections 2-21 of the Penn Treebank (Marcus et al.,
1993). We trained with 6 split-merge cycles, pro-
ducing 7 grammars. We tested these grammars on
300 sentences of length ≤ 25 of Section 23 of the
Treebank. Our “target grammar” was in all cases
the most split grammar.

2http://berkeleyparser.googlecode.com

351



In our first experiment, we construct 2-level hi-
erarchies consisting of one coarse grammar and
the target grammar. By varying the coarse gram-
mar from the 0-split (X-bar) through 5-split gram-
mars, we can investigate the performance of each
algorithm as a function of the coarseness of the
coarse grammar. We follow Pauls and Klein
(2009) in using the number of items pushed as
a machine- and implementation-independent mea-
sure of speed. In Figure 3, we show the perfor-
mance of HA∗ and BHA∗ as a function of the
total number of items pushed onto the agenda.
We see that for very coarse approximating gram-
mars, BHA∗ substantially outperforms HA∗, but
for more refined approximating grammars the per-
formance is comparable, with HA∗ slightly out-
performing BHA∗ on the 3-split grammar.

Finally, we verify that BHA∗ can benefit from
multi-level hierarchies as HA∗ can. We con-
structed two multi-level hierarchies: a 4-level hier-
archy consisting of the 3-,4-,5-, and 6- split gram-
mars, and 7-level hierarchy consisting of all gram-
mars. In Figure 4, we show the performance of
BHA∗ on these multi-level hierarchies, as well as
the best 2-level hierarchy from the previous exper-
iment. Our results echo the results of Pauls and
Klein (2009): although the addition of the rea-
sonably refined 4- and 5-split grammars produces
modest performance gains, the addition of coarser
grammars can actually hurt overall performance.

Acknowledgements

This project is funded in part by the NSF under
grant 0643742 and an NSERC Postgraduate Fel-
lowship.

References
P. Felzenszwalb and D. McAllester. 2007. The gener-

alized A* architecture. Journal of Artificial Intelli-
gence Research.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact Viterbi parse selection. In
Proceedings of the Human Language Technology
Conference and the North American Association
for Computational Linguistics (HLT-NAACL), pages
119–126.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn Treebank. In Computational Linguistics.

Adam Pauls and Dan Klein. 2009. Hierarchical search
for parsing. In Proceedings of The Annual Confer-

ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL).

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proccedings of the
Association for Computational Linguistics (ACL).

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing. Journal of Logic Programming,
24:3–36.

352


