
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 271–279,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

A Metric-based Framework for Automatic Taxonomy Induction 

 

 

Hui Yang 

Language Technologies Institute 

School of Computer Science  

Carnegie Mellon University 

huiyang@cs.cmu.edu 

Jamie Callan 

Language Technologies Institute 

School of Computer Science 

Carnegie Mellon University 

callan@cs.cmu.edu 

  

 

Abstract 

This paper presents a novel metric-based 

framework for the task of automatic taxonomy 

induction. The framework incrementally clus-

ters terms based on ontology metric, a score 

indicating semantic distance; and transforms 

the task into a multi-criteria optimization 

based on minimization of taxonomy structures 

and modeling of term abstractness. It com-

bines the strengths of both lexico-syntactic 

patterns and clustering through incorporating 

heterogeneous features. The flexible design of 

the framework allows a further study on which 

features are the best for the task under various 

conditions. The experiments not only show 

that our system achieves higher F1-measure 

than other state-of-the-art systems, but also re-

veal the interaction between features and vari-

ous types of relations, as well as the interac-

tion between features and term abstractness.  

1 Introduction 

Automatic taxonomy induction is an important 

task in the fields of Natural Language 

Processing, Knowledge Management, and Se-

mantic Web. It has been receiving increasing 

attention because semantic taxonomies, such as 

WordNet (Fellbaum, 1998), play an important 

role in solving knowledge-rich problems, includ-

ing question answering (Harabagiu et al., 2003) 

and textual entailment (Geffet and Dagan, 2005). 

Nevertheless, most existing taxonomies are ma-

nually created at great cost. These taxonomies 

are rarely complete; it is difficult to include new 

terms in them from emerging or rapidly changing 

domains. Moreover, manual taxonomy construc-

tion is time-consuming, which may make it un-

feasible for specialized domains and personalized 

tasks. Automatic taxonomy induction is a solu-

tion to augment existing resources and to pro-

duce new taxonomies for such domains and 

tasks. 

Automatic taxonomy induction can be decom-

posed into two subtasks: term extraction and re-

lation formation. Since term extraction is rela-

tively easy, relation formation becomes the focus 

of most research on automatic taxonomy induc-

tion. In this paper, we also assume that terms in a 

taxonomy are given and concentrate on the sub-

task of relation formation. 

Existing work on automatic taxonomy induc-

tion has been conducted under a variety of 

names, such as ontology learning, semantic class 

learning, semantic relation classification, and 

relation extraction. The approaches fall into two 

main categories: pattern-based and clustering-

based. Pattern-based approaches define lexical-

syntactic patterns for relations, and use these pat-

terns to discover instances of relations. Cluster-

ing-based approaches hierarchically cluster terms 

based on similarities of their meanings usually 

represented by a vector of quantifiable features. 

Pattern-based approaches are known for their 

high accuracy in recognizing instances of rela-

tions if the patterns are carefully chosen, either 

manually (Berland and Charniak, 1999; Kozare-

va et al., 2008) or via automatic bootstrapping 

(Hearst, 1992; Widdows and Dorow, 2002; Girju 

et al., 2003). The approaches, however, suffer 

from sparse coverage of patterns in a given cor-

pus. Recent studies (Etzioni et al., 2005; Kozare-

va et al., 2008) show that if the size of a corpus, 

such as the Web, is nearly unlimited, a pattern 

has a higher chance to explicitly appear in the 

corpus. However, corpus size is often not that 

large; hence the problem still exists. Moreover, 

since patterns usually extract instances in pairs, 

the approaches suffer from the problem of incon-

sistent concept chains after connecting pairs of 

instances to form taxonomy hierarchies.  

Clustering-based approaches have a main ad-

vantage that they are able to discover relations 
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which do not explicitly appear in text. They also 

avoid the problem of inconsistent chains by ad-

dressing the structure of a taxonomy globally 

from the outset. Nevertheless, it is generally be-

lieved that clustering-based approaches cannot 

generate relations as accurate as pattern-based 

approaches. Moreover, their performance is 

largely influenced by the types of features used. 

The common types of features include contextual 

(Lin, 1998), co-occurrence (Yang and Callan, 

2008), and syntactic dependency (Pantel and Lin, 

2002; Pantel and Ravichandran, 2004). So far 

there is no systematic study on which features 

are the best for automatic taxonomy induction 

under various conditions. 

This paper presents a metric-based taxonomy 

induction framework. It combines the strengths 

of both pattern-based and clustering-based ap-

proaches by incorporating lexico-syntactic pat-

terns as one type of features in a clustering 

framework. The framework integrates contex-

tual, co-occurrence, syntactic dependency, lexi-

cal-syntactic patterns, and other features to learn 

an ontology metric, a score indicating semantic 

distance, for each pair of terms in a taxonomy; it 

then incrementally clusters terms based on their 

ontology metric scores. The incremental cluster-

ing is transformed into an optimization problem 

based on two assumptions: minimum evolution 

and abstractness. The flexible design of the 

framework allows a further study of the interac-

tion between features and relations, as well as 

that between features and term abstractness. 

2 Related Work 

There has been a substantial amount of research 

on automatic taxonomy induction. As we men-

tioned earlier, two main approaches are pattern-

based and clustering-based.  

Pattern-based approaches are the main trend 

for automatic taxonomy induction. Though suf-

fering from the problems of sparse coverage and 

inconsistent chains, they are still popular due to 

their simplicity and high accuracy. They have 

been applied to extract various types of lexical 

and semantic relations, including is-a, part-of, 

sibling, synonym, causal, and many others.  

Pattern-based approaches started from and still 

pay a great deal of attention to the most common  

is-a relations. Hearst (1992) pioneered using a 

hand crafted list of hyponym patterns as seeds 

and employing bootstrapping to discover is-a 

relations. Since then, many approaches (Mann, 

2002; Etzioni et al., 2005; Snow et al., 2005) 

have used Hearst-style patterns in their work on 

is-a relations. For instance, Mann (2002) ex-

tracted is-a relations for proper nouns by Hearst-

style patterns. Pantel et al. (2004) extended is-a 

relation acquisition towards terascale, and auto-

matically identified hypernym patterns by mi-

nimal edit distance. 

Another common relation is sibling, which de-

scribes the relation of sharing similar meanings 

and being members of the same class. Terms in 

sibling relations are also known as class mem-

bers or similar terms. Inspired by the conjunction 

and appositive structures, Riloff and Shepherd 

(1997), Roark and Charniak (1998) used co-

occurrence statistics in local context to discover 

sibling relations. The KnowItAll system (Etzioni 

et al., 2005) extended the work in (Hearst, 1992) 

and bootstrapped patterns on the Web to discover 

siblings; it also ranked and selected the patterns 

by statistical measures. Widdows and Dorow 

(2002) combined symmetric patterns and graph 

link analysis to discover sibling relations. Davi-

dov and Rappoport (2006) also used symmetric 

patterns for this task. Recently, Kozareva et al. 

(2008) combined a double-anchored hyponym 

pattern with graph structure to extract siblings. 

The third common relation is part-of. Berland 

and Charniak (1999) used two meronym patterns 

to discover part-of relations, and also used statis-

tical measures to rank and select the matching 

instances. Girju et al. (2003) took a similar ap-

proach to Hearst (1992) for part-of relations. 

Other types of relations that have been studied 

by pattern-based approaches include question-

answer relations (such as birthdates and inven-

tor) (Ravichandran and Hovy, 2002), synonyms 

and antonyms (Lin et al., 2003), general purpose 

analogy (Turney et al., 2003), verb relations (in-

cluding similarity, strength, antonym, enable-

ment and temporal) (Chklovski and Pantel, 

2004), entailment (Szpektor et al., 2004), and 

more specific relations, such as purpose, creation 

(Cimiano and Wenderoth, 2007), LivesIn, and 

EmployedBy (Bunescu and Mooney , 2007).  

 The most commonly used technique in pat-

tern-based approaches is bootstrapping (Hearst, 

1992; Etzioni et al., 2005; Girju et al., 2003; Ra-

vichandran and Hovy, 2002; Pantel and Pennac-

chiotti, 2006). It utilizes a few man-crafted seed 

patterns to extract instances from corpora, then 

extracts new patterns using these instances, and 

continues the cycle to find new instances and 

new patterns. It is effective and scalable to large 

datasets; however, uncontrolled bootstrapping 
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soon generates undesired instances once a noisy 

pattern brought into the cycle. 

 To aid bootstrapping, methods of pattern 

quality control are widely applied. Statistical 

measures, such as point-wise mutual information 

(Etzioni et al., 2005; Pantel and Pennacchiotti, 

2006) and conditional probability (Cimiano and 

Wenderoth, 2007),   have been shown to be ef-

fective to rank and select patterns and instances. 

Pattern quality control is also investigated by 

using WordNet (Girju et al., 2006), graph struc-

tures built among terms (Widdows and Dorow, 

2002; Kozareva et al., 2008), and pattern clusters 

(Davidov and Rappoport, 2008). 

Clustering-based approaches usually represent 

word contexts as vectors and cluster words based 

on similarities of the vectors (Brown et al., 1992; 

Lin, 1998). Besides contextual features, the vec-

tors can also be represented by verb-noun rela-

tions (Pereira et al., 1993), syntactic dependency 

(Pantel and Ravichandran, 2004; Snow et al., 

2005), co-occurrence (Yang and Callan, 2008), 

conjunction and appositive features (Caraballo, 

1999). More work is described in (Buitelaar et 

al., 2005; Cimiano and Volker, 2005). Cluster-

ing-based approaches allow discovery of rela-

tions which do not explicitly appear in text. Pan-

tel and Pennacchiotti (2006), however, pointed 

out that clustering-based approaches generally 

fail to produce coherent cluster for small corpora. 

In addition, clustering-based approaches had on-

ly applied to solve is-a and sibling relations. 

Many clustering-based approaches face the 

challenge of appropriately labeling non-leaf clus-

ters. The labeling amplifies the difficulty in crea-

tion and evaluation of taxonomies. Agglomera-

tive clustering (Brown et al., 1992; Caraballo, 

1999; Rosenfeld and Feldman, 2007; Yang and 

Callan, 2008) iteratively merges the most similar 

clusters into bigger clusters, which need to be 

labeled. Divisive clustering, such as CBC (Clus-

tering By Committee) which constructs cluster 

centroids by averaging the feature vectors of a 

subset of carefully chosen cluster members (Pan-

tel and Lin, 2002; Pantel and Ravichandran, 

2004), also need to label the parents of split clus-

ters. In this paper, we take an incremental clus-

tering approach, in which terms and relations are 

added into a taxonomy one at a time, and their 

parents are from the existing taxonomy. The ad-

vantage of the incremental approach is that it 

eliminates the trouble of inventing cluster labels 

and concentrates on placing terms in the correct 

positions in a taxonomy hierarchy.  

The work by Snow et al. (2006) is the most 

similar to ours because they also took an incre-

mental approach to construct taxonomies. In their 

work, a taxonomy grows based on maximization 

of conditional probability of relations given evi-

dence; while in our work based on optimization 

of taxonomy structures and modeling of term 

abstractness. Moreover, our approach employs 

heterogeneous features from a wide range; while 

their approach only used syntactic dependency. 

We compare system performance between (Snow 

et al., 2006) and our framework in Section 5.  

3 The Features 

The features used in this work are indicators of 
semantic relations between terms. Given two in-
put terms yx cc , , a feature is defined as a func-
tion generating a single numeric score 

∈),( yx cch ℝ or a vector of numeric scores 
∈),( yx cch ℝ

n
. The features include contextual, 

co-occurrence, syntactic dependency, lexical-
syntactic patterns, and miscellaneous.  

The first set of features captures contextual in-

formation of terms. According to Distributional 

Hypothesis (Harris, 1954), words appearing in 

similar contexts tend to be similar. Therefore, 

word meanings can be inferred from and 

represented by contexts. Based on the hypothe-

sis, we develop the following features: (1) Glob-

al Context KL-Divergence: The global context of 

each input term is the search results collected 

through querying search engines against several 

corpora (Details in Section 5.1). It is built into a 

unigram language model without smoothing for 

each term. This feature function measures the 

Kullback-Leibler divergence (KL divergence) 

between the language models associated with the 

two inputs. (2) Local Context KL-Divergence: 

The local context is the collection of all the left 

two and the right two words surrounding an input 

term. Similarly, the local context is built into a 

unigram language model without smoothing for 

each term; the feature function outputs KL diver-

gence between the models. 

The second set of features is co-occurrence. In 

our work, co-occurrence is measured by point-

wise mutual information between two terms:  

)()(

),(
log),(

yx

yx
yx

cCountcCount

ccCount
ccpmi =  

where Count(.) is defined as the number of doc-

uments or sentences containing the term(s); or n 

as in “Results 1-10 of about n for term” appear-

ing on the first page of Google search results for 

a term or the concatenation of a term pair. Based 
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on different definitions of Count(.), we have (3) 

Document PMI, (4) Sentence PMI, and (5) 

Google PMI as the co-occurrence features. 

The third set of features employs syntactic de-

pendency analysis. We have (6) Minipar Syntac-

tic Distance to measure the average length of the 

shortest syntactic paths (in the first syntactic 

parse tree returned by Minipar
1
) between two 

terms in sentences containing them, (7) Modifier 

Overlap, (8) Object Overlap, (9) Subject Over-

lap, and (10) Verb Overlap to measure the num-

ber of overlaps between modifiers, objects, sub-

jects, and verbs, respectively, for the two terms 

in sentences containing them. We use Assert
2
 to 

label the semantic roles. 

The fourth set of features is lexical-syntactic 

patterns. We have (11) Hypernym Patterns based 

on patterns proposed by (Hearst, 1992) and 

(Snow et al., 2005), (12) Sibling Patterns which 

are basically conjunctions, and (13) Part-of Pat-

terns based on patterns proposed by (Girju et al., 

2003) and (Cimiano and Wenderoth, 2007). Ta-

ble 1 lists all patterns. Each feature function re-

turns a vector of scores for two input terms, one 

score per pattern. A score is 1 if two terms match 

a pattern in text, 0 otherwise. 

The last set of features is miscellaneous. We 

have (14) Word Length Difference to measure the 

length difference between two terms, and (15) 

Definition Overlap to measure the number of 

word overlaps between the term definitions ob-

tained by querying Google with “define:term”. 

These heterogeneous features vary from sim-

ple statistics to complicated syntactic dependen-

cy features, basic word length to comprehensive 

Web-based contextual features. The flexible de-

sign of our learning framework allows us to use 

all of them, and even allows us to use different 

sets of them under different conditions, for in-

stance, different types of relations and different 

abstraction levels. We study the interaction be-

                                                 
1 http://www.cs.ualberta.ca/lindek/minipar.htm. 
2 http://cemantix.org/assert. 

tween features and relations and that between 

features and abstractness in Section 5. 

4 The Metric-based Framework 

This section presents the metric-based frame-

work which incrementally clusters terms to form 

taxonomies. By minimizing the changes of tax-

onomy structures and modeling term abstractness 

at each step, it finds the optimal position for each 

term in a taxonomy. We first introduce defini-

tions, terminologies and assumptions about tax-

onomies; then, we formulate automatic taxono-

my induction as a multi-criterion optimization 

and solve it by a greedy algorithm; lastly, we 

show how to estimate ontology metrics.      

4.1 Taxonomies, Ontology Metric, Assump-

tions, and Information Functions 

We define a taxonomy T as a data model that 

represents a set of terms C and a set of relations 

R between these terms. T can be written as 

T(C,R). Note that for the subtask of relation for-

mation, we assume that the term set C is given. A 

full taxonomy is a tree containing all the terms in 

C. A partial taxonomy is a tree containing only a 

subset of terms in C.  

In our framework, automatic taxonomy induc-

tion is the process to construct a full taxonomy T̂

given a set of terms C and an initial partial tax-

onomy ),( 000
RST , where CS ⊆

0 . Note that T
0 

is 

possibly empty. The process starts from the ini-

tial partial taxonomy T
0
 and randomly adds terms 

from C to T
0
 one by one, until a full taxonomy is 

formed, i.e., all terms in C are added. 

Ontology Metric 

We define an ontology metric as a distance 

measure between two terms (cx,cy) in a taxonomy 

T(C,R). Formally, it is a function →× CCd : ℝ+, 

where C is the set of terms in T.  An ontology 

metric d on a taxonomy T with edge weights w 

for any term pair (cx,cy)∈C is the sum of all edge 

weights along the shortest path between the pair: 

∑
∈

=

),(

,),(

,

)(),(

yxPe

yxyxwT

yx

ewccd  

Hypernym Patterns Sibling Patterns 

NPx (,)?and/or other NPy NPx and/or NPy 

such NPy as NPx Part-of Patterns 

NPy (,)? such as NPx NPx of NPy 

NPy (,)? including NPx NPy’s NPx 

NPy (,)? especially NPx NPy has/had/have NPx 

NPy like NPx NPy is made (up)? of NPx 

NPy called NPx NPy comprises NPx 

NPx is a/an NPy NPy consists of NPx 

NPx , a/an NPy  

Table 1. Lexico-Syntactic Patterns. 

 
Figure 1. Illustration of Ontology Metric. 
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where ),( yxP  is the set of edges defining the 

shortest path from term cx to cy . Figure 1 illu-

strates ontology metrics for a 5-node taxonomy. 

Section 4.3 presents the details of learning ontol-

ogy metrics. 

Information Functions 

The amount of information in a taxonomy T is 

measured and represented by an information 

function Info(T). An information function is de-

fined as the sum of the ontology metrics among a 

set of term pairs. The function can be defined 

over a taxonomy, or on a single level of a tax-

onomy. For a taxonomy T(C,R), we define its 

information function as: 

∑
∈<

=

Cycxcyx

yx ccdTInfo

,,

),()(   (1) 

Similarly, we define the information function 

for an abstraction level Li as:  

∑
∈<

=

iLycxcyx

yxii ccdLInfo

,,

),()(   (2) 

where Li is the subset of terms lying at the i
th
 lev-

el of a taxonomy T. For example, in Figure 1, 

node 1 is at level L1, node 2 and node 5 level L2. 

Assumptions 

Given the above definitions about taxonomies, 

we make the following assumptions: 

Minimum Evolution Assumption. Inspired by 

the minimum evolution tree selection criterion 

widely used in phylogeny (Hendy and Penny, 

1985), we assume that a good taxonomy not only 

minimizes the overall semantic distance among 

the terms but also avoid dramatic changes. Con-

struction of a full taxonomy is proceeded by add-

ing terms one at a time, which yields a series of 

partial taxonomies. After adding each term, the 

current taxonomy T
n+1

 from the previous tax-

onomy T
n
 is one that introduces the least changes 

between the information in the two taxonomies: 

),(minarg '

'

1
TTInfoT

n

T

n
∆=

+  

where the information change function is 

|)()(| ),( baba
TInfoTInfoTTInfo −=∆ .  

Abstractness Assumption. In a taxonomy, con-
crete concepts usually lay at the bottom of the 
hierarchy while abstract concepts often occupy 
the intermediate and top levels. Concrete con-
cepts often represent physical entities, such as 
“basketball” and “mercury pollution”. While ab-
stract concepts, such as “science” and “econo-
my”, do not have a physical form thus we must 
imagine their existence. This obvious difference 
suggests that there is a need to treat them diffe-
rently in taxonomy induction. Hence we assume 
that terms at the same abstraction level have 

common characteristics and share the same Info(.) 
function. We also assume that terms at different 
abstraction levels have different characteristics; 
hence they do not necessarily share the same  
Info(.) function. That is to say, ,concept  Tc ∈∀

, leveln abstractio TLi ⊂  (.). uses ii InfocLc ⇒∈  

4.2 Problem Formulation 

The Minimum Evolution Objective 

Based on the minimum evolution assumption, we 

define the goal of taxonomy induction is to find 

the optimal full taxonomy T̂  such that the infor-

mation changes are the least since the initial par-

tial taxonomy T
0
, i.e., to find:  

),(minargˆ '0

'

TTInfoT

T

∆=   (3) 

where '
T  is a full taxonomy, i.e., the set of terms 

in '
T  equals C. 

To find the optimal solution for Equation (3),  

T̂ , we need to find the optimal term set Ĉ and 

the optimal relation set R̂ . Since the optimal term 

set for a full taxonomy is always C, the only un-

known part left is R̂ . Thus, Equation (3) can be 

transformed equivalently into: 
)),(),,((minargˆ 000''

'

RSTRCTInfoR

R

∆=  

Note that in the framework, terms are added 

incrementally into a taxonomy. Each term inser-

tion yields a new partial taxonomy T. By the 

minimum evolution assumption, the optimal next 

partial taxonomy is one gives the least informa-

tion change. Therefore, the updating function for 

the set of relations 1+n
R after a new term z is in-

serted can be calculated as: 

)),(),},{((minargˆ '

'

nnn

R

RSTRzSTInfoR ∪∆=

 
By plugging in the definition of the information 

change function (.,.)Info∆ in Section 4.1 and Equ-

ation (1), the updating function becomes: 

|),(),(|minargˆ

,}{,
'

∑∑
∈∪∈

−=

nSycxc

yx

znSycxc

yx

R

ccdccdR

 
The above updating function can be transformed 

into a minimization problem: 

yx

ccdccdu

ccdccdu

u

znSycxc

yx

nSycxc

yx

nSycxc

yx

znSycxc

yx

<

−≤

−≤

∑∑

∑∑

∪∈∈

∈∪∈

}{,,

,}{,

),(),(                  

),(),(    subject to

 

min

 
The minimization follows the minimum evolu-

tion assumption; hence we call it the minimum 

evolution objective. 
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The Abstractness Objective 

The abstractness assumption suggests that term 

abstractness should be modeled explicitly by 

learning separate information functions for terms 

at different abstraction levels. We approximate 

an information function by a linear interpolation 

of some underlying feature functions. Each ab-

straction level Li is characterized by its own in-

formation function Infoi(.). The least square fit of 

Infoi(.) is: .|)(|min 2
i

T
iii HWLInfo −  

By plugging Equation (2) and minimizing over 

every abstraction level, we have: 
2

,,

,

)),(),((min yxji

j

ji

i iLycxc

yx cchwccd ∑∑ ∑ −

∈

where jih , (.,.) is the j
th
 underlying feature func-

tion for term pairs at level Li, jiw , is the weight 

for jih , (.,.). This minimization follows the ab-

stractness assumption; hence we call it the ab-

stractness objective. 

The Multi-Criterion Optimization Algorithm 

We propose that both minimum evolution and 

abstractness objectives need to be satisfied. To 

optimize multiple criteria, the Pareto optimality 

needs to be satisfied (Boyd and Vandenberghe, 

2004). We handle this by introducing � � �0,1� to 

control the contribution of each objective. The 

multi-criterion optimization function is: 

yx

cchwccdv

ccdccdu

ccdccdu

vu

yxji

j

ji

i Lcc

yx

zScc

yx

Scc

yx

Scc

yx

zScc

yx

iyx

n
yx

n
yx

n
yx

n
yx

<

−=

−≤

−≤

−+

∑∑ ∑

∑∑

∑∑

∈

∪∈∈

∈∪∈

2
)),(),((                                 

),(),(                    

),(),(      subject to

)1(min

,,

,

}{,,

,}{,

λλ

The above optimization can be solved by a gree-

dy optimization algorithm. At each term insertion 

step, it produces a new partial taxonomy by add-

ing to the existing partial taxonomy a new term z, 

and a new set of relations R(z,.). z is attached to 

every nodes in the existing partial taxonomy; and 

the algorithm selects the optimal position indi-

cated by R(z,.), which minimizes the multi-

criterion objective function. The algorithm is: 

);,(

)};)1((min{arg

;

\

RST

vuRR

{z}SS

SCz

(z,.)R

Output 

            

            

 foreach

λλ −+∪→

∪→

∈

   

The above algorithm presents a general incre-

mental clustering procedure to construct taxono-

mies. By minimizing the taxonomy structure 

changes and modeling term abstractness at each 

step, it finds the optimal position of each term in 

the taxonomy hierarchy. 

4.3 Estimating Ontology Metric 

Learning a good ontology metric is important for 

the multi-criterion optimization algorithm. In this 

work, the estimation and prediction of ontology 

metric are achieved by ridge regression (Hastie et 

al., 2001). In the training data, an ontology me-

tric d(cx,cy) for a term pair (cx,cy) is generated by 

assuming every edge weight as 1 and summing 

up all the edge weights along the shortest path 

from cx to cy. We assume that there are some un-

derlying feature functions which measure the 

semantic distance from term cx to cy. A weighted 

combination of these functions approximates the 

ontology metric for (cx,cy): 

∑= ),(),( yxjjj cchwyxd  

where jw  is the j
th
 weight for ),( yxj cch , the j

th
 

feature function. The feature functions are gener-

ated as mentioned in Section 3.  

5 Experiments  

5.1 Data 

The gold standards used in the evaluation are 

hypernym taxonomies extracted from WordNet 

and ODP (Open Directory Project), and me-

ronym taxonomies extracted from WordNet. In 

WordNet taxonomy extraction, we only use the 

word senses within a particular taxonomy to en-

sure no ambiguity. In ODP taxonomy extraction, 

we parse the topic lines, such as “Topic 

r:id=`Top/Arts/Movies’”, in the XML databases 

to obtain relations, such as is_a(movies, arts). In 

total, there are 100 hypernym taxonomies, 50 

each extracted from WordNet
3
 and ODP

4
, and 50 

meronym taxonomies from WordNet
5
. Table 2  

                                                 
3 WordNet hypernym taxonomies are from 12 topics: ga-

thering, professional, people, building, place, milk, meal, 

water, beverage, alcohol, dish, and herb. 
4 ODP hypernym taxonomies are from 16 topics: computers, 

robotics, intranet, mobile computing, database, operating 

system, linux, tex, software, computer science, data commu-

nication, algorithms, data formats, security multimedia, and 

artificial intelligence. 
5 WordNet meronym taxonomies are from 15 topics: bed, 

car, building, lamp, earth, television, body, drama, theatre, 

water, airplane, piano, book, computer, and watch. 

Statistics WN/is-a ODP/is-a WN/part-of 

#taxonomies 50 50 50 

#terms 1,964 2,210 1,812 

Avg #terms 39 44 37 

Avg depth 6 6 5 

Table 2. Data Statistics. 

 

276



summarizes the data statistics. 

We also use two Web-based auxiliary datasets 

to generate features mentioned in Section 3: 

• Wikipedia corpus. The entire Wikipedia corpus 

is downloaded and indexed by Indri
6
. The top 

100 documents returned by Indri are the global 

context of a term when querying with the term.  

• Google corpus. A collection of the top 1000 

documents by querying Google using each 

term, and each term pair. Each top 1000 docu-

ments are the global context of a query term. 

Both corpora are split into sentences and are used 

to generate contextual, co-occurrence, syntactic 

dependency and lexico-syntactic pattern features.  

5.2 Methodology 

We evaluate the quality of automatic generated 

taxonomies by comparing them with the gold 

standards in terms of precision, recall and F1-

measure. F1-measure is calculated as 2*P*R/ 

(P+R), where P is precision, the percentage of 

correctly returned relations out of the total re-

turned relations, R is recall, the percentage of 

correctly returned relations out of the total rela-

tions in the gold standard. 

Leave-one-out cross validation is used to aver-

age the system performance across different 

training and test datasets. For each 50 datasets 

from WordNet hypernyms, WordNet meronyms 

or ODP hypernyms, we randomly pick 49 of 

them to generate training data, and test on the 

remaining dataset. We repeat the process for 50 

times, with different training and test sets at each 

                                                 
6 http://www.lemurproject.org/indri/. 

time, and report the averaged precision, recall 

and F1-measure across all 50 runs. 

We also group the fifteen features in Section 3 

into six sets: contextual, co-concurrence, pat-

terns, syntactic dependency, word length differ-

ence and definition. Each set is turned on one by 

one for experiments in Section 5.4 and 5.5. 

5.3 Performance of Taxonomy Induction 

In this section, we compare the following auto-

matic taxonomy induction systems: HE, the sys-

tem by Hearst (1992) with 6 hypernym patterns; 

GI, the system by Girju et al. (2003) with 3 me-

ronym patterns; PR, the probabilistic framework 

by Snow et al. (2006); and ME, the metric-based 

framework proposed in this paper. To have a fair 

comparison, for PR, we estimate the conditional 

probability of a relation given the evidence 

P(Rij|Eij), as in (Snow et al. 2006), by using the 

same set of features as in ME. 

Table 3 shows precision, recall, and F1-

measure of each system for WordNet hypernyms 

(is-a), WordNet meronyms (part-of) and ODP 

hypernyms (is-a). Bold font indicates the best 

performance in a column. Note that HE is not 

applicable to part-of, so is GI to is-a. 

Table 3 shows that systems using heterogene-

ous features (PR and ME) achieve higher F1-

measure than systems only using patterns (HE 

and GI) with a significant absolute gain of >30%. 

Generally speaking, pattern-based systems show 

higher precision and lower recall, while systems 

using heterogeneous features show lower preci-

sion and higher recall. However, when consider-

ing both precision and recall, using heterogene-

ous features is more effective than just using pat-

terns. The proposed system ME consistently pro-

duces the best F1-measure for all three tasks.  
The performance of the systems for ODP/is-a 

is worse than that for WordNet/is-a. This may be 
because there is more noise in ODP than in 

WordNet/is-a 

System Precision Recall F1-measure 

HE 0.85 0.32 0.46 

GI n/a n/a n/a 

PR 0.75 0.73 0.74 

ME 0.82 0.79 0.82 

ODP/is-a 

System Precision Recall F1-measure 

HE 0.31 0.29 0.30 

GI n/a n/a n/a 

PR 0.60 0.72 0.65 

ME 0.64 0.70 0.67 

WordNet/part-of 

System Precision Recall F1-measure 

HE n/a n/a n/a 

GI 0.75 0.25 0.38 

PR 0.68 0.52 0.59 

ME 0.69 0.55 0.61 

Table 3. System Performance. 

Feature  is-a sibling part-

of 

Benefited 

Relations  

Contextual 0.21 0.42 0.12 sibling 

Co-occur. 0.48 0.41 0.28 All 

Patterns 0.46 0.41 0.30 All 

Syntactic 0.22 0.36 0.12 sibling 

Word Leng. 0.16 0.16 0.15 All but 

limited 

Definition 0.12 0.18 0.10 Sibling but 

limited 

Best Features Co-

occur., 

patterns  

Contextual, 

co-occur., 

patterns 

Co-

occur., 

patterns 

 

Table 4. F1-measure for Features vs. Relations: WordNet. 
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WordNet. For example, under artificial intelli-
gence, ODP has neural networks, natural lan-
guage and academic departments. Clearly, aca-
demic departments is not a hyponym of artificial 
intelligence. The noise in ODP interferes with 
the learning process, thus hurts the performance. 

5.4 Features vs. Relations 

This section studies the impact of different sets 
of features on different types of relations. Table 4 
shows F1-measure of using each set of features 
alone on taxonomy induction for WordNet is-a, 
sibling, and part-of relations. Bold font means a 
feature set gives a major contribution to the task 
of automatic taxonomy induction for a particular 
type of relation. 

Table 4 shows that different relations favor 
different sets of features.  Both co-occurrence 
and lexico-syntactic patterns work well for all 
three types of relations. It is interesting to see 
that simple co-occurrence statistics work as good 
as lexico-syntactic patterns. Contextual features 
work well for sibling relations, but not for is-a 
and part-of. Syntactic features also work well for 
sibling, but not for is-a and part-of. The similar 
behavior of contextual and syntactic features 
may be because that four out of five syntactic 
features (Modifier, Subject, Object, and Verb 
overlaps) are just surrounding context for a term. 

Comparing the is-a and part-of columns in 
Table 4 and the ME rows in Table 3, we notice a 
significant difference in F1-measure. It indicates 
that combination of heterogeneous features gives 
more rise to the system performance than a sin-
gle set of features does. 

5.5 Features vs. Abstractness 

This section studies the impact of different sets 
of features on terms at different abstraction le-

vels. In the experiments, F1-measure is evaluated 
for terms at each level of a taxonomy, not the 
whole taxonomy. Table 5 and 6 demonstrate F1-
measure of using each set of features alone on 
each abstraction levels. Columns 2-6 are indices 
of the levels in a taxonomy. The larger the indic-
es are, the lower the levels. Higher levels contain 
abstract terms, while lower levels contain con-
crete terms. L1 is ignored here since it only con-
tains a single term, the root. Bold font indicates 
good performance in a column. 

Both tables show that abstract terms and con-
crete terms favor different sets of features. In 
particular, contextual, co-occurrence, pattern, 
and syntactic features work well for terms at L4-
L6, i.e., concrete terms; co-occurrence works well 
for terms at L2-L3, i.e., abstract terms. This differ-
ence indicates that terms at different abstraction 
levels have different characteristics; it confirms 
our abstractness assumption in Section 4.1.  

We also observe that for abstract terms in 
WordNet, patterns work better than contextual 
features; while for abstract terms in ODP, the 
conclusion is the opposite. This may be because 
that WordNet has a richer vocabulary and a more 
rigid definition of hypernyms, and hence is-a 
relations in WordNet are recognized more effec-
tively by using lexico-syntactic patterns; while 
ODP contains more noise, and hence it favors 
features requiring less rigidity, such as the con-
textual features generated from the Web. 

6 Conclusions  

This paper presents a novel metric-based tax-
onomy induction framework combining the 
strengths of lexico-syntactic patterns and cluster-
ing. The framework incrementally clusters terms 
and transforms automatic taxonomy induction 
into a multi-criteria optimization based on mini-
mization of taxonomy structures and modeling of 
term abstractness. The experiments show that our 
framework is effective; it achieves higher F1-
measure than three state-of-the-art systems. The 
paper also studies which features are the best for 
different types of relations and for terms at dif-
ferent abstraction levels.  

Most prior work uses a single rule or feature 
function for automatic taxonomy induction at all 
levels of abstraction. Our work is a more general 
framework which allows a wider range of fea-
tures and different metric functions at different 
abstraction levels.  This more general framework 
has the potential to learn more complex taxono-
mies than previous approaches. 
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Feature  L2 L3 L4 L5 L6 

Contextual 0.29 0.31 0.35 0.36 0.36 

Co-occurrence 0.47 0.56 0.45 0.41 0.41 

Patterns 0.47 0.44 0.42 0.39 0.40 

Syntactic 0.31 0.28 0.36 0.38 0.39 

Word Length 0.16 0.16 0.16 0.16 0.16 

Definition 0.12 0.12 0.12 0.12 0.12 

Table 5. F1-measure for Features vs. Abstractness: 

WordNet/is-a. 

Feature  L2 L3 L4 L5 L6 

Contextual 0.30 0.30 0.33 0.29 0.29 

Co-occurrence 0.34 0.36 0.34 0.31 0.31 

Patterns 0.23 0.25 0.30 0.28 0.28 

Syntactic 0.18 0.18 0.23 0.27 0.27 

Word Length 0.15 0.15 0.15 0.14 0.14 

Definition 0.13 0.13 0.13 0.12 0.12 

Table 6. F1-measure for Features vs. Abstractness: 

ODP/is-a. 
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