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Abstract

In this paper, we present a novel training
method for a localized phrase-basedpredic-
tion model for statisticalmachinetranslation
(SMT). Themodelpredictsblockswith orien-
tation to handlelocal phrasere-ordering. We
usea maximumlikelihoodcriterion to train a
log-linearblockbigrammodelwhichusesreal-
valuedfeatures(e.g. a languagemodelscore)
as well as binary featuresbasedon the block
identities themselves, e.g. block bigram fea-
tures.Our trainingalgorithmcaneasilyhandle
millions of features. The bestsystemobtains
a ����� � % improvementover the baselineon a
standardArabic-Englishtranslationtask.

1 Intr oduction

In this paper, we presenta block-basedmodelfor statis-
tical machinetranslation. A block is a pair of phrases
which aretranslationsof eachother. For example,Fig. 1
shows anArabic-Englishtranslationexamplethatuses�
blocks. During decoding,we view translationasa block
segmentationprocess,wherethe input sentenceis seg-
mentedfrom left to right andthetargetsentenceis gener-
atedfrom bottomto top,oneblockatatime. A monotone
block sequenceis generatedexceptfor the possibility to
swap a pair of neighborblocks. We usean orientation
modelsimilar to the lexicalizedblock re-orderingmodel
in (Tillmann,2004;Ochetal.,2004):to generateablock	

with orientation 
 relative to its predecessorblock
	��

.
During decoding,we computetheprobability �� 	�� ��� 
 � ���
of a block sequence

	�� �
with orientation 
 � � asa product

of blockbigramprobabilities:

�� 	 � � � 
 � � ��� �
��� ��� � 	 � � 
 ��� 	 ��� � � 
 ��� � ��� (1)
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Figure1: An Arabic-Englishblock translationexample,
wherethe Arabic wordsare romanized. The following
orientationsequenceis generated:
 �IHKJ � 
ML HKN � 
MO HJ � 
MP HKQ .

where
	 � is ablockand 
 �SRUT N � eft

��� Q � ight
�V� J � eutral

�6W
is a three-valued orientation componentlinked to the
block

	 � (the orientation 
 ��� � of the predecessorblock
is currentlyignored.).Here,theblocksequencewith ori-
entation � 	X� � � 
 � � � is generatedunderthe restrictionthat
theconcatenatedsourcephrasesof theblocks

	 � yield the
input sentence.In modelinga block sequence,we em-
phasizeadjacentblockneighborsthathaveRight or Left
orientation.Blockswith neutralorientationaresupposed
to belessstrongly’ linked’ to theirpredecessorblockand
are handledseparately. During decoding,most blocks
have right orientation ��
 HYQ �

, sincethe block transla-
tionsaremostlymonotone.
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The focusof this paperis to investigateissuesin dis-
criminativetrainingof decoderparameters.Insteadof di-
rectly minimizing error as in earlierwork (Och, 2003),
we decomposethe decodingprocessinto a sequenceof
local decisionstepsbasedon Eq. 1, andthentrain each
localdecisionruleusingconvex optimizationtechniques.
Theadvantageof this approachis that it caneasilyhan-
dle a large amountof features. Moreover, under this
view, SMT becomesquite similar to sequentialnatural
languageannotationproblemssuchaspart-of-speechtag-
ging,phrasechunking,andshallow parsing.
The paperis structuredasfollows: Section2 introduces
the conceptof block orientation bigrams. Section 3
describesdetails of the localized log-linear prediction
model usedin this paper. Section4 describesthe on-
line trainingprocedureandcomparesit to thewell known
perceptrontrainingalgorithm(Collins, 2002). Section5
showsexperimentalresultsonanArabic-Englishtransla-
tion task.Section6 presentsa final discussion.

2 Block Orientation Bigrams

This sectiondescribesa phrase-basedmodel for SMT
similar to the modelspresentedin (Koehnet al., 2003;
Och et al., 1999; Tillmann andXia, 2003). In our pa-
per, phrasepairsarenamedblocksandour modelis de-
signedto generateblock sequences.We alsomodel the
position of blocks relative to eachother: this is called
orientation. To define block sequenceswith orienta-
tion, we definethe notion of block orientationbigrams.
Startingpoint for collectingthesebigramsis a block setZ H 	 H �V[ �V\]� H �V^�_ �`�baXc �d� . Here,

	
is a blockcon-

sistingof a sourcephrase[ anda target phrase
\

. e is
thesourcephraselengthandf is thetargetphraselength.
Single sourceand target words are denotedby ^�g anda � respectively, where h H � �di+i+i�� e and j H � �di+ikiM� f .
We will alsousea specialsingle-word block set

Z �`l Z
which containsonly blocksfor which e H f H � . For
theexperimentsin thispaper, theblocksetis theoneused
in (Al-Onaizanet al., 2004). Although this is not inves-
tigatedin the presentpaper, differentblocksetsmay be
usedfor computingtheblock statisticsintroducedin this
paper, whichmayeffect translationresults.

For the block set
Z

and a training sentencepair, we
carry out a two-dimensionalpatternmatchingalgorithm
to find adjacentmatchingblocksalongwith theirposition
in thecoordinatesystemdefinedby sourceandtargetpo-
sitions(seeFig. 2). Here,wedonot insistonaconsistent
blockcoverageasonewoulddoduringdecoding.Among
the matchingblocks,two blocks

	��
and

	
areadjacentif

thetargetphrases
\

and
\`�

aswell asthesourcephrases[ and [ � areadjacent.
	��

is predecessorof block
	

if
	��

and
	

areadjacentand
	��

occursbelow
	
. A right adjacent

successorblock
	

is saidto have right orientation
 HmQ .
A left adjacentsuccessorblockissaidto haveleft orienta-

b

 b'

o=L

b

 b'

o=R

x axis:  source positions

nporq"sutwvx oGy6z|{ x}�~ tws x s ~�� t

Local Block Orientation

Figure 2: Block
	6�

is the predecessorof block
	
. The

successorblock
	

occurswith eitherleft 
 H�N
or right
 H�Q

orientation. ’ left’ and’right’ aredefinedrelative
to the � axis; ’below’ is definedrelativeto the � axis.For
somediscussiononglobalre-orderingseeSection6.

tion 
 H�N . Therearematchingblocks
	

thathavenopre-
decessor, sucha block hasneutralorientation( 
 HYJ

).
After matchingblocks for a training sentencepair, we
look for adjacentblock pairsto collectblock bigramori-
entationevents � of thetype � H � 	 � � 
 �k	k� . Our modelto
bepresentedin Section3 is usedto predicta futur eblock
orientationpair � 	�� 
 � givenits predecessorblockhistory	��

. In Fig. 1, thefollowing block orientationbigramsoc-
cur: � i�� J �k	 � � , � 	 � � N �+	 L � , � i�� J �+	 O � , � 	 O � Q �+	 P � . Collect-
ing orientationbigramson all parallelsentencepairs,we
obtainanorientationbigramlist ��� � :

� � � H � � �|������� � � H�� � 	X�� � 
 � �+	 � � �.���� � �u�� � � (2)

Here,� � is thenumberof orientationbigramsin the ^ -th
sentencepair. Thetotalnumber

J
of orientationbigramsJ�H �� � � � � is about

J�H�� � � million for our train-
ing dataconsistingof [ H����M���"�"�

sentencepairs. The
orientationbigramlist is usedfor theparametertraining
presentedin Section3. Ignoringthebigramswith neutral
orientation

J
reducesthe list definedin Eq. 2 to about� � � million orientationbigrams.TheNeutral orientation

is handledseparatelyasdescribedin Section5. Usingthe
reducedorientationbigramlist, we collect unigramori-
entationcounts

J�� � 	d� : how oftena block occurswith a
given orientation 
 R�T N � Q W . J`� � 	k� � � � � � i J`¡ � 	d�
typically holdsfor blocks

	
involved in block swapping

andtheorientationmodel� � � 	d� is definedas:

� � � 	k� H J�� � 	d�J`� � 	d�(¢ J�¡ � 	k�G�
In orderto train a block bigramorientationmodelasde-
scribedin Section3.2, we definea successorset £ � � 	��V�
for ablock

	��
in the ^ -th trainingsentencepair:
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£ � � 	��V� H T numberof triplesof type � 	��¤� N �+	k� or
type � 	��¤� Q �+	k� R � � �� W

The successorset £"� 	��V� is definedfor eachevent in the
list ��� � . Theaveragesizeof £"� 	6�V� is �r� � successorblocks.
If we were to computea Viterbi block alignmentfor a
trainingsentencepair, eachblock in thisblockalignment
would have at most � successor:Blocks may have sev-
eral successors,becausewe do not inforce any kind of
consistentcoverageduringtraining.

During decoding,we generatea list of block orien-
tation bigramsas describedabove. A DP-basedbeam
searchprocedureidenticalto the oneusedin (Tillmann,
2004) is usedto maximizeover all orientedblock seg-
mentations � 	X� � � 
 � � � . During decodingorientation bi-
grams � 	 � � N �+	k� with left orientationareonly generated
if
J�� � 	k�¦¥ � for thesuccessorblock

	
.

3 Localized Block Model and
Discriminati veTraining

In thissection,wedescribethecomponentsusedto com-
putethe block bigramprobability � � 	 � � 
 ��� 	 ��� � � 
 ��� � � in
Eq.1. A blockorientationpair ��
 �§�+	��V¨ 
 �k	k� is represented
asa feature-vector ©ª� 	�� 
 ¨M	 � � 
 � � R�« ¬ . For a modelthat
usesall thecomponentsdefinedbelow,  is � . As feature-
vector components,we take the negative logarithm of
someblock modelprobabilities.We usethe term ’float’
featurefor thesefeature-vectorcomponents(the model
scoreis storedasa float number). Additionally, we use
binaryblock features.Theletters(a)-(f) referto Table1:

Unigram Models: we compute(a) the unigramproba-
bility � � 	k� and(b) theorientationprobability � � � 	k� .
Theseprobabilitiesaresimplerelativefrequency es-
timatesbasedon unigramandunigramorientation
countsderived from the datain Eq. 2. For details
see(Tillmann, 2004). During decoding,the uni-
gramprobabilityis normalizedby thesourcephrase
length.

Two typesof Trigram languagemodel: (c) probability
of predictingthefirst targetword in thetargetclump
of
	 � given the final two wordsof the target clump

of
	 �¤� � , (d) probability of predictingthe restof the

wordsin thetargetclumpof
	 � . Thelanguagemodel

is trainedon a separatecorpus.

Lexical Weighting: (e) the lexical weight � ��[ � \]�
of the block

	 H ��[ �V\]� is computedsimilarly to
(Koehnetal.,2003),detailsaregivenin Section3.4.

Binary features: (f) binaryfeaturesaredefinedusingan
indicator function ©ª� 	+�+	��V� which is � if the block
pair � 	��+	��V� occursmore often than a given thresh-
old

J
, e.g

J®H¯�
. Here,theorientation
 between

theblocksis ignored.

©ª� 	��+	 � � H � J � 	��+	��V�°� J�
else

(3)

3.1 Global Model

In our linear block model, for a given source sen-
tence ^ , eachtranslationis representedas a sequence
of block/orientationpairs T 	X� � � 
 � � W consistentwith the
source. Using featuressuchas thosedescribedabove,
we canparameterizethe probability of sucha sequence
as �� 	�� � � 
 � � � ± � ^ � , where± is avectorof unknownmodel
parametersto beestimatedfrom thetrainingdata.Weuse
a log-linearprobability modelandmaximumlikelihood
training— the parameter± is estimatedby maximizing
the joint likelihoodover all sentences.Denoteby ²³��^ �
the setof possibleblock/orientationsequencesT 	�� � � 
 � � W
thatareconsistentwith thesourcesentencê , thena log-
linearprobabilitymodelcanberepresentedas

�� 	 � � � 
 � � � ± � ^ � Hµ´+¶�· � ±�¸ ©ª� 	�� � � 
 � � ���¹ �V^ � �
(4)

where ©ª� 	�� � � 
 � � � denotesthe featurevectorof the corre-
spondingblock translation,andthepartitionfunctionis:¹ �V^ � H º » ��¼ ½�¾ � �¿¼ ½SÀwÁdÂIÃ �§Ä ´+¶�· � ± ¸ ©ª� 	

��Å �Æ� 
 �uÅ �`�6� �
A disadvantageof this approachis that the summation
over ²³�V^ � can be rather difficult to compute. Conse-
quentlysomesophisticatedapproximateinferencemeth-
odsareneededto carryout thecomputation.A detailed
investigationof the global modelwill be left to another
study.

3.2 Local Model Restrictions

In the following, we considera simplificationof the di-
rect global model in Eq. 4. As in (Tillmann, 2004),
we model the block bigram probability as � � 	 � � 
 � RT N � Q W � 	 �¤� � � 
 ��� � � in Eq.1. Wedistinguishthetwo cases
(1) 
 �SRÇT N � Q W , and(2) 
 � HKJ . Orientationis modeled
only in thecontext of immediateneighborsfor blocksthat
have left or right orientation.Thelog-linearmodelis de-
finedas:

� � 	�� 
 RÇT N � Q W � 	 � � 
 � ¨ ± � ^ � (5)H ´+¶�· � ±�¸ ©ª� 	�� 
 ¨M	���� 
 �V�6�¹ � 	 � � 
 � ¨ ^ � �
where ^ is the sourcesentence,©ª� 	�� 
 ¨M	��¤� 
 �V� is a locally
definedfeaturevector that dependsonly on the current
andthe previousorientedblocks � 	+� 
 � and � 	��§� 
 �§� . The
featuresweredescribedat the beginning of the section.
Thepartitionfunctionis givenby¹ � 	 � � 
 � ¨ ^ � H Ã » ¾ � Ä ÁdÂIÃ » � ¾ � �ÉÈ �§Ä ´+¶�· � ± ¸ ©ª� 	�� 
 ¨M	

� � 
 � �6� � (6)
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Theset ²³� 	��§� 
 �§¨ ^ � is a restrictedsetof possiblesucces-
sor orientedblocks that are consistentwith the current
block positionandthesourcesentencê , to bedescribed
in the following paragraph.Note that a straightforward
normalizationover all block orientationpairs in Eq. 5
is not feasible: there are tens of millions of possible
successorblocks

	
(if we do not imposeany restriction).

For each block
	 H �V[ ��\]� , aligned with a source

sentencê , we definea source-inducedalternativeset:Z � 	k� H T all blocks
	�� � R Z thatshareanidentical

sourcephrasewith
	ÆW

The set
Z � 	k� containsthe block

	
itself and the block

target phrasesof blocks in that set might differ. To
restrict the numberof alternatives further, the elements
of
Z � 	k� aresortedaccordingto theunigramcount

J � 	�� �V�
and we keepat most the top Ê blocks for eachsource
interval ^ . We alsousea modifiedalternative set

Z � � 	k� ,
where the block

	
as well as the elementsin the setZ � � 	k� are single word blocks. The partition function

is computed slightly differently during training and
decoding:

Training: for eachevent � 	��¤� 
 �+	d� in a sentencepair ^ in
Eq.2 we computethesuccessorset £ � � 	��§� . This de-
finesa setof ’ true’ block successors.For eachtrue
successor

	
, we computethe alternative set

Z � 	k� .²³� 	6��� 
 �V¨ ^ � is theunionof thealternativesetfor each
successor

	
. Here, the orientation 
 from the true

successor
	

is assignedto eachalternative in
Z � 	k� .

Weobtainontheaverage� � � � alternativespertrain-
ing event � 	6��� 
 �+	k� in thelist ��� � .

Decoding: Here,eachblock
	

thatmatchesa sourcein-
terval following

	6�
in the sentencê is a potential

successor. Wesimplyset²³� 	 � � 
 � ¨ ^ � H Z � 	k� . More-
over, setting

¹ � 	��¤� 
 ��¨ ^ � HË� � � duringdecodingdoes
not changeperformance:the list

Z � 	k� just restricts
thepossibletargettranslationsfor asourcephrase.

Under this model, the log-probability of a possible
translationof a sourcesentencê , as in Eq. 1, can be
writtenasÌ¿Í �� 	 � � � 
 � � � ± � ^ � H (7)H �

��� � Ì�Í ´k¶�· � ±�¸ ©ª�
	 � � 
 � ¨M	 ��� � � 
 ��� � �6�¹ � 	 ��� � � 
 ��� � ¨ ^ � �

In themaximum-likelihoodtraining,we find ± by maxi-
mizing thesumof the log-likelihoodover observedsen-
tences,eachof themhastheform in Eq.7. Althoughthe
trainingmethodologyis similar to theglobalformulation
given in Eq. 4, this localizedversionis computationally
mucheasierto managesincethe summationin the par-
tition function

¹ � 	 ��� � � 
 �¤� � ¨ ^ � is now over a relatively
small set of candidates.This computationaladvantage

is the main reasonthat we adoptthe local model in this
paper.

3.3 Global versusLocal Models

Both the global andthe localizedlog-linearmodelsde-
scribedin this sectioncan be consideredas maximum-
entropy models,similar to thoseusedin naturallanguage
processing,e.g. maximum-entropy modelsfor POStag-
ging andshallow parsing.In theparsingcontext, global
modelssuchasin Eq.4 aresometimesreferredto ascon-
ditional randomfield or CRF(Lafferty etal., 2001).

Although therearesomeargumentsthat indicatethat
thisapproachhassomeadvantagesoverlocalizedmodels
suchasEq. 5, the potentialimprovementsarerelatively
small,at leastin NLP applications.For SMT, thediffer-
encecanbepotentiallymoresignificant.This is because
in our currentlocalizedmodel,successorblocksof dif-
ferent sizesaredirectly comparedto eachother, which
is intuitively not the best approach(i.e., probabilities
of blocks with identical lengthsare more comparable).
This issueis closelyrelatedto thephenomenonof multi-
ple countingof events,which meansthata source/target
sentencepair canbe decomposedinto differentoriented
blocks in our model. In our currenttraining procedure,
we selectoneasthetruth, while considertheother(pos-
sibly alsocorrect)decisionsasnon-truthalternatives. In
theglobalmodeling,with appropriatenormalization,this
issuebecomeslesssevere. With this limitation in mind,
the localized model proposedhere is still an effective
approach,as demonstratedby our experiments. More-
over, it is simplebothcomputationallyandconceptually.
Variousissuessuchas the onesdescribedabove canbe
addressedwith moresophisticatedmodelingtechniques,
which weshallbeleft to futurestudies.

3.4 Lexical Weighting

The lexical weight � ��[ � \]� of the block
	 H ��[ �V\]� is

computedsimilarly to (Koehnetal.,2003),but thelexical
translationprobability � ��^ � ad� is derived from the block
setitself ratherthanfrom a word alignment,resultingin
a simplified training. The lexical weight is computedas
follows:

� ��[ � \]� H _
g � � �JIÎ ��^ g ��\]�

c
Ï � � � ��^Mg � a � �

� ��^ g � a � � H J � 	k�» � Á Î ½ Ã » Ä J � 	 � �
Here, the single-word-based translation probability� ��^�g � a � � is derivedfrom theblock setitself.

	 H ��^�g �Va � �
and

	�� H ��^Mg ��aXÐ.� aresingle-word blocks,wheresource
andtargetphrasesareof length � . J Î �V^�g ��a c �k� is thenum-
ber of blocks

	 Ð H ��^ g ��a Ð � for Ñ R � �di+ikiM� f for which� ��^ g � a Ð �°� � � � .
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4 Online Training of Maximum-entropy
Model

The local modeldescribedin Section3 leadsto the fol-
lowing abstractmaximumentropy trainingformulation:

Ò± HËÓÕÔ�ÖS×]Ø ÍÙ Å
�C� � Ì¿Í g ÁdÂÛÚ ´k¶�· � ± ¸ � � ¾ g �´k¶�· � ± ¸ � � ¾ Ü Ú � � (8)

In thisformulation,± is theweightvectorwhichwewant
to compute.The set ² � consistsof candidatelabelsfor
the j -th training instance,with the true label � � R ² � .
The labelshereareblock identities, ² � correspondsto
the alternative set ²Ý� 	��¤� 
 �V¨ ^ � and the ’ true’ blocks are
definedby thesuccessorset £"� 	��V� . Thevector � � ¾ g is the
featurevectorof the j -th instance,correspondingto la-
bel h R ² � . Thesymbol � is short-handfor the feature-
vector ©ª� 	�� 
 ¨M	��¤� 
 �V� . This formulation is slightly differ-
entfrom thestandardmaximumentropy formulationtyp-
ically encounteredin NLP applications,in thatwerestrict
thesummationoverasubset² � of all labels.
Intuitively, this methodfavors a weight vectorsuchthat
for eachj , ±�¸ � � ¾ ÜkÚ(Þ ±�¸ � � ¾ g is largewhenhUßH � � . This
effectis desirablesinceit triestoseparatethecorrectclas-
sificationfrom the incorrectalternatives. If the problem
is completelyseparable,then it can be shown that the
computedlinear separator, with appropriateregulariza-
tion, achievesthelargestpossibleseparatingmargin. The
effectis similarto somemulti-categorygeneralizationsof
supportvectormachines(SVM). However, Eq.8 is more
suitablefor non-separableproblems(which is often the
casefor SMT) since it directly modelsthe conditional
probabilityfor thecandidatelabels.

A relatedmethodis multi-category perceptron,which
explicitly finds a weightvectorthat separatescorrectla-
belsfrom the incorrectonesin a mistake drivenfashion
(Collins, 2002). The methodworks by examining one
sampleata time,andmakesanupdate±áàâ± ¢ �u� � ¾ Ü+Ú�Þ� � ¾ g � when ±�¸ �¿� � ¾ ÜkÚªÞ � � ¾ g � is not positive. To compute
theupdatefor a traininginstancej , oneusuallypick the h
suchthat±p¸ �u� � ¾ Ü+Ú�Þ � � ¾ g � is thesmallest.It canbeshown
that if thereexist weightvectorsthatseparatethecorrect
label � � from incorrectlabelsh R ² � for all hUßH � � , then
the perceptronmethodcanfind sucha separator. How-
ever, it is not entirelyclearwhat this methoddoeswhen
thetrainingdataarenotcompletelyseparable.Moreover,
the standardmistake boundjustificationdoesnot apply
whenwe go throughthetrainingdatamorethanonce,as
typically donein practice. In spiteof someissuesin its
justification,theperceptronalgorithmis still very attrac-
tive dueto its simplicity andcomputationalefficiency. It
alsoworksquitewell for a numberof NLP applications.

In the following, we show that a simpleandefficient
online training procedurecanalsobe developedfor the

maximumentropy formulationEq. 8. Theproposedup-
daterule is similar to the perceptronmethodbut with a
soft mistake-driven updaterule, wherethe influenceof
eachfeatureis weightedby the significanceof its mis-
take. The method is essentiallya version of the so-
called stochastic gradient descentmethod, which has
beenwidely usedin complicatedstochasticoptimization
problemssuch as neural networks. It was argued re-
cently in (Zhang,2004)thatthis methodalsoworkswell
for standardconvex formulationsof binary-classification
problemsincluding SVM and logistic regression.Con-
vergenceboundssimilar to perceptronmistake bounds
canbedeveloped,althoughunlikeperceptron,thetheory
justifiesthestandardpracticeof goingthroughthetrain-
ing datamorethanonce. In the non-separablecase,the
methodsolvesa regularizedversionof Eq. 8, which has
thestatisticalinterpretationof estimatingtheconditional
probability. Consequently, it doesnot have thepotential
issuesof the perceptronmethodwhich we pointedout
earlier. Due to thenatureof onlineupdate,just like per-
ceptron,thismethodis alsoverysimpleto implementand
is scalableto largeproblemsize.This is importantin the
SMT applicationbecausewe canhave a hugenumberof
traininginstanceswhichwe arenot ableto keepin mem-
ory at thesametime.

In stochasticgradientdescent,we examineonetrain-
ing instanceat a time. At the j -th instance,we derive
the updaterule by maximizingwith respectto the term
associatedwith theinstance

N � � ± � H Ì�Í g ÁdÂ Ú ´+¶�· � ±�¸ � � ¾ g �´k¶�· � ± ¸ � � ¾ ÜkÚ �
in Eq. 8. We do a gradientdescentlocalizedto this in-
stanceas ±ãàä± Þæå �`çç Ù N � � ± � , whereå � � �

is a pa-
rameteroften referredto asthe learningrate. For Eq. 8,
theupdaterule becomes:

±áàâ± ¢ å � g ÁdÂÛÚ ´+¶�· � ±�¸ � � ¾ g � �¿� � ¾ ÜkÚ(Þ � � ¾ g �g ÁdÂÛÚ ´k¶�· � ± ¸ � � ¾ g � � (9)

Similar to online algorithmssuchasthe perceptron,we
applythisupdateruleoneby oneto eachtraininginstance
(randomlyordered),andmaygo-throughdatapointsre-
peatedly. CompareEq. 9 to theperceptronupdate,there
aretwo maindifferences,whichwe discussbelow.

The first difference is the weighting scheme. In-
stead of putting the update weight to a single
(most mistaken) feature component, as in the per-
ceptron algorithm, we use a soft-weighting scheme,
with each feature component h weighted by a fac-
tor ´+¶�· � ±p¸ � � ¾ g ��è Ð ÁdÂ Ú ´k¶�· � ±�¸ � � ¾ Ð � . A componenth
with larger ±p¸ � � ¾ g getsmore weight. This effect is in
principle similar to the perceptronupdate.The smooth-
ing effect in Eq. 9 is useful for non-separableproblems

561



sinceit doesnot forceanupdaterule thatattemptsto sep-
aratethedata.Eachfeaturecomponentgetsaweightthat
is proportionalto its conditionalprobability.

The seconddifferenceis the introductionof a learn-
ing rateparameterå � . For thealgorithmto converge,one
shouldpick a decreasinglearningrate. In practice,how-
ever, it is oftenmoreconvenientto selecta fixed å � H å
for all j . This leadsto an algorithmthat approximately
solvea regularizedversionof Eq.8. If wego throughthe
datarepeatedly, onemayalsodecreasethefixedlearning
rate by monitoring the progressmadeeachtime we go
throughthedata.For practicalpurposes,a fixedsmall å
suchas å H � � �.é is usuallysufficient. We typically run
forty updatesover the training data. Using techniques
similar to thoseof (Zhang,2004),we canobtaina con-
vergencetheoremfor our algorithm. Due to the space
limitation, we will not presenttheanalysishere.

An advantageof this methodover standardmaximum
entropy training suchasGIS (generalizediterative scal-
ing) is that it doesnot require us to storeall the data
in memoryat once. Moreover, the convergenceanaly-
sis can be usedto show that if ê is large, we can get
a very goodapproximatesolutionby going throughthe
dataonly once. This desirablepropertyimplies that the
methodis particularlysuitablefor largescaleproblems.

5 Experimental Results

Thetranslationsystemis testedon anArabic-to-English
translationtask. The training datacomesfrom the UN
news sources.Somepunctuationtokenizationandsome
numberclassingare carriedout on the English and the
Arabic trainingdata.In this paper, we presentresultsfor
two test sets: (1) the devtest set usesdataprovided by
LDC, whichconsistsof � � � � sentenceswith

� � �Õ�"Ê Ara-
bic wordswith � referencetranslations.(2) theblind test
set is the MT03 Arabic-EnglishDARPA evaluationtest
setconsistingof �"� � sentenceswith �M� �b� � Arabicwords
with also � referencetranslations.Experimentalresults
arereportedin Table2: herecasedBLEU resultsarere-
portedon MT03 Arabic-Englishtestset(Papineniet al.,
2002).Theword casingis addedaspost-processingstep
usingastatisticalmodel(detailsareomittedhere).
In orderto speedup the parametertraining we filter the
original training dataaccordingto the two testsets: for
eachof thetestsetswe take all theArabic substringsup
to length � � andfilter theparalleltrainingdatato include
only thosetrainingsentencepairsthatcontainat leastone
out of thesephrases:the ’LDC’ training datacontains
about

�b�M�
thousandsentencepairsandthe’MT03’ train-

ing datacontainsabout
�Õ�"�

thousandsentencepairs.Two
block setsarederivedfor eachof the trainingsetsusing
aphrase-pairselectionalgorithmsimilar to (Koehnetal.,
2003; Tillmann and Xia, 2003). Theseblock setsalso
includeblocksthatoccuronly oncein the training data.

Additionally, someheuristicfiltering is usedto increase
phrasetranslationaccuracy (Al-Onaizanet al., 2004).

5.1 Lik elihood Training Results

Wecomparemodelperformancewith respectto thenum-
ber and type of featuresusedas well as with respect
to different re-orderingmodels. Resultsfor Ê experi-
mentsareshown in Table2, wherethe featuretypesare
describedin Table 1. The first

�
experimentalresults

areobtainedby carryingout the likelihood training de-
scribedin Section3. Line � in Table 2 shows the per-
formanceof the baselineblock unigram’MON’ model
which usestwo ’float’ features: the unigramprobabil-
ity and the boundary-word languagemodel probability.
No block re-orderingis allowed for the baselinemodel
(a monotoneblock sequenceis generated).The’SWAP’
model in line

�
usesthe sametwo features,but neigh-

bor blockscanbeswapped.No performanceincreaseis
obtainedfor this model. The ’SWAP & OR’ modeluses
anorientationmodelasdescribedin Section3. Here,we
obtainasmallbut significantimprovementoverthebase-
line model.Line � showsthatby includingtwo additional
’float’ features:the lexical weightingand the language
model probability of predicting the secondand subse-
quentwordsof the target clump yields a further signif-
icant improvement. Line

�
shows that including binary

featuresand training their weightson the training data
actuallydecreasesperformance.This issueis addressed
in Section5.2.

Thetrainingis carriedoutasfollows: theresultsin line� -� areobtainedby training ’float’ weightsonly. Here,
the training is carriedout by runningonly onceover � �
% of the training data. The model including the binary
featuresis trainedon theentiretrainingdata.We obtain
about

� � �b� million featuresof the type definedin Eq. 3
by settingthethreshold

JëHì�
. Forty iterationsover the

trainingdatatakeabout
�

hoursonasingleIntel machine.
Although the onlinealgorithmdoesnot requireus to do
so, our training procedurekeepsthe entiretraining data
andtheweightvector± in about

�
gigabytesof memory.

For blockswith neutralorientation 
 HãJ
, we train

a separatemodelthatdoesnot usetheorientationmodel
featureor thebinary features.E.g. for theresultsin line�

in Table 2, the neutralmodel would usethe features�Ví ��� �Vî �V� �� ��� ��� � , but not � 	k� and �V© � . Here, the neutral
modelis trainedon theneutralorientationbigramsubse-
quencethatis partof Eq.2.

5.2 Modified Weight Training

We implementedthe following variation of the likeli-
hood training proceduredescribedin Section3, where
we make useof the ’LDC’ devtest set. First, we train
a modelon the’LDC’ trainingdatausing

�
float features

and the binary features. We usethis model to decode
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Table 1: List of feature-vector components.For a de-
scription,seeSection3.

Description

(a)Unigramprobability
(b) Orientationprobability
(c) LM first word probability
(d) LM secondandfollowing wordsprobability
(e)Lexical weighting
(f) Binary Block BigramFeatures

Table2: CasedBLEU translationresultswith confidence
intervalson theMT03 testdata. The third columnsum-
marizesthe modelvariations.The resultsin lines � andÊ are for a cheatingexperiment: the float weightsare
trainedon thetestdataitself.

Re-ordering Components BLEU
1 ’MON’ (a),(c)

�"� � �pï �G� �
2 ’SWAP’ (a),(c)

�"� � �pï �G� �
3 ’SWAP& OR’ (a),(b),(c)

�"� � Ê ï �G� �
4 ’SWAP& OR’ (a)-(e)

��� � �ðï �G� �
5 ’SWAP& OR’ (a)-(f)

��� � �pï �G� �
6 ’SWAP& OR’ (a)-(e)(ldc devtest)

��� � � ï �G� �
7 ’SWAP& OR’ (a)-(f) (ldc devtest)

� ��� �pï �G� �
8 ’SWAP& OR’ (a)-(e)(mt03test)

� Ê�� �pï �G� �
9 ’SWAP& OR’ (a)-(f) (mt03test)

� Ê�� �pï �G� �
the devtest ’LDC’ set. During decoding,we generatea
’ translationgraph’for everyinputsentenceusingaproce-
duresimilar to (Ueffing et al., 2002): a translationgraph
is a compactway of representingcandidatetranslations
which areclosein termsof likelihood.Fromthetransla-
tion graph,we obtainthe � �Õ�"� besttranslationsaccord-
ing to the translationscore. Out of this list, we find the
blocksequencethatgeneratedthetop BLEU-scoringtar-
get translation.Computingthe top BLEU-scoringblock
sequencefor all theinputsentencesweobtain:

� � �� H � � 	 �� � 
 � �k	 � � � � ��C� �6� � �� �
(10)

where
J � � ÊÕ� �"� . Here,

J �
is the numberof blocks

neededto decodethe entiredevtestset. Alternativesfor
eachof the eventsin �M� �� aregeneratedasdescribedin
Section3.2. The setof alternativesis further restricted
by usingonly thoseblocksthatoccurin sometranslation
in the � �"�"� -bestlist. The

�
float weightsaretrainedon

the modifiedtraining datain Eq. 10, wherethe training
takesonly a few seconds.We thendecodethe ’MT03’
testsetusingthe modified’float’ weights. As shown in
line � and line � there is almostno changein perfor-
mancebetweentraining on the original training datain
Eq. 2 or on the modified training datain Eq. 10. Line

� shows thatevenwhentraining the float weightson an
event setobtainedfrom the testdataitself in a cheating
experiment,we obtainonly a moderateperformanceim-
provementfrom

�b� � � to
� Ê�� � . For the experimentalre-

sults in line
�

and Ê , we usethe samefive float weights
as trainedfor the experimentsin line � and � andkeep
themfixedwhile trainingthebinaryfeatureweightsonly.
Usingthebinaryfeaturesleadsto only a minor improve-
mentin BLEU from

�b� � � to
� ��� � in line

�
. For this best

model,we obtaina �M�ñ� � % BLEU improvementover the
baseline.

Fromour experimentalresults,we draw thefollowing
conclusions: (1) the translationperformanceis largely
dominatedby the ’float’ features,(2) usingthe sameset
of ’float’ features,theperformancedoesn’t changemuch
whentrainingon training,devtest,or eventestdata.Al-
though,wedo notobtainasignificantimprovementfrom
theuseof binaryfeatures,currently, weexpecttheuseof
binaryfeaturesto beapromisingapproachfor thefollow-
ing reasons:ò The currenttraining doesnot take into accountthe

block interactionon thesentencelevel. A moreac-
curateapproximationof the global model as dis-
cussedin Section3.1might improveperformance.ò As describedin Section3.2 and Section5.2, for
efficiency reasonsalternatives are computedfrom
sourcephrasematchesonly. During training,more
accuratelocalapproximationsfor thepartitionfunc-
tion in Eq. 6 can be obtainedby looking at block
translationsin the context of translationsequences.
Thisinvolvesthecomputationallyexpensivegenera-
tion of a translationgraphfor eachtrainingsentence
pair. This is futurework.ò As mentionedin Section1, viewing the translation
processasa sequenceof local discussionsmakesit
similar to otherNLP problemssuchasPOStagging,
phrasechunking,andalsostatisticalparsing. This
similarity may facilitate the incorporationof these
approachesinto our translationmodel.

6 Discussionand Future Work

In this paperwe proposeda methodfor discriminatively
training the parametersof a block SMT decoder. We
discussedtwo possibleapproaches:global versuslocal.
This work focusedon thelatter, dueto its computational
advantages.Somelimitationsof our approachhave also
beenpointedout, althoughour experimentsshowedthat
thissimplemethodcansignificantlyimprovethebaseline
model.

As far as the log-linearcombinationof float features
is concerned,similar trainingprocedureshave beenpro-
posedin (Och, 2003). This paperreportsthe useof �
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featureswhoseparameterare trained to optimize per-
formancein terms of different evaluation criteria, e.g.
BLEU. On the contrary, our papershows that a signifi-
cantimprovementcanalsobeobtainedusingalikelihood
trainingcriterion.

Our modifiedtraining procedureis relatedto the dis-
criminative re-rankingprocedurepresentedin (Shenet
al., 2004). In fact, onemay view discriminative rerank-
ing asa simplificationof theglobalmodelwe discussed,
in thatit restrictsthenumberof candidateglobaltransla-
tions to make the computationmoremanageable.How-
ever, the numberof possibletranslationsis often expo-
nential in the sentencelength,while the numberof can-
didatesin a typically rerankingapproachis fixed. Un-
less one employs an elaboratedprocedure,the candi-
datetranslationsmayalsobeverysimilar to oneanother,
and thus do not give a goodcoverageof representative
translations.Thereforethererankingapproachmayhave
someseverelimitationswhich needto beaddressed.For
this reason,we think thata moreprincipledtreatmentof
global modelingcan potentially lead to further perfor-
manceimprovements.

For future work, our training techniquemay be used
to trainmodelsthathandleglobalsentence-level reorder-
ings. This might be achieved by introducing orienta-
tion sequencesover phrasetypesthathave beenusedin
((SchaferandYarowsky, 2003)). To incorporatesyntac-
tic knowledgeinto theblock-basedmodel,wewill exam-
ine the useof additionalreal-valuedor binary features,
e.g. featuresthatlook at whethertheblock phrasescross
syntacticboundaries.This canbedonewith only minor
modificationsto our trainingmethod.
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