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Abstract

We present a method for learning bilingual
translation lexicons from monolingual cor-
pora. Word types in each language are charac-
terized by purely monolingual features, such
as context counts and orthographic substrings.
Translations are induced using a generative
model based on canonical correlation analy-
sis, which explains the monolingual lexicons
in terms of latent matchings. We show that
high-precision lexicons can be learned in a va-
riety of language pairs and from a range of
corpus types.

1 Introduction

Current statistical machine translation systems use
parallel corpora to induce translation correspon-
dences, whether those correspondences be at the
level of phrases (Koehn, 2004), treelets (Galley et
al., 2006), or simply single words (Brown et al.,
1994). Although parallel text is plentiful for some
language pairs such as English-Chinese or English-
Arabic, it is scarce or even non-existent for most
others, such as English-Hindi or French-Japanese.
Moreover, parallel text could be scarce for a lan-
guage pair even if monolingual data is readily avail-
able for both languages.

In this paper, we consider the problem of learning
translations from monolingual sources alone. This
task, though clearly more difficult than the standard
parallel text approach, can operate on language pairs
and in domains where standard approaches cannot.
We take as input two monolingual corpora and per-
haps some seed translations, and we produce as out-
put a bilingual lexicon, defined as a list of word

pairs deemed to be word-level translations. Preci-
sion and recall are then measured over these bilin-
gual lexicons. This setting has been considered be-
fore, most notably in Koehn and Knight (2002) and
Fung (1995), but the current paper is the first to use
a probabilistic model and present results across a va-
riety of language pairs and data conditions.

In our method, we represent each language as a
monolingual lexicon (see figure 2): a list of word
types characterized by monolingual feature vectors,
such as context counts, orthographic substrings, and
so on (section 5). We define a generative model over
(1) a source lexicon, (2) a target lexicon, and (3) a
matching between them (section 2). Our model is
based on canonical correlation analysis (CCA)1 and
explains matched word pairs via vectors in a com-
mon latent space. Inference in the model is done
using an EM-style algorithm (section 3).

Somewhat surprisingly, we show that it is pos-
sible to learn or extend a translation lexicon us-
ing monolingual corpora alone, in a variety of lan-
guages and using a variety of corpora, even in the
absence of orthographic features. As might be ex-
pected, the task is harder when no seed lexicon is
provided, when the languages are strongly diver-
gent, or when the monolingual corpora are from dif-
ferent domains. Nonetheless, even in the more diffi-
cult cases, a sizable set of high-precision translations
can be extracted. As an example of the performance
of the system, in English-Spanish induction with our
best feature set, using corpora derived from topically
similar but non-parallel sources, the system obtains
89.0% precision at 33% recall.

1See Hardoon et al. (2003) for an overview.
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Figure 1: Bilingual lexicon induction: source word types
s are listed on the left and target word types t on the
right. Dashed lines between nodes indicate translation
pairs which are in the matching m.

2 Bilingual Lexicon Induction

As input, we are given a monolingual corpus S (a
sequence of word tokens) in a source language and
a monolingual corpus T in a target language. Let
s = (s1, . . . , snS ) denote nS word types appearing
in the source language, and t = (t1, . . . , tnT ) denote
word types in the target language. Based on S and
T , our goal is to output a matching m between s
and t. We represent m as a set of integer pairs so
that (i, j) ∈m if and only if si is matched with tj .

2.1 Generative Model

We propose the following generative model over
matchings m and word types (s, t), which we call
matching canonical correlation analysis (MCCA).

MCCA model

m ∼ MATCHING-PRIOR [matching m]
For each matched edge (i, j) ∈m:
−zi,j ∼ N (0, Id) [latent concept]
−fS(si) ∼ N (WSzi,j ,ΨS) [source features]
−fT (ti) ∼ N (WT zi,j ,ΨT ) [target features]
For each unmatched source word type i:
−fS(si) ∼ N (0, σ2IdS

) [source features]
For each unmatched target word type j:
−fT (tj) ∼ N (0, σ2IdT

) [target features]

First, we generate a matching m ∈M, whereM
is the set of matchings in which each word type is

matched to at most one other word type.2 We take
MATCHING-PRIOR to be uniform overM.3

Then, for each matched pair of word types (i, j) ∈
m, we need to generate the observed feature vectors
of the source and target word types, fS(si) ∈ RdS

and fT (tj) ∈ RdT . The feature vector of each word
type is computed from the appropriate monolin-
gual corpus and summarizes the word’s monolingual
characteristics; see section 5 for details and figure 2
for an illustration. Since si and tj are translations of
each other, we expect fS(si) and fT (tj) to be con-
nected somehow by the generative process. In our
model, they are related through a vector zi,j ∈ Rd

representing the shared, language-independent con-
cept.

Specifically, to generate the feature vectors, we
first generate a random concept zi,j ∼ N (0, Id),
where Id is the d × d identity matrix. The source
feature vector fS(si) is drawn from a multivari-
ate Gaussian with mean WSzi,j and covariance ΨS ,
where WS is a dS × d matrix which transforms the
language-independent concept zi,j into a language-
dependent vector in the source space. The arbitrary
covariance parameter ΨS � 0 explains the source-
specific variations which are not captured by WS ; it
does not play an explicit role in inference. The target
fT (tj) is generated analogously using WT and ΨT ,
conditionally independent of the source given zi,j
(see figure 2). For each of the remaining unmatched
source word types si which have not yet been gen-
erated, we draw the word type features from a base-
line normal distribution with variance σ2IdS

, with
hyperparameter σ2 � 0; unmatched target words
are similarly generated.

If two word types are truly translations, it will be
better to relate their feature vectors through the la-
tent space than to explain them independently via
the baseline distribution. However, if a source word
type is not a translation of any of the target word
types, we can just generate it independently without
requiring it to participate in the matching.

2Our choice ofM permits unmatched word types, but does
not allow words to have multiple translations. This setting facil-
itates comparison to previous work and admits simpler models.

3However, non-uniform priors could encode useful informa-
tion, such as rank similarities.
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Figure 2: Illustration of our MCCA model. Each latent concept zi,j originates in the canonical space. The observed
word vectors in the source and target spaces are generated independently given this concept.

3 Inference

Given our probabilistic model, we would like to
maximize the log-likelihood of the observed data
(s, t):

`(θ) = log p(s, t; θ) = log
∑
m

p(m, s, t; θ)

with respect to the model parameters θ =
(WS ,WT ,ΨS ,ΨT ).

We use the hard (Viterbi) EM algorithm as a start-
ing point, but due to modeling and computational
considerations, we make several important modifi-
cations, which we describe later. The general form
of our algorithm is as follows:

Summary of learning algorithm

E-step: Find the maximum weighted (partial) bi-
partite matching m ∈M
M-step: Find the best parameters θ by performing
canonical correlation analysis (CCA)

M-step Given a matching m, the M-step opti-
mizes log p(m, s, t; θ) with respect to θ, which can
be rewritten as

max
θ

∑
(i,j)∈m

log p(si, tj ; θ). (1)

This objective corresponds exactly to maximizing
the likelihood of the probabilistic CCA model pre-
sented in Bach and Jordan (2006), which proved
that the maximum likelihood estimate can be com-
puted by canonical correlation analysis (CCA). In-
tuitively, CCA finds d-dimensional subspaces US ∈

RdS×d of the source and UT ∈ RdT×d of the tar-
get such that the components of the projections
U>S fS(si) and U>T fT (tj) are maximally correlated.4

US and UT can be found by solving an eigenvalue
problem (see Hardoon et al. (2003) for details).
Then the maximum likelihood estimates are as fol-
lows: WS = CSSUSP

1/2, WT = CTTUTP
1/2,

ΨS = CSS −WSW
>
S , and ΨT = CTT −WTW

>
T ,

where P is a d× d diagonal matrix of the canonical
correlations, CSS = 1

|m|
∑

(i,j)∈m fS(si)fS(si)> is
the empirical covariance matrix in the source do-
main, and CTT is defined analogously.

E-step To perform a conventional E-step, we
would need to compute the posterior over all match-
ings, which is #P-complete (Valiant, 1979). On the
other hand, hard EM only requires us to compute the
best matching under the current model:5

m = argmax
m′

log p(m′, s, t; θ). (2)

We cast this optimization as a maximum weighted
bipartite matching problem as follows. Define the
edge weight between source word type i and target
word type j to be

wi,j = log p(si, tj ; θ) (3)

− log p(si; θ)− log p(tj ; θ),
4Since dS and dT can be quite large in practice and of-

ten greater than |m|, we use Cholesky decomposition to re-
represent the feature vectors as |m|-dimensional vectors with
the same dot products, which is all that CCA depends on.

5If we wanted softer estimates, we could use the agreement-
based learning framework of Liang et al. (2008) to combine two
tractable models.
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which can be loosely viewed as a pointwise mutual
information quantity. We can check that the ob-
jective log p(m, s, t; θ) is equal to the weight of a
matching plus some constant C:

log p(m, s, t; θ) =
∑

(i,j)∈m

wi,j + C. (4)

To find the optimal partial matching, edges with
weight wi,j < 0 are set to zero in the graph and the
optimal full matching is computed inO((nS+nT )3)
time using the Hungarian algorithm (Kuhn, 1955). If
a zero edge is present in the solution, we remove the
involved word types from the matching.6

Bootstrapping Recall that the E-step produces a
partial matching of the word types. If too few
word types are matched, learning will not progress
quickly; if too many are matched, the model will be
swamped with noise. We found that it was helpful
to explicitly control the number of edges. Thus, we
adopt a bootstrapping-style approach that only per-
mits high confidence edges at first, and then slowly
permits more over time. In particular, we compute
the optimal full matching, but only retain the high-
est weighted edges. As we run EM, we gradually
increase the number of edges to retain.

In our context, bootstrapping has a similar moti-
vation to the annealing approach of Smith and Eisner
(2006), which also tries to alter the space of hidden
outputs in the E-step over time to facilitate learn-
ing in the M-step, though of course the use of boot-
strapping in general is quite widespread (Yarowsky,
1995).

4 Experimental Setup

In section 5, we present developmental experiments
in English-Spanish lexicon induction; experiments

6Empirically, we obtained much better efficiency and even
increased accuracy by replacing these marginal likelihood
weights with a simple proxy, the distances between the words’
mean latent concepts:

wi,j = A− ||z∗i − z∗j ||2, (5)

where A is a thresholding constant, z∗i = E(zi,j | fS(si)) =
P 1/2U>S fS(si), and z∗j is defined analogously. The increased
accuracy may not be an accident: whether two words are trans-
lations is perhaps better characterized directly by how close
their latent concepts are, whereas log-probability is more sensi-
tive to perturbations in the source and target spaces.

are presented for other languages in section 6. In
this section, we describe the data and experimental
methodology used throughout this work.

4.1 Data

Each experiment requires a source and target mono-
lingual corpus. We use the following corpora:

• EN-ES-W: 3,851 Wikipedia articles with both
English and Spanish bodies (generally not di-
rect translations).

• EN-ES-P: 1st 100k sentences of text from the
parallel English and Spanish Europarl corpus
(Koehn, 2005).

• EN-ES(FR)-D: English: 1st 50k sentences of
Europarl; Spanish (French): 2nd 50k sentences
of Europarl.7

• EN-CH-D: English: 1st 50k sentences of Xin-
hua parallel news corpora;8 Chinese: 2nd 50k
sentences.

• EN-AR-D: English: 1st 50k sentences of 1994
proceedings of UN parallel corpora;9 Ara-
bic: 2nd 50k sentences.

• EN-ES-G: English: 100k sentences of English
Gigaword; Spanish: 100k sentences of Spanish
Gigaword.10

Note that even when corpora are derived from par-
allel sources, no explicit use is ever made of docu-
ment or sentence-level alignments. In particular, our
method is robust to permutations of the sentences in
the corpora.

4.2 Lexicon

Each experiment requires a lexicon for evaluation.
Following Koehn and Knight (2002), we consider
lexicons over only noun word types, although this
is not a fundamental limitation of our model. We
consider a word type to be a noun if its most com-
mon tag is a noun in our monolingual corpus.11 For

7Note that the although the corpora here are derived from a
parallel corpus, there are no parallel sentences.

8LDC catalog # 2002E18.
9LDC catalog # 2004E13.

10These corpora contain no parallel sentences.
11We use the Tree Tagger (Schmid, 1994) for all POS tagging

except for Arabic, where we use the tagger described in Diab et
al. (2004).
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Figure 3: Example precision/recall curve of our system
on EN-ES-P and EN-ES-W settings. See section 6.1.

all languages pairs except English-Arabic, we ex-
tract evaluation lexicons from the Wiktionary on-
line dictionary. As we discuss in section 7, our ex-
tracted lexicons have low coverage, particularly for
proper nouns, and thus all performance measures are
(sometimes substantially) pessimistic. For English-
Arabic, we extract a lexicon from 100k parallel sen-
tences of UN parallel corpora by running the HMM
intersected alignment model (Liang et al., 2008),
adding (s, t) to the lexicon if s was aligned to t at
least three times and more than any other word.

Also, as in Koehn and Knight (2002), we make
use of a seed lexicon, which consists of a small, and
perhaps incorrect, set of initial translation pairs. We
used two methods to derive a seed lexicon. The
first is to use the evaluation lexicon Le and select
the hundred most common noun word types in the
source corpus which have translations in Le. The
second method is to heuristically induce, where ap-
plicable, a seed lexicon using edit distance, as is
done in Koehn and Knight (2002). Section 6.2 com-
pares the performance of these two methods.

4.3 Evaluation

We evaluate a proposed lexicon Lp against the eval-
uation lexicon Le using the F1 measure in the stan-
dard fashion; precision is given by the number of
proposed translations contained in the evaluation
lexicon, and recall is given by the fraction of pos-
sible translation pairs proposed.12 Since our model

12We should note that precision is not penalized for (s, t) if
s does not have a translation in Le, and recall is not penalized
for failing to recover multiple translations of s.

Setting p0.1 p0.25 p0.33 p0.50 Best-F1

EDITDIST 58.6 62.6 61.1 —- 47.4
ORTHO 76.0 81.3 80.1 52.3 55.0

CONTEXT 91.1 81.3 80.2 65.3 58.0
MCCA 87.2 89.7 89.0 89.7 72.0

Table 1: Performance of EDITDIST and our model with
various features sets on EN-ES-W. See section 5.

naturally produces lexicons in which each entry is
associated with a weight based on the model, we can
give a full precision/recall curve (see figure 3). We
summarize these curves with both the best F1 over
all possible thresholds and various precisions px at
recalls x. All reported numbers exclude evaluation
on the seed lexicon entries, regardless of how those
seeds are derived or whether they are correct.

In all experiments, unless noted otherwise, we
used a seed of size 100 obtained from Le and
considered lexicons between the top n = 2, 000
most frequent source and target noun word types
which were not in the seed lexicon; each system
proposed an already-ranked one-to-one translation
lexicon amongst these n words. Where applica-
ble, we compare against the EDITDIST baseline,
which solves a maximum bipartite matching prob-
lem where edge weights are normalized edit dis-
tances. We will use MCCA (for matching CCA) to
denote our model using the optimal feature set (see
section 5.3).

5 Features

In this section, we explore feature representations of
word types in our model. Recall that fS(·) and fT (·)
map source and target word types to vectors in RdS

and RdT , respectively (see section 2). The features
used in each representation are defined identically
and derived only from the appropriate monolingual
corpora. For a concrete example of a word type to
feature vector mapping, see figure 2.

5.1 Orthographic Features

For closely related languages, such as English and
Spanish, translation pairs often share many ortho-
graphic features. One direct way to capture ortho-
graphic similarity between word pairs is edit dis-
tance. Running EDITDIST (see section 4.3) on EN-
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ES-W yielded 61.1 p0.33, but precision quickly de-
grades for higher recall levels (see EDITDIST in ta-
ble 1). Nevertheless, when available, orthographic
clues are strong indicators of translation pairs.

We can represent orthographic features of a word
type w by assigning a feature to each substring of
length ≤ 3. Note that MCCA can learn regular or-
thographic correspondences between source and tar-
get words, which is something edit distance cannot
capture (see table 5). Indeed, running our MCCA
model with only orthographic features on EN-ES-
W, labeled ORTHO in table 1, yielded 80.1 p0.33, a
31% error-reduction over EDITDIST in p0.33.

5.2 Context Features
While orthographic features are clearly effective for
historically related language pairs, they are more
limited for other language pairs, where we need to
appeal to other clues. One non-orthographic clue
that word types s and t form a translation pair is
that there is a strong correlation between the source
words used with s and the target words used with t.
To capture this information, we define context fea-
tures for each word type w, consisting of counts of
nouns which occur within a window of size 4 around
w. Consider the translation pair (time, tiempo)
illustrated in figure 2. As we become more con-
fident about other translation pairs which have ac-
tive period and periodico context features, we
learn that translation pairs tend to jointly generate
these features, which leads us to believe that time
and tiempo might be generated by a common un-
derlying concept vector (see section 2).13

Using context features alone on EN-ES-W, our
MCCA model (labeled CONTEXT in table 1) yielded
a 80.2 p0.33. It is perhaps surprising that context fea-
tures alone, without orthographic information, can
yield a best-F1comparable to EDITDIST.

5.3 Combining Features
We can of course combine context and orthographic
features. Doing so yielded 89.03 p0.33 (labeled
MCCA in table 1); this represents a 46.4% error re-
duction in p0.33 over the EDITDIST baseline. For the
remainder of this work, we will use MCCA to refer

13It is important to emphasize, however, that our current
model does not directly relate a word type’s role as a partici-
pant in the matching to that word’s role as a context feature.

(a) Corpus Variation

Setting p0.1 p0.25 p0.33 p0.50 Best-F1

EN-ES-G 75.0 71.2 68.3 —- 49.0
EN-ES-W 87.2 89.7 89.0 89.7 72.0
EN-ES-D 91.4 94.3 92.3 89.7 63.7
EN-ES-P 97.3 94.8 93.8 92.9 77.0

(b) Seed Lexicon Variation
Corpus p0.1 p0.25 p0.33 p0.50 Best-F1

EDITDIST 58.6 62.6 61.1 — 47.4
MCCA 91.4 94.3 92.3 89.7 63.7

MCCA-AUTO 91.2 90.5 91.8 77.5 61.7

(c) Language Variation

Languages p0.1 p0.25 p0.33 p0.50 Best-F1

EN-ES 91.4 94.3 92.3 89.7 63.7
EN-FR 94.5 89.1 88.3 78.6 61.9
EN-CH 60.1 39.3 26.8 —- 30.8
EN-AR 70.0 50.0 31.1 —- 33.1

Table 2: (a) varying type of corpora used on system per-
formance (section 6.1), (b) using a heuristically chosen
seed compared to one taken from the evaluation lexicon
(section 6.2), (c) a variety of language pairs (see sec-
tion 6.3).

to our model using both orthographic and context
features.

6 Experiments

In this section we examine how system performance
varies when crucial elements are altered.

6.1 Corpus Variation

There are many sources from which we can derive
monolingual corpora, and MCCA performance de-
pends on the degree of similarity between corpora.
We explored the following levels of relationships be-
tween corpora, roughly in order of closest to most
distant:

• Same Sentences: EN-ES-P

• Non-Parallel Similar Content: EN-ES-W

• Distinct Sentences, Same Domain: EN-ES-D

• Unrelated Corpora: EN-ES-G

Our results for all conditions are presented in ta-
ble 2(a). The predominant trend is that system per-
formance degraded when the corpora diverged in
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content, presumably due to context features becom-
ing less informative. However, it is notable that even
in the most extreme case of disjoint corpora from
different time periods and topics (e.g. EN-ES-G),
we are still able to recover lexicons of reasonable
accuracy.

6.2 Seed Lexicon Variation
All of our experiments so far have exploited a small
seed lexicon which has been derived from the eval-
uation lexicon (see section 4.3). In order to explore
system robustness to heuristically chosen seed lexi-
cons, we automatically extracted a seed lexicon sim-
ilarly to Koehn and Knight (2002): we ran EDIT-
DIST on EN-ES-D and took the top 100 most con-
fident translation pairs. Using this automatically de-
rived seed lexicon, we ran our system on EN-ES-
D as before, evaluating on the top 2,000 noun word
types not included in the automatic lexicon.14 Us-
ing the automated seed lexicon, and still evaluat-
ing against our Wiktionary lexicon, MCCA-AUTO

yielded 91.8 p0.33 (see table 2(b)), indicating that
our system can produce lexicons of comparable ac-
curacy with a heuristically chosen seed. We should
note that this performance represents no knowledge
given to the system in the form of gold seed lexicon
entries.

6.3 Language Variation
We also explored how system performance varies
for language pairs other than English-Spanish. On
English-French, for the disjoint EN-FR-D corpus
(described in section 4.1), MCCA yielded 88.3 p0.33

(see table 2(c) for more performance measures).
This verified that our model can work for another
closely related language-pair on which no model de-
velopment was performed.

One concern is how our system performs on lan-
guage pairs where orthographic features are less ap-
plicable. Results on disjoint English-Chinese and
English-Arabic are given as EN-CH-D and EN-AR
in table 2(c), both using only context features. In
these cases, MCCA yielded much lower precisions
of 26.8 and 31.0 p0.33, respectively. For both lan-
guages, performance degraded compared to EN-ES-

14Note that the 2,000 words evaluated here were not identical
to the words tested on when the seed lexicon is derived from the
evaluation lexicon.

(a) English-Spanish

Rank Source Target Correct

1. education educación Y

2. pacto pact Y

3. stability estabilidad Y

6. corruption corrupción Y

7. tourism turismo Y

9. organisation organización Y

10. convenience conveniencia Y

11. syria siria Y

12. cooperation cooperación Y

14. culture cultura Y

21. protocol protocolo Y

23. north norte Y

24. health salud Y

25. action reacción N

(b) English-French

Rank Source Target Correct

3. xenophobia xénophobie Y

4. corruption corruption Y

5. subsidiarity subsidiarité Y

6. programme programme-cadre N

8. traceability traçabilité Y

(c) English-Chinese

Rank Source Target Correct

1. prices !" Y

2. network #$ Y

3. population %& Y

4. reporter ' N

5. oil () Y

Table 3: Sample output from our (a) Spanish, (b) French,
and (c) Chinese systems. We present the highest con-
fidence system predictions, where the only editing done
is to ignore predictions which consist of identical source
and target words.

D and EN-FR-D, presumably due in part to the
lack of orthographic features. However, MCCA still
achieved surprising precision at lower recall levels.
For instance, at p0.1, MCCA yielded 60.1 and 70.0
on Chinese and Arabic, respectively. Figure 3 shows
the highest-confidence outputs in several languages.

6.4 Comparison To Previous Work

There has been previous work in extracting trans-
lation pairs from non-parallel corpora (Rapp, 1995;
Fung, 1995; Koehn and Knight, 2002), but gener-
ally not in as extreme a setting as the one consid-
ered here. Due to unavailability of data and speci-
ficity in experimental conditions and evaluations, it
is not possible to perform exact comparisons. How-
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(a) Example Non-Cognate Pairs

health salud
traceability rastreabilidad

youth juventud
report informe

advantages ventajas

(b) Interesting Incorrect Pairs

liberal partido
Kirkhope Gorsel
action reacción

Albanians Bosnia
a.m. horas

Netherlands Bretaña

Table 4: System analysis on EN-ES-W: (a) non-cognate
pairs proposed by our system, (b) hand-selected represen-
tative errors.

(a) Orthographic Feature

Source Feat. Closest Target Feats. Example Translation
#st #es, est (statue, estatua)
ty# ad#, d# (felicity, felicidad)
ogy gı́a, gı́ (geology, geologı́a)

(b) Context Feature

Source Feat. Closest Context Features
party partido, izquierda

democrat socialistas, demócratas
beijing pekı́n, kioto

Table 5: Hand selected examples of source and target fea-
tures which are close in canonical space: (a) orthographic
feature correspondences, (b) context features.

ever, we attempted to run an experiment as similar
as possible in setup to Koehn and Knight (2002), us-
ing English Gigaword and German Europarl. In this
setting, our MCCA system yielded 61.7% accuracy
on the 186 most confident predictions compared to
39% reported in Koehn and Knight (2002).

7 Analysis

We have presented a novel generative model for
bilingual lexicon induction and presented results un-
der a variety of data conditions (section 6.1) and lan-
guages (section 6.3) showing that our system can
produce accurate lexicons even in highly adverse
conditions. In this section, we broadly characterize
and analyze the behavior of our system.

We manually examined the top 100 errors in the

English-Spanish lexicon produced by our system
on EN-ES-W. Of the top 100 errors: 21 were cor-
rect translations not contained in the Wiktionary
lexicon (e.g. pintura to painting), 4 were
purely morphological errors (e.g. airport to
aeropuertos), 30 were semantically related (e.g.
basketball to béisbol), 15 were words with
strong orthographic similarities (e.g. coast to
costas), and 30 were difficult to categorize and
fell into none of these categories. Since many of
our ‘errors’ actually represent valid translation pairs
not contained in our extracted dictionary, we sup-
plemented our evaluation lexicon with one automat-
ically derived from 100k sentences of parallel Eu-
roparl data. We ran the intersected HMM word-
alignment model (Liang et al., 2008) and added
(s, t) to the lexicon if s was aligned to t at least
three times and more than any other word. Evaluat-
ing against the union of these lexicons yielded 98.0
p0.33, a significant improvement over the 92.3 us-
ing only the Wiktionary lexicon. Of the true errors,
the most common arose from semantically related
words which had strong context feature correlations
(see table 4(b)).

We also explored the relationships our model
learns between features of different languages. We
projected each source and target feature into the
shared canonical space, and for each projected
source feature we examined the closest projected
target features. In table 5(a), we present some of
the orthographic feature relationships learned by our
system. Many of these relationships correspond to
phonological and morphological regularities such as
the English suffix ing mapping to the Spanish suf-
fix gı́a. In table 5(b), we present context feature
correspondences. Here, the broad trend is for words
which are either translations or semantically related
across languages to be close in canonical space.

8 Conclusion

We have presented a generative model for bilingual
lexicon induction based on probabilistic CCA. Our
experiments show that high-precision translations
can be mined without any access to parallel corpora.
It remains to be seen how such lexicons can be best
utilized, but they invite new approaches to the statis-
tical translation of resource-poor languages.
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